Cluster Computing (2019) 22:511329-511338
https://doi.org/10.1007/s10586-017-1388-0

@ CrossMark

An effective software project effort estimation system using optimal
firefly algorithm

V. Resmi' . S. Vijayalakshmi? . R. Subash Chandrabose3

Received: 20 August 2017 / Revised: 23 October 2017 / Accepted: 15 November 2017 / Published online: 6 December 2017
© Springer Science+Business Media, LLC, part of Springer Nature 2017

Abstract

The software effort estimation is one of the active presentations in the software project administration. Accordingly, it is not
frequently possible to antedate the exact guesses in the estimation of software development effort. There are many techniques
used for effort estimation. But we cannot confirm that one particular method alone gives good accuracy in estimates. In this
expose, a hybrid process is gracefully boosted for the estimation of the effort of software project. The innovative process is
unknown; but consolidation of the fuzzy analogy by the side of the firefly and the Expectation-Maximization (EM) process
that is envisaged for estimation of the software project lead to the enhancement of accuracy in prediction. Furthermore, an
EM is employed to group large amount of data. The significant production is set as an input to the fuzzy analogy in parallel
to the Firefly Algorithm (FA). Consecutively, the FA is competently familiar in enhancing the optimal solutions and thereby
improves estimation accuracy. The fuzzy analogy reliably helps the presentation of assessing the effort of the software project.

The epoch-making process is proficient in java platform and its task is competently estimated.

Keywords Expectation maximization - Fuzzy analogy - Firefly algorithm - Software effort estimation

1 Introduction

The goal of software engineering is to develop the techniques
and tools needed to develop high-quality applications that are
more stable and maintainable. In order to assess and improve
the quality of an application during the development pro-
cess, developers and managers use several metrics [1]. For
various business and technical motives such as shorter devel-
opment cycles, lower development costs, improved product
quality, and access to source code more and more software
developers and companies are basing their software prod-
ucts on open source components [2]. Estimating software
development cost remains a complex problem, and one which
continues to attract considerable research attention. Improv-
ing the accuracy of the cost estimation models available to
project managers would facilitate more effective control of

B V. Resmi
resmi.nandakumar @ gmail.com

Department of Computer Applications, Sun College of
Engineering and Technology, Erachakulam, India

Department of Computer Applications, Thiagarajar college of
Engineering, Madurai, India

Sun College of Engineering and Technology, Nagercoil, India

time and budgets during software development. The need for
reliable and accurate cost estimation in software engineering
was an ongoing challenge for software engineers in the last
decade. In order to make accurate estimates and avoid large
errors, several cost estimation techniques have been proposed
[3].

The ability to accurately and consistently estimate soft-
ware development efforts, especially in the early stages of
the development life cycle, is required by the project man-
agers in planning and conducting software development
activities because the software price determination, resource
allocation, schedule arrangement and process monitoring are
dependent upon it. This issue lies in the fact that software
development is a complex process due to the number of fac-
tors involved, including the human factor, the complexity
of the product that is developed, the variety of development
platforms and the difficulty of managing large projects [4].
For effective project management such as budgeting, project
planning and control, accurate software development cost
estimation is important. Until now, no model has proved
to be completely successful at effectively and consistently
predicting software development cost. To estimate software
development effort the use of the neural networks has been
viewed with skepticism by the best part of the cost estima-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-017-1388-0&domain=pdf

511330

Cluster Computing (2019) 22:511329-511338

tion community. Although, neural networks have shown their
strengths in solving complex problems, their limitation of
being "black boxes’ has forbidden them to be accepted as a
common practice for cost estimation [5].

Software cost estimation techniques can be broadly classi-
fied as algorithmic and non-algorithmic models. Algorithmic
models are derived from the statistical analysis of his-
torical project data, for example, constructive cost model
(COCOMO) and software life cycle management (SLIM).
Non-algorithmic techniques include Price-to-Win, Parkin-
son, expert judgment and machine learning approaches.
Machine learning is used to group together a set of tech-
niques that embody some of the facets of human mind, for
example fuzzy systems, analogy, regression trees, rule induc-
tion neural networks and evolutionary algorithms. Among the
machine learning approaches, fuzzy systems and neural net-
works and Evolutionary algorithms are considered to belong
to the soft computing group [6].

During the development process, the cost and time esti-
mates are useful for the initial rough validation and moni-
toring of the project’s completion process. And in addition,
these estimates may be useful for project productivity assess-
ment phases [7]. The limitations of algorithmic models led
to the exploration of the non algorithmic techniques which
are soft computing based. These include

Artificial neural network
Evolutionary computation
Fuzzy logic models
Case-based reasoning and
Combinational models [8].

