
Cluster Computing (2019) 22:S11425–S11434
https://doi.org/10.1007/s10586-017-1401-7

Optimal test suite selection in regression testing with testcase
prioritization using modified Ann andWhale optimization algorithm

S. K. Harikarthik1 · V. Palanisamy1 · P. Ramanathan1

Received: 22 September 2017 / Revised: 13 November 2017 / Accepted: 17 November 2017 / Published online: 30 November 2017
© Springer Science+Business Media, LLC, part of Springer Nature 2017

Abstract
Fault detection during testing can provide faster feedback on the system under test and permit software engineers begin
correcting faults earlier. One application of prioritization technique involves regression testing for retesting of software
followingmodifications. In this context, prioritization technique can take advantage of information gathered about the previous
execution of test cases to obtain test case orderings. Test case prioritization techniques schedule test cases in an order that
increases their effectiveness inmeeting certain performance goals. Regression testingmakes sure that up gradation of software
in terms of adding new features or for bug fixing purposes should not hamper previously working functionalities. Whenever
a software is upgraded or modified, a set of test cases are run on each of its functions to assure that the change to that
function is not affecting other parts of the software that were previously running flawlessly.Our proposed regression test
case prioritization research initially generates test cases. Then the generated test cases are clustered with the aid of kernel
fuzzy c-means clustering technique. The KFCM will cluster relevant and irrelevant test cases later the relevant test cases are
considered for test case prioritization. The goal of test case prioritization is to determine test case ordering that maximizes
the probability to discover faults in source code early. Here for test case prioritization Modified Artificial Neural Network
classification algorithms are used. A Whale Optimization Algorithm is used for weight optimization process.

Keywords Regression testing · Prioritization · Kernel fuzzy c-means clustering · Artificial neural network · Whale
optimization

1 Introduction

Software functionalities need to adapt to ever-changing sys-
tems that evolve constantly to meet out the customer needs.
However, modifying software can break the previously ver-
ified functionalities of the system, causing regression faults.
Software regression testing is therefore required in order to
detect such faults [1]. Test case prioritization reorders test
case execution sequence to enhance fault detection rate. In
regression testing earlier versions of test cases are consid-
ered for testing new functionalities [2]. Testing is a primary
method that iswidely adopted to ensure the quality of the soft-
ware under development. According to the IEEE definition,
a test case is a set of input data and expected output results
which are designed to exercise a specific software function

B S. K. Harikarthik
skharikarthik09@gmail.com

1 Info Institute of Engineering, Kovilpalayam, Coimbatore,
India

or test requirement. During testing, the testers, or the test
harnesses, will execute the underlying software system to
either examine the associated program path or to determine
the correctness of a software function [3]. Regression testing
is the process of testing a system to verify that changes incor-
porated work correctly and meet the specified requirements.
Hence, regression testing involves testing a set of features
that could be affected due to modification of a particular fea-
ture or function. The modification could have been caused
by resolving a bug or by an enhancement. They play a vital
role in web services [4].When any change happened to a ser-
vice, regression testing must be performed to check whether
or not some new faults have been introduced. The inher-
ent characteristics, such as ultra-late binding mechanism and
non-observability of web service source code, make regres-
sion testing for web service more challenging [5]. However,
many existing regression testing techniques assume that the
source code is available for monitoring, and use the coverage
information of executable artifacts (such as statement cover-
age achieved by individual test cases) to conduct regression

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-017-1401-7&domain=pdf

S11426 Cluster Computing (2019) 22:S11425–S11434

testing. Nonetheless, the coverage information on an exter-
nal service may not be visible to the service composition that
utilizes this service [6].

Most existing testmethods cannot be applied straightaway
without adjusting them. Many teams consider verification
and validation to be essential elements of the development
process [7]. Test case prioritization is an important tech-
nique adopted in regression testing. Prioritize the test cases
depending on business impact, importance and frequently
used functionalities [8]. Test case prioritization attempts to
order test cases for execution in a way that increases the like-
lihood of revealing faults early during the retesting process.
Early detection of faults provides earlier feedback on the sys-
tem’s update allowing developers to reveal and fix problems
earlier during the testing process [9]. Prioritization can pro-
vide earlier feedback to testers and management and allow
engineers to begin debugging earlier. It can also increase the
probability that, if testing ends prematurely, important test
cases have been run [10]. Hence a method of assisting in
testing is to prioritize test cases on the basis of certain cri-
teria. These prioritization techniques let testers order their
test cases, so that test cases with higher priority are executed
earlier than lower priority test cases. Since Test Case Prioriti-
zation (TCP) techniques do not discard test cases, they avoid
the draw backs of test case minimization techniques [11,12].
However in the past, there are many test cases that use pri-
oritization techniques for demonstrating and increasing the
effectiveness of enhancing fault detection rate. Most of these
techniques have been used as statement level and functional
level prioritization techniques to prioritize the test cases in
a test suite. They treated each test case to be independent
test cases and prioritize them without considering the func-
tional dependency among various test cases [13]. Regression
testing is an integral and expensive part in software testing.
To reduce its effort, test case prioritization approaches were
proposed. The problem with most of the existing approaches
is the random ranking of test cases with equal weight. Con-
trolled experiment was executed to evaluate the effectiveness
of the proposed method. The results show an improved per-
formance in terms of prioritizing test cases and recording
higher APFD values over the original weighted method [14].