Accurate cost estimation is important because of the follow-
ing reasons,

e Itcan help to classify and prioritize development projects
with respect to an overall business plan.

e It can be used to determine what resources to commit to
the project and how well these resources will be used.

e Itcanbe used to assess the impact of changes and support
re-planning.

e Projects can be easier to manage and control when
resources are better matched to real needs.

e Customers expect actual development costs to be in line
with estimated costs [9].

Recently, software effort estimation methods have been
grouped into three categories such as algorithmic models
(AM), expert judgment (EJ), and machine learning (ML)
process [10,11]. But as designated by Boehm, software
effort estimation approaches are prepared into six categories:
parametric representation, decision tables, learning focused
measures which integrate the case-based thinking (CBR)

@ Springer

approach, regression based procedure; progression based
process and composite procedure [12]. Nowadays, on the
principle of these procedures, abundant software cost estima-
tion tools have been produced. The enormous preponderance
of these automated tools rely on the dimension measures, for
example, lines of code (LOC) and function point (FP).

This document is prearranged as follows: a concise assess-
ment of some of the literature works in the software cost
evaluation is presented in Sect. 2. The incentive for this study
is specified in Sect. 3. Section 4 elucidates the concise expla-
nation for the anticipated methodology. The investigational
outcome and presentation study deliberations are offered in
Sect. 5. At last, the conclusion is in Sect. 6.

2 Related work

Plentiful studies have been conducted by researchers for
the evaluation of Software cost. We have also studied the
fundamentals of software costing and pricing. Divergent
processes of cost evaluation should be exploited if project
manager evaluates costs. Following are only some literatures
to employ for evaluation of the state-of-art work on the eval-
uation of software cost. A number of researches have been
proposed by researchers for the estimation of Software cost.
We have also analyzed the fundamentals of software costing
and pricing. Different techniques of cost estimation should
be used when estimating costs. Following are a few litera-
tures applied for assessment of the state-of-art work on the
estimation of software cost.

Early stage software effort estimation was a crucial task
for project development and feasibility studies. Since col-
lected data during the early stages of a software development
lifecycle was always imprecise and uncertain, it was very
hard to deliver accurate estimates. Analogy-based estima-
tion, which was one of the popular estimation methods, was
rarely used during the early stage of a project because of
uncertainty associated with attribute measurement and data
availability. Azzeh et al. [13] have integrated analogy-based
estimation with Fuzzy numbers in order to improve the per-
formance of software project effort estimation during the
early stages of a software development lifecycle, using all
available early data. Particularly, a software project similar-
ity measure and adaptation technique based on Fuzzy number
was proposed. Empirical evaluations with Jack-knifing pro-
cedure have been carried out using five benchmark data sets
of software projects, namely, ISBSG, Desharnais, Kemerer,
Albrecht and COCOMO, and results are reported. The results
were compared to those obtained by methods employed
in the literature using case-based reasoning and stepwise
regression. In all data sets the empirical evaluations have
shown that the proposed similarity measure and adaptation
techniques method were able to significantly improve the per-

Cluster Computing (2019) 22:511329-511338

S11331

formance of analogy-based estimation during the early stages
of software development. The results have also shown that
the proposed method outperforms some well known estima-
tion techniques such as case-based reasoning and stepwise
regression.

Izzat Alsmadi and Hassan Najadat [14] have proposed
an approach towards the ability to predict software fault
modules and the ability to correlate relations between faulty
modules and product attributes using statistics. Correlations
and relations between the attributes and the categorical vari-
able or the class are studied through generating a pool of
records from each dataset and then selecting two samples
every time from the dataset and comparing them. The corre-
lation between the two selected records was studied in terms
of changing from faulty to non-faulty or the opposite for the
module defect attribute and the value change between the
two records in each evaluated attribute (e.g. equal, larger or
smaller). The goal was to study if there are certain attributes
that are consistently affecting the change of the state of the
module from faulty to none, or the opposite. Results indi-
cated that such technique could be very useful in studying
the correlations between each attribute and the defect sta-
tus attribute. Another prediction algorithm was developed
based on statistics of the module and the overall dataset. The
algorithm gave each attribute true class and faulty class pre-
dictions. They found that dividing prediction capability for
each attribute into those two (i.e. correct and faulty module
prediction) facilitates understanding the impact of attribute
values on the class and hence improve the overall predic-
tion relative to previous studies and data mining algorithms.
Results were evaluated and compared with other algorithms
and previous studies. ROC metrics were used to evaluate the
performance of the developed metrics.

Estimating the work-effort and the schedule required to
develop and/or maintain a software system was one of the
most critical activities in managing software projects. Soft-
ware cost estimation was a challenging and onerous task.
Estimation by analogy was one of the convenient techniques
in software effort estimation field. However, the methodol-
ogy used for the estimation of software effort by analogy
was not able to handle the categorical data in an explicit
and accurate manner. Different techniques have, so far, been
used like regression analysis, mathematical derivations, sim-
ulation, neural network, genetic algorithm, soft computing,
fuzzy logic modelling etc. Ziauddin et al. [15] have aimed
at utilizing soft computing techniques to improve the accu-
racy of software effort estimation. In this approach fuzzy
logic was used with particle swarm optimization to estimate
software development effort. The model has been calibrated
on 30 projects, taken from NASA dataset. The results of
this model are compared with COCOMO II and Alaa Sheta
Model. The proposed model yields better results in terms of
MMRE.

Khatibi Bardsiri et al. [16] have proposed a hybrid method
to increase the accuracy of development effort estimation
based on the combination of fuzzy clustering, ABE and ANN
methods. In the proposed method, the effect of irrelevant and
inconsistent projects on estimates was decreased by design-
ing a framework, in which all the projects were clustered.
Two relatively large datasets were employed to evaluate the
performance of the proposed method and the obtained results
were compared to eight other estimation methods. These
methods were selected from the most common algorithmic
and non-algorithmic methods used extensively in the field
of software development effort estimation. All comparisons
were performed based on MMRE and PRED (0.25) param-
eters using three-fold cross validation technique. According
to the obtained results, the proposed method outperformed
the other methods and significantly improved the accuracy
of estimates in both datasets.

The effort invested in a software project was probably one
of the most important and most analyzed variables in recent
years in the process of project management. The limitation
of algorithmic effort prediction models was their inability
to cope with uncertainties and imprecision surrounding soft-
ware projects at the early development stage. More recently
attention has turned to a variety of machine learning meth-
ods, and soft computing in particular to predict software
development effort. Soft computing was a consortium of
methodologies centering in fuzzy logic, artificial neural net-
works, and evolutionary computation. It was important, to
mention here, that these methodologies are complementary
and synergistic, rather than competitive. They provide in one
form or another flexible information processing capability
for handling real life ambiguous situations. These method-
ologies are currently used for reliable and accurate estimate
of software development effort, which has always been a
challenge for both the software industry and academia. Sehra
et al. [17] was to analyze soft computing techniques in the
existing models and to provide in-depth review of software
and project estimation techniques existing in industry and
literature based on the different test datasets along with their
strength and weaknesses.

Software development effort estimation was a daunting
task that was being carried out by software developers,
as much of the information about the software was not
available during the early stages of development. The infor-
mation that was to be gathered for various attributes of
software needs to be subjective which otherwise leads to
imprecision and uncertainty. Inaccurate estimation of the
software effort and schedule leads to financial losses and
also delays in project deadline. Sandeep Kad and Vinay
Chopra [18] have presented the use of soft computing tech-
nique to build a suitable model which improves the process
of effort estimation. To do so, various parameters of con-
structive cost model (COCOMO) II are fuzzified that leads

@ Springer

511332

Cluster Computing (2019) 22:511329-511338

to reliable and accurate estimates of effort. The results
showed that the value of Magnitude of Relative Error (MRE)
obtained by applying fuzzy logic was quite lower than
MRE obtained from algorithmic model. By analyzing the
results further it was observed that Gaussian Membership
Function (gaussmf) performs better than Triangular Member-
ship Function (trimf) and Trapezoidal Membership Function
(trapmf) as the transition from one interval to another was
quite smoother.

Software estimation accuracy was one of the greatest
challenges for software developers. Formal effort estima-
tion models, like COCOMO are limited by their inability to
manage uncertainties and impression surrounding software
projects early in the project development cycle. A software
effort estimation model which adopts a soft computing tech-
nique provides a solution to adjust the uncertain and vague
properties of software effort drivers. Brajesh Kumar Singh
and Misra [19] have proposed a model in which COCOMO
was used as algorithmic model and an attempt was being
made to validate the soundness of artificial neural network
technique, using NASA project data, in order to investigate
the effect of crisp inputs and soft computing technique on the
accuracy of system’s output. Proposed model was validated
by using 85 NASA project dataset. Empirical results showed
that application of the ANN model for software effort esti-
mates resulted in slightly smaller mean magnitude of relative
error (MMRE) and probability of a project having a relative
error of less than or equal to 0.25 as compared with results
obtained with COCOMO was improved by approximately
17.54%.

The main difficulty in the software effort estimation pro-
cess is the selection of estimation models. We cannot use
all the models for that. And also these models do not han-
dle missing and noisy data. These models are purely based
on mathematical formula. So if any data is missing, estima-
tion process is becoming a challenging one. Benala, Dehuri,
Mall, suggests some of the computational intelligence mod-
els, such as artificial neural networks and fuzzy systems for
effort estimation to meet the above problem [20]. Benala,
Mall, Dehuri and Prasanthi, use the combined fuzzy C-
Means clustering algorithm and functional link artificial
neural networks (FLANN) to achieve accurate software effort
prediction [21].