There can be many possible goals behind applying TCP,
such as to increase the rate of fault detection, to increase state-
ment, branch or function test coverage and/or to increase
confidence in system reliability. To date, TCP has been
primarily applied to improve regression testing efforts of
white box, code-level test cases. They extend the white box,
code-level TCP techniques and applied TCP at a black box,
system-level [15]. Many test case prioritization techniques
are coverage based. They require runtime monitoring, such
as profiling the coverage of an execution trace for a test case
from the service runtime for further test analysis. Such tech-
niques heuristically assume that a test suite achieving a faster

rate of code coverage on an application before evolution can
also achieve a faster rate of fault detection in the same appli-
cation after evolution [16]. An increasing number of modern
software systems need to be adapted at runtime without
stopping their execution. Runtime adaptations can introduce
faults in existing functionality, and thus, regression testing
must be conducted after an adaptation is performedbut before
the adaptation is deployed to the running system. Regres-
sion testing must be completed subject to time and resource
constraints. Thus, test selection techniques are needed to
reduce the cost of regression testing [17]. Researchers have
proposed various techniques for test-case prioritization to re-
order the test cases for regression testing. These techniques
focus on various aspects of product development, such as
coverage-based approach requirement-based approach and
constraint-based approach [18].

Further the technique developed by researchers for test
case prioritization takes into consideration the impacted
blocks, i.e., the set of blocks that have been changed between
the old and the new version of software. A heuristic is used to
predict the impacted blocks that will be covered by each test
case. The test cases are then prioritized in order of decreas-
ing number of impacted blocks covered by the test case
[19]. However existing prioritization techniques typically
utilize information or heuristics such as code coverage, esti-
mated fault-proneness, implementation complexity, changes
in requirements or code and execution profile or history that
serve as an indirect or approximate indicator of the fault
exposing potential of the test cases. Such an approach suf-
fers from several limitations. First, the indicators or heuristics
are not necessarily theoretically sound in predicting the fault-
detecting ability of test cases [20].

2 Literature review

Schwartz et al. [21] empirically studied the existing strategies
presented on prior work as well as developed two addi-
tional Adaptive Test Prioritization (ATP) strategies using
fuzzy Analytical Hierarchy Process (AHP) and theWeighted
SumModel (WSM). They also provided a comparative study
examining each of the ATP strategies presented to date. Their
research would provide researchers and practitioners with
strategies that are essential in regression testing as well as
provide appropriate data to decide which of the strategies
would best fit their testing needs. The empirical studies pro-
vided in their research showed that utilizing those strategies
could improve the cost-effectiveness of regression testing.

Regression testing ensures that changes made in the fixes
or any enhancement changes do not impact the previously
working functionality. Whenever software is modified, a set
of test cases are run to assure that these changes don’t affect
the other parts of the software. Hence all existing test cases

123

Cluster Computing (2019) 22:S11425–S11434 S11427

need to be tested, as well as new test cases needs to be cre-
ated. It is nonviable to re-execute every test case for given
software, because if there are more number of test cases to
be tested, more effort and time is required. This problem can
be solved by prioritizing test cases. Test case prioritization
techniques reorder the priority of a test case in an attempt
to ensure that maximum faults are uncovered by the high
prioritized test cases. Ansari et al. [22] proposed an opti-
mized test case prioritization technique using Ant Colony
Optimization (ACO) to reduce the cost, effort and time taken
to perform regression testing and also uncovered maximum
faults.

Software testing is typically used to verify whether the
developed software product meets its requirements. From the
result of software testing, developers can make an assess-
ment about the quality or the acceptability of developed
software. Huang et al. [23] conveyed a method of cost-
cognizant test case prioritization basedon the use of historical
records. They gathered the historical records from the latest
regression testing and then proposed a genetic algorithm to
determine the most effective order. Some controlled experi-
ments were performed to evaluate the effectiveness of their
proposed method. Evaluation results indicate that their pro-
posedmethod had improved the fault detection effectiveness.