Ali Idri et al. [22] suggests two approaches : classi-
cal analogy and fuzzy analogy. His research reports that
fuzzy analogy produces better results than classical anal-
ogy. Ali Idri et al. [23] inspects the treatment of missing
data through two analogy-oriented software effort evaluation
processes: classical analogy and fuzzy analogy. The conclu-
sion projected that fuzzy analogy produced more accurate
assessment than classical analogy even though some data are
missing.

@ Springer

3 Problem definition

Software effort estimation is a system to predict the majority
legitimate quantity of effort requirement to develop software
on the source of imperfect, indefinite and insufficient input
data. Sequentially, to carry out cost-benefit research, cost
assessment is to be attained by client or developer. The mutual
concern in existing software evaluation procedure is specified
beneath,

e Software cost assessment is a multifarious activity that
necessitates knowledge of a number of key qualities that
affect the consequences of software projects. The most
serious issue is the lot of information that needed is fre-
quently incredible to get in desirable quantities.

e One among the main issues is effort estimation accuracy.

e Enormous effort estimation approaches have been pro-
jected, the accuracy of estimation is not sustaining and
the attempts continue to progress the function of assess-
ment approaches.

e The foremost purpose for the project catastrophe of the
software effort estimation is inaccuracy of the estimation
model.

e Understanding and selection of models for effort estima-
tion on the basis of historical information are difficult
because of inherent multifaceted relationships within the
associated attributes.

These are the leading shortcomings of plenty of obtainable
installation that encourages us to carry out the research and
to work with the proposed approach.

Objectives

e The primary intention of this research is to estimate the
effort accurately

e To estimate the effort, cluster the input attribute values to
differentiate the High and low effort projects.

e The optimal rules will be used for accurate effort estima-
tion

e To minimize the MRE with the help of fuzzy analogy
with optimization process.

e To estimate the effort efficientlyy, MMRE is used as a
fitness for optimization process.

4 Proposed method

In the software project organization, the software effort
estimation has been modernized as one of the lively presenta-
tions. By means of a characteristic of a project to estimate the
effort of the software, an innovative process on the fuzzy anal-
ogy connected through the firefly algorithm is proficiently

Cluster Computing (2019) 22:511329-511338

511333

Promise dataset Repository

Clustering of projects using EM algorithm

C1 c2 Cn

Effort estimation

’ s ’ \
. Estimation : Rule '
]. using ! - ' optimization |
1 1 ! . .
. Fuzzy ! ' usingFA |
L : " 1

Fig.1 Block diagram for proposed methodology

derived. Principally, we decide on the input dataset from the
promise data repository. In our projected process, we have
chosen four datasets such as nasa 93, nasa 60, cocomo81 and
deshnaris from the repository. The modus operandi(a method
of procedure) of our objective procedure is vividly portrayed
in the block diagram presented in Fig. 1 beneath.

4.1 Expectation maximization (EM) algorithm for
clustering

It is unsupervised method, which does not need any training
phase; it tries to find the parameter of the probability distri-
bution that has the maximum likelihood of its parameters. Its
main role is to parameter estimation. It is an iterative method,
which is mainly used to finding the maximum likelihood
parameters of the model. The E-step involves the computa-
tion of cluster membership probabilities. The probabilities
calculated form E-Step is estimated with the parameters in
M-Step. Here the EM algorithm is used to cluster the data
obtained from the input data.

Assuming that the parameters of each component are
represented by a parameter vector E,,, the problem is to deter-
mine the values of the components of this vector, and this can
be achieved using the expectation maximization algorithm.
Following random initialization of the parameter vectors E,,,
m = 1,2, ..., C an Expectation step (E-step) followed by
a maximization step (M-step) are iterated until convergence.
The E-step computes the cluster membership probabilities.
For example, assuming spherical Gaussian mixture compo-
nents, these probabilities are calculated using equation as
follows.

TP (Xi/Bms om)
> k=t...c TP (Xi/Bms om)

P(m/Xi) = (1)

B, om are the existing evaluation of the mean and standard
deviation, likewise, of element m. the denominator proceed
as a normalization factor, authenticate the value as follows

C
0< P(m|X;) <1and E 1 Pm|X;) =1
m=

In the M-step, these probabilities are then used to re-
estimate the parameters. The spherical Gaussian case, the
following equation are used to evaluate the likelihood clus-
ters.

SN PmIX)X;

m = s 2
P = SN i) @
2 _ St PnlX) X —)

: YLy Pm|X;)
=3 PnlX))

At this time, we attained the clustered data that will be further
augmented for better estimation of effort. In our work, the
data are clustered into three clusters using the above EM
clustering algorithm.

4.2 Effort estimation using fuzzy analogy with
firefly algorithm

The Fuzzy logic is an unconventional procedure, well-geared
to accomplish at suitable consequences to the difficul-
ties encumbered by means of complexities that cannot be
comprehended quantitatively. A fuzzy set symbolizes a rela-
tionship presentation that compared with every spot in the
fuzzy set a genuine integer in the period (0, 1), marked a
level or score of relationship. The relationship presentation
can be distinguished into three varieties like the triangular,
trapezoidal and Gaussian.

The roadmap of the Fuzzy logic comprises three stages as
illustrated below:

@ Springer

S11334

Cluster Computing (2019) 22:511329-511338

1. Fuzzification
2. Fuzzy rule-based system
3. Defuzzification

Stage 1: Fuzzification: In this step, a crisp input is
improved into a fuzzy set

Stage 2: Fuzzy rule-based system: In this scheme, fuzzy
IF-THEN rules are employed.

Fuzzy inference engine: After all the crisp input values
are fuzzified into their related linguistic values, the inference
engine gets into the fuzzy rule base to arrive at the linguistic
values for the intermediate and the output linguistic variables.

Stage 3: Defuzzification: In this stage, the fuzzy output
is transformed into the crisp output.

4.2.1 Fuzzy analogy

The fuzzy analogy [24] characterizes a ‘fuzzification’ of the
traditional comparison process. It flows through three phases
as follows: identification of cases, retrieval of similar cases
and case adaptation.

Step 1: Identification of a case

The primary motivation after this phase conveys to the
association of complete software projects by a cluster of
uniqueness. Each software project is precise by a cluster
of elected characteristics that are resolute by linguistic val-
ues. For that, let us carry out that there are M attributes
and for each attribute (M;j) normalize the linguistic vari-
able (Ly). Each linguistic variable is measured by a fuzzy
set through the relationship function (My). The fuzzy set
and their relationship presentations are elected by computer-
ized and practical techniques. In the feature of computerized
technique the relationship presentation is structured from
the historical information. On an additional feature, practi-
cal technique accomplishes the relationship presentation by
the use of professional facts. In our innovative technique we
pursue the invention of the relationship presentation from the
historical information.

4.2.2 Rule optimization by firefly algorithm

Firefly algorithm is a bio-inspired metaheuristic algorithm
for optimization problems. It was introduced in 2009 at Cam-
bridge University by Yang [25,26]. The algorithm is inspired
by the flashing behavior of fireflies at night. The three rules
behind this algorithm are

e All fireflies are unisex, which means any firefly can be
attracted to any other brighter one.

@ Springer

e Brightness of a firefly is determined from the objective
function.

e Attractiveness is directly proportional to brightness but
decreases with distance, and a firefly will move towards
the brighter one, and if there is no brighter one it will
move randomly.

In the original firefly algorithm we estimate the fitness value
of each firefly. The fitness value of each i th firefly is com-
pared with the j th adjacent firefly. When the fitness value of
adjacent firefly is better than the current one, we evaluate the
distance between every firefly in the population by means
of Euclidean distance measure. At present, this distance is
employed to evaluate the attractiveness (A).

A= Age "% (5)

where,

Ao —denotes to the preset attractiveness
y —characterizes the light absorption coefficient
d;j —represents the distance between ith firfly and jth neigh-
boring firefly.

If a firefly located at pjy is brighter than p;, then the firefly
pix will move towards pjy (6). The movement of p;, is done
by the following Eq. (6).

pix = pix + A(pjx — pix) + a6 — 1/2) (6)
The last term is a randomization term where « is a a random-
ization parameter with values 0 < o < 1 and § is vector of
random numbers. The second term is for the attraction of pjy
towards pjy.

The complete process is repeated till the stopping criteria
is met.

In the modern process, we systematize the firefly algo-
rithm to adjust the formed morality. At this occasion, each
outcome is erratically arrived at surrounded by explicit search
space. Furthermore, each outcome is labeled as regulations
P;y, where Py = {pi1, pi2, . . . piy}. Mainly, the fitness value
of each regulation is evaluated. The regulations that meets the
outstanding fitness values are certified as the existing finest
regulations. For each firefly (rule), fitness value is appraised
and the summation of MMRE of each regulation is consid-
ered as the finest fitness value. Based on these fitness values,
regulations are ranked. Finally the attractiveness is the min-
imum MMRE value.

y
Attractiveness = minZMMRE @)

x=1

In our work, regulation with the higher MMRE is replaced
by regulation with least MMRE.

The whole process is gracefully established in the flow-
chart Fig. 2.