The use of system requirements and their risk enables
software testers to identify more important test cases that
can reveal the faults associated with system components.
The goal of this research is to make the requirement risk
estimation process more systematic and precise by reducing
subjectivity using a fuzzy expert system. Hettiarachchi et al.
[24] provided empirical results that showed that their pro-
posed approach could improve the effectiveness of test case
prioritization. In their method, they used requirement modi-
fication status, complexity, security, and size of the software
requirement as risk indicators and employed a fuzzy expert
system to estimate the requirements risks. Further, they
employed a semi-automated process to gather the required
data for their approach and to make the risk estimation pro-
cess less subjective.

Pedemonte et al. [25] presented a Systolic Genetic Search
(SGS) algorithm for solving the Test Suite Minimization
Problem (TSMP). SGS was a recently proposed optimiza-
tion algorithm capable of taking advantage of the high degree
of parallelism available in modern GPU architectures. The
experimental evaluation was conducted on a large number of
test suites generated for seven real-world programs and seven
large test suites generated for a case study from a real-world
program which showed that SGS was highly effective for the
TSMP. SGS not only outperformed two competitive genetic
algorithms, but also outperformed four heuristics specially
conceived for that problem.

Jiang et al. [26] conveyed a novel family of input-based
local-beam-search adaptive-randomized techniques. They

made adaptive tree-based randomized explorations with a
randomized candidate test set strategy to even out the search
space explorations among the branches of the exploration
trees constructed by the test inputs in the test suite. They
reported a validation experiment on a suite of four medium-
size benchmarks. Their results showed that their techniques
achieved either higher APFD values than or the same mean
APFD values as the existing code-coverage-based greedy
or search-based prioritization techniques. Their techniques
were also significantly more efficient than the Genetic and
Greedy, but were less efficient than ART.

To improve testing cost-effectiveness, test cases in the
interaction test suite can be prioritized, and one of the best-
known categories of prioritization approaches is based on
“fixed-strength prioritization”, which prioritizes an interac-
tion test suite by choosing new test cases which have the
highest uncovered interaction coverage at a fixed strength
(level of interaction among parameters). A drawback of this
approach, however, is that, when selecting each test case,
they only consider a fixed strength, not multiple strengths.
To overcome this, Huang et al. [27] anticipated a new
“aggregate-strength prioritization”, to combine interaction
coverage at different strengths.

3 Problem identification

Regression testing is a type of software testing which verifies
that software, which was previously developed and tested,
still performs correctly after it was changed or interfaced
with other software. There are several problems associated
with existing test case prioritization based regression and are
listed as follows,

• In [21] existing regression testing through Adaptive Test
Prioritization Strategies suffers from severe scalability
and financial issues.

• Traditional test case prioritization algorithm used in [22]
could not reduce the test cases generated and hence suf-
fers from time complexity issues in running all the test
cases generated.

• Risk-based test case prioritization using a fuzzy expert
system strategy in [24] has poor computation efficiency.

• Input-based adaptive randomized test case prioritization
used in [26] suffers from handling large input datasets
and further cost effective results could not be achieved.

• Conventional test case prioritization methods when
selecting each test case, considered only a fixed strength
and not multiple strengths.

123

S11428 Cluster Computing (2019) 22:S11425–S11434

Hence to overcome those issues, we have proposed a method
that rectifies all the above mentioned issues.

4 Proposedmethodology

Regression testing is the process of testing a system to ver-
ify that changes incorporated work correctly and meet the
specified requirements. Hence, regression testing involves
testing a set of features that could be affected due to modi-
fication of a feature or function. The test case prioritization
problem has recently involved in scheduling test cases for
regression testing in an order that increase their effectiveness
of performance goal. Existing test case prioritization meth-
ods suffer from handling large input datasets and further cost
effective results could not be achieved using this method.
Hence to overcome those issues our proposed method is
used. In our proposed method from the input applications
test cases are generated. After test case generation test case
clustering is used to classify the generated test cases as
relevant and irrelevant test cases. For this purpose mod-
ified kernel fuzzy c means (MKFCM) algorithm is used.
After clustering of test cases relevant test cases, are con-
sidered for test case prioritization. The goal of test case
prioritization is to determine test case ordering that maxi-
mizes the probability of discovering faults in source code
early. Here for test case prioritization MANN classifica-
tion algorithms are used. Here WOA is used for weight
optimization process. Finally score value is obtained from
the whale optimization algorithm and on the basis of the
score value obtained, test case prioritization occurs. Hence
the test cases are prioritized accurately using our proposed
method. The main advantage of this method is that it is
highly cost effective. The performance of the proposed
method is measured in terms of execution time, mem-
ory and Average Percentage of Faults Detected (APFD).
The proposed method is implemented in JAVA with cloud
sim.

4.1 Test case prioritization

In this work, we consider the test case prioritization for
regression testing. In this definition, PT represents the set of
all possible prioritizations (orderings) of T , and f is a func-
tion that, applied to any such ordering, yields an award value
for that ordering. Define the test case prioritization problem
as follows,

Given: T , a test of suite, PT the set of permutations of T ,
and f , a function from PT to the real numbers.
Problem: Find T ′ ∈ PT such that (∀T ′)(T ′ �= T ′)(T ′′ �=
T ′)[f (T ′) ≥ f (T ′′)]
First, there are many possible goals of prioritization, includ-
ing the following,

• Testers may wish to increase the rate of fault detection
of a test suite that is, the likelihood of revealing faults
earlier in a run of regression tests using that test suite.

• Testers may wish to increase the coverage of coverable
code in the system under test at a faster rate, thus allowing
a code coverage criterion to be met earlier in the test
process.

• Testers may wish to increase their confidence in the reli-
ability of the system under test at a faster rate.

• Testers may wish to increase the rate at which high risk
faults are detected by a test suite, thus locating such faults
earlier in the testing process.

• Testers may wish to increase the likelihood of reveal-
ing faults related to specific code changes earlier in the
regression testing process.

4.1.1 Regression testing

Regression testing is performed whenever any modifications
made to the software, provide confidence that the software
behaves correctly and the modifications have not impacted
the previously flawless functions and the quality of the soft-
ware. A regression test is intended to provide a general
assurance that enhancement or defect fixes in the software
or its environment do not impact the previously working
functionalities of the software. Test case prioritization tech-
niques schedule test cases for regression testing in an order
that increases their effectiveness at meeting some perfor-
mance goal. For example, test cases might be scheduled in an
order that achieves code coverage at the fastest rate possible,
exercises features in order of expected frequency of use, or
exercises subsystems in an order that reacts their past failure
rate. After test case generation test case clustering is used
to classify the generated test cases as relevant and irrelevant
test cases. For this purposeMKFCM algorithm is used. After
clustering of test cases relevant test cases are considered for
test case prioritization. The goal of test case prioritization
is to determine test case ordering that maximizes the prob-
ability to early discover faults in source code. This is the
method of verification. Verifying that the bugs are fixed and
the newly added features have not created any problem in the
previous working version of the software. Regression Test-
ing is the one in which test cases are re-executed in order to
check whether the previous functionality of the application
is working fine and the new changes have not introduced any
new bugs.

4.2 Kernel based fuzzy c-means clustering (KFCM)

In this regression test case prioritization research we will
cluster relevant and irrelevant test cases with the aid of
kernel based FCM technique. Various KFCM algorithmic
procedures augment the KFCM algorithm with a different

123

Cluster Computing (2019) 22:S11425–S11434 S11429

kernel learning setting. The proposed method use multiple
kernel fuzzy c means for clustering the executed jobs. In
our projected method kernel fuzzy c means clustering algo-
rithm is engaged for grouping the existing test cases on the
basis of the resemblance of coverage metrics. Fuzzy c-means
(FCM) is a process of clustering that permits data focuses to
group in the aspect of closeness and basically used in pattern
acknowledgement. The objective function of proposed mul-
tiple kernel fuzzy c-means algorithm is effectively explained
as follows.

F(M, A) =
N∑

i=1

a∑

j=1

Mm
ij (1 − KMK(t j , Ai)) (1)

where Mij is the membership of j th data in the i th cluster Ai .
A is the cluster centre. KMK is the multiple kernel function

Procedure for KFCM

Step 1 Initialize the number of test cases (t), number of clus-
ter (A) and number of kernels (K).

Step 2 Initialize the membership matrix M.
Step 3 Calculate the cluster centre by the following equation

A j =

N∑
i=1

Mm
ij ti

N∑
i=1

Mi j

(2)

Step 4 Update the membership function by the following
equation

Mij = 1
A∑

K=1

(‖ti−A j‖
‖ti−AK ‖

) 2
m−1

(3)

m is any real number greater than ‘one’. In multiple kernel
fuzzy c means, ti represents the kernel function kMK(x, y).
Here we are considering multiple kernels for our proposed
work. So kMK(x, y) = k1(x, y) + k2(x, y) is a kernel.