Cluster Computing (2019) 22:511329-511338

S11335

Initialize the solution

{1 -

Compute Fitness

4l

Rank the solution

1l

Find Attractiveness

Update initial solution

If max

iteration
reached

Fig.2 The flowchart for firefly algorithm

Step 2: Retrieval of similar cases

This step focuses on the process of finding similar projects.
This is noteworthy as it will manipulate similar analogies. In
our anticipated procedure, candidate measures are used to
select the set of analogies. These measures review the com-
mon resemblance of two projects P and P», d (P1, P») by
integration the entire discrete resemblance of P; and P, asso-
ciated to the frequent linguistic variables V; labeling Py and
P, d v (P1, P»).Subsequently an axiomatic justification of a
few expected candidate dealings for the individual measures
dvj (P1, P»), we include occupied two measures.

max min(,uA],c' (Py), My (P2))

max —min aggregation 3
31t (P g (Po) ®
k

sum — product aggregation

dy; (P, P) =

where V; are the linguistic variable relating the project Py
and P». A,](are the fuzzy sets related to V; and u A are the
k

membership functions signifying fuzzy sets Ai. The ambigu-
ity of the cost drivers reminiscently anguishes the exactness
of the endeavor guesstimate resultant from software effort
evaluation representation. As the indistinctness and ambigu-
ity of software effort drivers cannot be circumvented, a fuzzy
representation encompasses the enhancement of easily veri-
fying the cost drivers by presumptuous fuzzy sets.

Effort = A(SIZE)P 00 14 T EM,y ©)

where A and B are constants, d; is distance measure and EM
is effort multipliers. The cost drivers are fuzzified by trian-
gular and trapezoidal fuzzy sets for every linguistic value
like very low, low, nominal, high etc. as suitable to every
cost driver. Regulations are mechanized by cost driver in the
predecessor segment and conforming endeavor multiplier in
the significant segment. The defuzzified value of each of the
endeavor multiplier is obtained from individual fuzzy infer-
ence systems subsequent to identical, inference aggregation
and resultant Defuzzification. Complete EAF is accomplish-
ing subsequent to multiplying them collectively. The elevated
values for the cost drivers escort an endeavor review that is
more than three times the introduction guesstimate(an esti-
mate based on a mixture of guesswork and calculation.),
while low values weaken the evaluation to about one third of
the inventive.

Step 3: Case adaptation

The elemental cause at the back of this segment is to
improve a guesstimate for the original project by the sys-
tem of the predictable endeavor values of indistinguishable
projects. At this instance, we are dealing with tackle of two
fundamental difficulties. Each of the historical project spon-
sors its tick in the evaluation of the endeavor of the original
project, on the origin of the stage of similarity through the
related project.

4.3 Effort estimation

The paramount purpose of this function is generally to eval-
uate the dimensions of the software product. In this regard,
there are two leading kinds of cost evaluation techniques
such as the algorithmic and non-algorithmic methods. The
algorithmic techniques, in turn, are capable of incredible
modification in the statistical elegance. Certain methods are
dependent on easy arithmetic formulas employing summary
statistics like the mean and standard deviations. Some other
approaches invariably rely on the regression models together
with the differential equations. The primary measure to eval-
uate the cost is to arrive at the expenditure needed for the
purpose of procurements. The subsequent stage constitutes

@ Springer

511336

Cluster Computing (2019) 22:511329-511338

the evaluation of the cost of the training intended for the soft-
ware project. Hence, the procedure for evaluating the effort
and cost of software product may be carried out by means
of the EM algorithm as well as the Fuzzy analogy with FA
technique. The comprehensive test outcomes assessment is
represented by Sect. 5 appearing below.

5 Results and discussion

The anticipated procedure is implemented in JAVA. The
dataset exploited in the revision is NASA 93, NASA 60,
COCOMO 81 and deshnaris datasets.

5.1 Data set description

The dataset exploited in the revision is NASA 60. The
NASA 60 dataset includes 60 whole projects, enclosing 17
autonomous variables of which 15 are unconditional.

The NASA 93 dataset includes 93 whole projects, enclose
17 autonomous variables of that 15 are unconditional.

COCOMO 81 dataset comprises of 81 projects which are
having 17 attributes and 63 instances.

Desharnais dataset, which contains 81 projects among
incompleteness in 4 projects was detached. This data set pre-
pared openly accessible in order to support repeatable, con-
firmable, refutable, and/or improvable analytical represen-
tation of software engineering. There are nine autonomous
variables and one dependant variable in the dataset.