KMK(x, y) = K1(x, y) + K2(x, y) (4)

K1(x, y) = xT y + c (5)

K2(x, y) = 1 − ||x − y||2
||x − y||2 + c

(6)

where c is the constant value. From the above equation the
cluster centre Eq. (4) and membership Eq. (5) is modified.
Now the cluster centre calculation is done by Eq. (6),

A j =

N∑
i=1

Mm
ij kMK(x, y)

N∑
i=1

Mij

(7)

Membership updation is done by Eq. (8),

Mij = 1
A∑

K=1

(‖KMK(x,y)−A j‖
‖KMK(x,y)−AK ‖

) 2
m−1

(8)

Step 5 if ‖M (K+1) − M (K)‖ <∈ then stop, otherwise go to
equation.
Based on this kernel based FCM we will predefine an error
one more time. Final process is error localization, where we
will localize an error location and source. Clustering is used
to classify the generated test cases as relevant and irrele-
vant test cases. After clustering of test cases, relevant test
cases are considered for test case prioritization. The goal of
test case prioritization is to determine test case ordering that
maximizes the probability to early discover faults in source
code

4.3 MANN

In our proposed technique use the MANN for regression test
case prioritization. Here the traditional neural networks are
modified by means of Whale optimization algorithm.

Modified artificial neural networks function steps

(1) Fix loads for every neuron’s except the neurons in the
input layer.

(2) Develop the neural network with the input text data as
the input units, HUa Hidden units and O as the output
unit.

(3) The computation of the proposed Bias function for the
input layer is,

X = β +
HU−1∑

n=0

w(n)T1(n) + w(n)T2(n) + w(n)T3(n)

+ w(n)Tm(n) (9)

Here for test case prioritizationMANNclassification algo-
rithms are used. In our proposed modified artificial neural
network, the weights are optimized with the help of Whale
optimization algorithm. The step by step procedure ofWhale
optimization is illustrated in below section,

123

S11430 Cluster Computing (2019) 22:S11425–S11434

4.4 Whale optimization

Here WOA is used for weight optimization process. Finally
score value is obtained from the whale optimization algo-
rithm and on the basis of the score value obtained test case
prioritization occurs. Thewhale optimizationwith comprises
of three stages such as encircling prey, bubble net attacking
method and search for prey.

4.4.1 Encircling prey

Humpback whales can recognize the location of prey and
encircle them. For the unknown position of the optimal
design in the search space, the current best candidate solu-
tion is the target prey or is close to the optimum in the WOA
algorithm. Once the best search agent is defined, the other
search agents will hence try to update their positions towards
the best search agent. The updated method is represented by
the following equations:

D = |C · S∗(i) − S(i)| (10)

S(i + 1) = S∗(i) − V · D (11)

where the meanings of i, V ,C, S∗, S, | |, and the i represents
a current iteration, V represents a coefficient vector,C repre-
sents a coefficient Vector, S∗ represents a position vector for
best solution obtained for far, S represents a position vector,
| | represents a absolute value.

The vectors V and C are calculated as follows:

V = 2ar − a (12)

C = 2r (13)

where a is linearly decreased from 2 to 0 over the course of
iterations (in both exploration and exploitation phases) and
r is a random vector in (0, 1).

4.4.2 Bubble-net attacking method (exploitation phase)

In order to mathematically model the bubble-net behavior of
humpback whales, two improved approaches are designed as
follows:
Shrinking encircling mechanism This behavior is achieved
by decreasing the value as in the Eq. (3). Note that the
fluctuation range of V is also decreased by a. In other
words V is a random value in the interval [− a, a] where
a is decreased from 2 to 0 over the course of iterations.
Set random values for A in [− 1, 1], the new position of a
search agent can be defined anywhere in between the origi-
nal position of the agent and the position of the current best
agent.

Spiral updating position A spiral equation is then created
between the position of whale and prey to mimic the helix-
shaped movement of humpback whales as follows:

S(i + 1) = D′ · eb ∫ · cos
(
2

∏∫)
+ s∗(i) (14)

where D = |S∗(i) − S(i)| and indicates the distance of the
dth whale to the prey (best solution obtained so far), b is a
constant for defining the shape of the logarithmic spiral, ∫ is
a random number in [−1, 1], and is an element-by-element
multiplication. Note that humpback whales swim around the
prey within a shrinking circle and along a spiral-shaped path
simultaneously. To model this simultaneous behavior, we
assume that there is a probability of 50% to choose between
either the shrinking encirclingmechanismor the spiralmodel
to update the position of whales during optimization. The
mathematical model is as follows:

S(i + 1) =
{
S∗(i) − V · D if R < 0.5
D′ · eb ∫ · cos (

2
∏ ∫) + S∗(i) if R ≥ 0.5

(15)

where R is a random number in [0, 1]. In addition to the
bubble-net method, the humpback whales search for prey
randomly.