5.2 Performance analysis

To measure the accuracy of the estimated effort generated
by the proposed method we use the following metrics. Gen-
eral procedure for reviewing the endeavor evaluation is mean
magnitude of relative error (MMRE), and prediction (PRED).
MMRE
The MMRE can be measure by the subsequent formula,

1 n

MMRE = — ZMREi (10)

1
MRE — |aCteﬁ”0rt - eSIeﬁurt| (11)
lactofor|

PRED
k

PRED (25) = — (12)
n

k —The number of observations whose MRE is less or
equal to 25
n —Number of observation

@ Springer

Table 1 MMRE and prediction (25) calculation

Dataset MMRE Pred (.25) %
Deshnaris 0.04101 79.63
Cocomo81 0.156 81
Cocomonasa60 0.0781 85.5
Cocomonasa93 0.0562 88.25

Comparison between Multilayer Perceptron and
proposed method

1.5 1 B Proposed Method
g 1
§05 P B Multilayer
' Perceptron
0 I I I I 1
"o N 0 ‘)
£ &SP
&£ >
WO
o ¢ o &
& ¢
(/0 QO
Datasets

Fig. 3 Comparison between multilayer perceptron and proposed
method based on MMRE

The MMRE and Prediction (25) metrics for all the four
datasets are given in Table 1.

5.3 Comparative analysis of proposed work with
some of the available existing techniques

The comparative analysis of our proposed technique is
compared with one of the existing techniques, multilayer per-
ceptron.

The following chart Fig. 3 shows the comparison between
multilayer perceptron and proposed method based on MMRE.

From the above chart Fig. 3, it is clear that MMRE values
for all the four datasets based on our proposed method are
much less than the MMRE values for the same datasets based
on multilayer perceptron.

The following chart Fig. 4 shows the comparison between
Multilayer Perceptron and proposed method based on
Pred(25).

From the above chart Fig. 4, it is clear that prediction
values for all the four datasets based on our proposed method
are much less than the prediction values for the same datasets
based on multilayer perceptron.

The comparative analysis of our proposed method is com-
pared with various existing techniques.

Cluster Computing (2019) 22:511329-511338 $11337
Comparison between proposed method and Table6 MMRE comparison for Cocomonasa60 dataset
multilayer perceptron Techniques MMRE
Proposed method 0.0781
= Proposed Method Multilayer perceptron 0.19
) Fuzzy analogy [28] 0.05
m Multilayer Perceptron
Table 7 MMRE comparison for Cocomonasa93 dataset
Techniques MMRE
Proposed method 0.0562
Multilayer perceptron 1.11
Data sets Soft computing techniques[29] 0.026
Fuzzy analogy [28] 0.069

Fig. 4 Comparison between multilayer perceptron and proposed
method based on prediction

Table 2 Comparison of MMRE with multilayer perceptron

Datasets Techniques
Proposed method Multilayer perceptron
Deshnaris 0.04101 0.72
Cocomo81 0.156 1.43
Cocomo nasa60 0.0781 0.19
Cocomo nasa93 0.0562 1.11

Table 3 Comparison of pred (25) with multilayer perceptron

Datasets Techniques
Proposed method Multilayer perceptron
Deshnaris 79.63 28.3
Cocomo81 81 47.6
Cocomo nasa60 85.5 73
Cocomo nasa93 88.25 34

Table4 MMRE comparison for deshnaris dataset

Techniques MMRE
Proposed method 0.04101
Multilayer perceptron 0.72
Analogy based estimation [27] 343
Fuzzy analogy [28] 0.0498
Table 5 MMRE comparison for Cocomo81 dataset

Techniques MMRE
Proposed method 0.156
Multilayer perceptron 1.43
Analogy based estimation [27] 29.3

From Tables 2, 3, 4, 5, 6 and 7, it is evident that our
proposed method for effort estimation with the fusion of
clustering, optimization and fuzzy analogy produces good
results.

6 Conclusion

In this critique, the modern fusion procedure based fuzzy with
firefly and EM algorithm is gracefully launched for predicting
the software project effort. At present, the fusion of fuzzy and
firefly algorithm on clustered datasets is exploited to improve
the accuracy of the estimation. The Firefly algorithm gives
optimal set of rules and this will help in improving the accu-
racy in the estimation process. So, we are delighted to make
a note that our fascinating process comes out through flying
colors in understanding superb consequences concerning the
parallel process. It is anticipated that the future researchers
will be able to execute their own implementations through
their individual outstanding optimization process so as to
improve the effort estimation accuracy.

References

1. AlDallal,J.: Mathematical validation of object-oriented class cohe-
sion metrics. Int. J. Comput. 4(2), 45-52 (2010)

2. Orsila, H., Geldenhuys, J., Ruokonen, A., Hammouda, I.: Update
propagation practices in highly reusable open source components.
In: Proceedings of 20th World Computer Congress on Open Source
Software, Milano, Italy, vol. 275, pp. 159-170 (2008)

3. Attarzadeh, ., Ow, S.H.: A novel soft computing model to increase
the accuracy of software development cost estimation. In: Proceed-
ings of 2nd International Conference on Computer and Automation
Engineering (ICCAE), vol. 3, (2010)

4. Attarzadeh, I., Ow, S.H.: Proposing a new software cost estimation
model based on artificial neural networks. In: Proceedings of 2nd
International Conference on Computer Engineering and Technol-
ogy, vol. 3, pp. 487-491 (2010)