4.4.3 Search for prey (exploration phase)

The same approach based on the variation of the A vector can
be utilized to search for prey (exploration). In fact, humpback
whales search randomly according to the position of each
other. Therefore, we use A with the random values greater
than 1 or less than−1 to force search agent to move far away
from a reference whale. In contrast to the exploitation phase,
we update the position of a search agent in the exploration
phase according to a randomly chosen search agent instead
of the best search agent found so far. This mechanism and
|V | > 1 emphasize exploration and allow the WOA algo-
rithm to perform a global search. The mathematical model is
as follows:

D = |C · Srand − S| (16)

S(i + 1) = Srand − V · D (17)

where Srand is a random position vector (a random whale)
chosen from the current population.

At each iteration, search agents update their positionswith
respect to either a randomly chosen search agent or the best
solution obtained so far. The parameter a is decreased from 2
to 0 in order o provide exploration and exploitation, respec-
tively. A random search agent is chosen when |V | > 1, while
the best solution is selected when |V | < 1 for updating the

123

Cluster Computing (2019) 22:S11425–S11434 S11431

Fig. 1 Proposed optimal test suite selection in regression testing test
case prioritization

position of the search agents. Depending on the value of R,
WOA is able to switch between either a spiral or circular
movement. Finally, the WOA algorithm is terminated by the
satisfaction of a termination criterion. Finally a score value
is obtained from the whale optimization algorithm and on
the basis of the score value obtained test case prioritization
occurs. The prioritized test suite may be more effective at
meeting the goal of the prioritization for P in particular than
would a test suite resulting from general test case prioritiza-
tion, but may be less effective on average over a succession
of subsequent releases. Finally, in this paper we address the
problem of prioritizing test cases for regression testing; how-
ever, test case prioritization can also be employed in the initial
testing of software

5 Results and discussion

The original conviction oriented regression test case prior-
itization contributor by the support of KFCM Clustering
algorithm and superior regression testing is executed in the
operational platform of JAVA among Cloud Sim. The table
emerging beneath demonstrates the time,memory andAPFD
value of our projected analysis (Fig. 1).

Table 1 APFD measures for
our proposed research taken
based on iteration

Iteration APFD

10 0.32

20 0.31

30 0.26

40 0.27

Fig. 2 Graph for evaluation of APFD based on iteration

5.1 Evaluationmeasures

5.1.1 Average percentage of fault prediction (APFD)

To quantify the goal of increasing a subset of the test suite’s
rate of fault detection, we use a metric called APFD. That
measures the rate of fault detectionper percentageof test suite
execution. The APFD is calculated by taking the weighted
average of the percentage of faults detected during the execu-
tion of the test suite. APFDvalues range from0 to 100; higher
values imply faster (better) fault detection rates. APFD can
be calculated as follows:

APFD = 1 − {(Tf1 + Tf2 + . . . + Tfm)/mn} + (1/2n)

where n is the no. of test cases and m being the no. of faults.
(Tf1, . . .,Tfm) are the position of first test T that exposes the
fault.

FromTable 1, the results of theAPFDfor an every iteration
are graphically represented in Fig. 2. The APFD values of
10th, 20th, 30th and 40th iterations are 0.32, 0.31, 0.26 and
0.27 respectively.

Table 2 exposes the time attained for all assessment.
To terminate the apiece assessment the number of time

123

S11432 Cluster Computing (2019) 22:S11425–S11434

Table 2 Total no. of time taken
for prioritize test case

Iteration Time (ms)

10 12,365

20 14,521

30 16,584

40 21,547

Fig. 3 Graph for time measure taken based on iteration

Table 3 Total no. of memory taken for test case prioritization

No. of iteration Memory (in byte)

10 1,165,485

20 1,235,478

30 1,345,786

40 1,524,587

taken for prioritizing a test cases is specified in the table.
The time taken for completing 10th, 20th, 30th and 40th
iterations are 12,365ms, 14,521ms, 16,584 ms and 21,547
ms respectively. The graphical representation of the time
taken for various iterations is depicted in Fig. 3. The
Table 2 shows the time obtains for prioritizing the test
cases.

Table 3 explains the total of memory space taken for a pri-
oritizing a test cases for every iteration. Thememory required
for prioritizing the test cases in the 10th, 20th, 30th and 40th
iterations are 1,165,485 bytes, 1,235,478 bytes, 1,345,786
bytes and 1,524,587 bytes respectively. The graphical repre-
sentation of the memory requirement for various iterations
is depicted in Fig. 4.

Fig. 4 Graph for total no. of memory space occupied for proposed
research

Table 4 Time comparison with proposed versus existing method

Iteration Existing NN method
(ms)

Proposed ANN–Whale
method (ms)

10 15,542 12,365

20 15,695 14,521

30 16,573 16,584

40 25,475 21,547

5.2 Comparative analysis

To verify the performance of the proposed method we com-
pare its features with the existing Neural Network method.
Table 4 shows the comparative study of the Proposed ANN-
Whale method with Existing NN method for time required
to prioritize the test cases. A graphical representation of the
same is depicted in Fig. 5.

The comparative study of memory requirement for the
existing NN method and Proposed ANN-Whale method is
shown in Table 5. The graphical representation of the same
is depicted in Fig. 6.

Our proposed study introduced a Whale optimization
algorithm which improves the computational efficiency and
reveals that our proposed method is successful than the exist-
ing method.

123

Cluster Computing (2019) 22:S11425–S11434 S11433

Fig. 5 Graph for comparison of proposed and existing time measures

Table 5 Memory comparison for proposed and existing technique

Iteration Existing NN method
(in byte)

Proposed ANN–Whale
method (in byte)

10 1,289,565 1,165,485

20 1,658,984 1,235,478

30 1,385,678 1,345,786

40 1,598,745 1,524,587

Fig. 6 Graph for memory space comparison of proposed and existing
method

Conclusion

The test case generation techniques aim to generate test cases
which maximize cover for each scenario. Then the test cases
are prioritized by using a hybridANN–Whale technique. The
evaluation measures of APFD were evaluated for our pro-
posed method. The test case prioritization time and memory
requirements are lesswhen compared to the existingmethods
and also yield very accurate outcomes. From the outcomes,
we have showed that the hybrid ANN–Whale utilized in our
proposed work outperforms the other classifiers by facili-
tating very good accuracy. Thus, we can observe that our
proposed work is better than other existing works for the
regression test case prioritization.

References

1. Mirarab, S., Akhlaghi, S., Tahvildari, L.: Size-constrained regres-
sion test case selection usingmulticriteria optimization. Proc. IEEE
Trans. Softw. Eng. 38(4), 936–956 (2012)

2. Lei, J., Jin, T., Hao, J., Li, F.: Short-term load forecasting with
clustering-regression model in distributed cluster. Clust. Comput.,
1–11 (2017)

3. Lin, C.-T., Tang, K.-W., Kapfhamme, G.M.: Test suite reduc-
tion methods that decrease regression testing costs by identifying
irreplaceable tests. Proc. Inf. Softw. Technol. 56(10), 1322–1344
(2014)

4. Sapna, P.G.: An approach for generating minimal test cases for
regression testing. Proced. Comput. Sci. 47, 188–196 (2015)

5. Li, B., Qiu, D., Leung, H., Wang, D.: Automatic test case selection
for regression testing of composite service based on extensible
BPEL flow graph. Proc. J. Syst. Softw. 85(6), 1300–1324 (2012)

6. Mei, L., Chan, W.K., Tse, T.H., Merkel, R.G.: XML-manipulating
test case prioritization for XML-manipulating services. Proc. J.
Syst. Softw. 84(4), 603–619 (2011)

7. Remmel, H., Paech, B., Bastian, P., Engwer, C.: System testing
a scientific framework using a regression-test environment. Proc.
Comput. Sci. Eng. 14(2), 38–45 (2012)

8. Muthusamy, T., Seetharaman, K.: Effectiveness of test case priori-
tization techniques based on regression testing. Proc. Int. J. Softw.
Eng. Appl. 5(6), 113–123 (2014)

9. Zhang, Q., Cherkasova, L., Mi, N., Smirni, E.: A regression-based
analytic model for capacity planning of multi-tier applications.
Clust. Comput. 11(3), 197–211 (2008)

10. Do, H., Mirarab, S., Tahvildari, L., Rothermel, G.: The effects of
time constraints on test case prioritization: a series of controlled
experiments. Proc. IEEETrans. Softw. Eng. 36(5), 593–617 (2010)

11. Krishnamoorthi, R., Sahaaya Arul Mary, S.A.: Factor oriented
requirement coverage based system test case prioritization of new
and regression test cases. Proc. Inf. Softw. Technol. 51(4), 799–808
(2009)

12. Sampath, S., Bryce, R., Memon, A.M.: A uniform representation
of hybrid criteria for regression testing. Proc. IEEE Trans. Softw.
Eng. 39(10), 1326–1344 (2013)

13. Indumathi, C.P., Selvamani, K.: Test cases prioritization using open
dependency structure algorithm. Proc. Comput. Sci. Eng. 48, 250–
255 (2015)

14. Dobuneh, M.R.N., Jawawi, D.N.A., Ghazali, M., Malakooti, M.V.:
Development test case prioritization technique in regression testing
based on hybrid criteria. In: Proceedings of In Software Engineer-
ing Conference (My SEC), 8th Malaysian, pp. 301–305 (2014)

123

S11434 Cluster Computing (2019) 22:S11425–S11434

15. Srikanth,H.,Banerjee, S.: Improving test efficiency through system
test prioritization. Proc. J. Syst. Softw. 85(5), 1176–1187 (2012)

16. Zhai,K., Jiang,B.,Chan,W.K.: Prioritizing test cases for regression
testing of location-based services: metrics, techniques, and case
study. Proc. IEEE Trans. Serv. Comput. 7(1), 54–67 (2014)

17. Qu, X., Cohen, M.B., Woolf, K.M.: Combinatorial interaction
regression testing: a study of test case generation and prioritiza-
tion. In: The proceeding of IEEE International Conference on In
Software Maintenance, ICSM, pp. 255–264 (2007)

18. Rauf, A., Ramzan, M.: Parallel testing and coverage analysis for
context-free applications. Clust. Comput., 1–11 (2017)

19. Jeffrey, D., Gupta, N.: Experiments with test case prioritization
using relevant slices. Proc. J. Syst. Softw. 81(2), 196–221 (2008)

20. Yu, Y.T., Lau, M.F.: Fault-based test suite prioritization for
specification-based testing. Proc. Inf. Softw. Technol. 54(2), 179–
202 (2012)

21. Schwartz, A., Do, H.: Cost-effective regression testing through
adaptive test prioritization strategies. Proc. J. Syst. Softw. 115, 61–
81 (2016)

22. Ansari, A., Khan, A., Khan, A., Mukadam, K.: Optimized regres-
sion test using test case prioritization. Proc. Comput. Sci. 79,
152–160 (2016)

23. Huang, Y.-C., Peng, K.-L., Huang, C.-Y.: A history-based cost-
cognizant test case prioritization technique in regression testing. J.
Syst. Softw. 85(3), 626–637 (2012)

24. Hettiarachchi, C., Do, H., Choi, B.: Risk-based test case prioriti-
zation using a fuzzy expert system. Proc. Inf. Softw. Technol. 69,
1–15 (2016)

25. Pedemonte, M., Luna, F., Alba, E.: A systolic genetic search for
reducing the execution cost of regression testing. Proc. J. Appl.
Soft Comput. 49, 1145–1161 (2016)

26. Jiang, B., Chan, W.K.: Input-based adaptive randomized test case
prioritization: a local beam search approach. Proc. J. Syst. Softw.
105, 91–106 (2015)

27. Huang, R., Chen, J., Towey, D., Chan, A.T.S., Lu, Y.: Aggregate-
strength interaction test suite prioritization. Proc. J. Syst. Softw.
99, 36–51 (2015)

S.K. Harikarthik has completed
his B.Tech [IT] in the year 2006
at Kumaraguru college of Tech-
nology. He completed his M.Tech
[IT] at Anna University Coimbat-
ore in the year 2009. Currently
pursuing PhD in software testing
at Anna University, Chennai. He
has 10 years of teaching experi-
ence currently working as Assis-
tant Professor at INFO Institute of
Engineering, Coimbatore.

V. Palanisamy has completed his
B.E. Electronics & Communica-
tion Engineering in the year 1972
at P.S.G. College of Technology.
He completed his M.Sc. (Engg) in
the field of Communication Sys-
tems at College of Engineering,
Guindy, (presently Anna Univer-
sity, Chennai) in the year 1974.
He was sponsored by Government
of Tamilnadu to do his Ph.D in
Communication-Antenna theory.
At Indian Institute of Technology,
Kharapur, West Bengal in the year
1981 and successfully completed

the same. He retired as Principal, Government College of Technol-
ogy, Coimbatore and presently working as Principal in Info Institute
of Engineering, Coimbatore. He is a member in number of Academic
boards, AICTE & University inspection committee.

P. Ramanathan has 18 years
of teaching experience. Currently
employed as Professor and Head,
Info Institute of Engineering, Kov-
ilpalayam, Coimbatore- 641107.
His areas of interest are VLSI
Design and Embedded Systems.

123

	Optimal test suite selection in regression testing with testcase prioritization using modified Ann and Whale optimization algorithm
	Abstract
	1 Introduction
	2 Literature review
	3 Problem identification
	4 Proposed methodology
	4.1 Test case prioritization
	4.1.1 Regression testing

	4.2 Kernel based fuzzy c-means clustering (KFCM)
	4.3 MANN
	4.4 Whale optimization
	4.4.1 Encircling prey
	4.4.2 Bubble-net attacking method (exploitation phase)
	4.4.3 Search for prey (exploration phase)

	5 Results and discussion
	5.1 Evaluation measures
	5.1.1 Average percentage of fault prediction (APFD)

	5.2 Comparative analysis

	Conclusion
	References