@ Springer

511338

Cluster Computing (2019) 22:511329-511338

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Idri, A., Khoshgoftaar, T.M., Abran, A.: Can neural netwoks be eas-
ily interpreted in software cost estimation?”, 2002 World Congress
on computational intelligence, Honolulu, Huwaii, pp. 1-8, May
12-17, (2002)

Hari, C.H.V.M.K., Jagadeesh, P.R. Ganesh,G.S:Interval type-2
fuzzy logic for software cost estimation using TSFC with mean
and standard deviation. In: Proceedings of International Confer-
ence on Advances in Recent Technologies in Communication and
Computing, (2010)

Yadav, R.K., Niranjan, S.: Software effort estimation using fuzzy
logic: areview. Int. J. Eng. Res. Technol. (IJERT) 2(5), 1377-1384
(2013)

Merugu, R.R.R., Dammu, V.R.K.: Effort estimation of software
project. Int. J. Adv. Res. Comput. Eng. Technol. 1(10), 3441
(2012)

Zia, Z., Rashid, A., uz Zaman, K.: Software cost estimation for
component based fourth-generation-language software applica-
tions. IET Softw. 5(1), 103-110 (2011)

Kaushik, A., Soni, A.K., Soni, R.: An improved functional link
artificial neural networks with intuitionistic fuzzy clustering for
software cost estimation. Int. J. Syst. Assur. Eng. Manag 7(1), 1-
12 (2014)

Batra, G., Barua, K.: A review on cost and effort estimation
approach for software development. Int. J. Eng. Innov. Technol.
3(4), 290-293 (2013)

Bardsiri, V.K., Jawawi, D.N.A., Hashim, S.Z.M., Khatibi, E.: A
PSO-based model to increase the accuracy of software development
effort estimation. Softw. Qual. J 21(3), 501-526 (2013)

Azzeh, M., Neagu, D., Cowling, P.I.: Analogy-based software
effort estimation using fuzzy numbers. J. Syst. Softw. 84, 270-284
(2011)

Alsmadi, 1., Najadat, H.: Evaluating the change of software fault
behavior with dataset attributes based on categorical correlation.
Adv. Eng. Softw. 42, 535-546 (2011)

Ziauddin, S.K.T., Zaman, K., Zia, S.: Software cost estimation
using soft computing techniques. Adv. Inf. Technol. Manag 2(1),
233-238 (2012)

Khatibi Bardsiri, V., Jawawi, D.N.A., Hashim, S.Z.M., Khatibi, E.:
Increasing the accuracy of software development effort estimation
using projects clustering. IEEE Trans. IET Softw. 6(6), 461-473
(2012)

Brar, Y.S., Kaur, N.: Soft computing techniques for software project
effort estimation. Int. J. Adv. Comput. Math. Sci. 2(3), 160-167
(2011)

Kad, S., Chopra, V.: Software development effort estimation using
soft computing. Int. J. Mach. Learn. Comput. 2(5), 548 (2012)
Singh, B.K., Misra, A.K.: An alternate soft computing approach for
efforts estimation by enhancing constructive cost model in evalua-
tion method. Int. J. Innov. Manag. Technol. 3(3), 272 (2012)
Benala, T.R., Dehuri, S., Mall, R.: Computational intelligence in
software cost estimation: an emergingparadigm. ACM SIGSOFT
Softw. Eng. Notes 37(3), 1-7 (2012)

Benala, T.R., Mall, R., Dehuri, S., Prasanthi, V.L.: Software effort
prediction using fuzzy clustering and functional link artificial neu-
ral networks. In International Conference on Swarm, Evolutionary,
and Memetic Computing (pp. 124-132). Springer, Berlin (2012)
Idri, A., Hosni, M., Abran, A.: Improved estimation of software
development effort using classical and fuzzy analogy ensembles.
Appl. Soft. Comput. 49, 1-55 (2016)

Idri, A., Abnane, I., Abran, A.: Missing data techniques in analogy-
based software development effort estimation. J. Syst. Softw. 117,
1-23 (2016)

Malathi, S., Sridhar, S.: Optimization Of fuzzy analogy in software
cost estimation using linguistic variables. International Confer-
ence on Modeling, Optimization and Computing (ICMOC-2012),
(2011)

@ Springer

25.

26.

217.

28.

29.

Yang, X.S.: Nature-Inspired Metaheuristic Algorithm, 2nd edn.
Luniver Press, Beckington, UK (2010)

Tilahun, S.L., Ong, H.C.: Modified firefly algorithm. J. Appl.
Math., Hindawi Publishing Corporation, Vol. 2012, Article ID
467631, pp. 12, https://doi.org/10.1155/2012/46763

Azzeh, M. Nassif, A. B.: Analogy-based effort estimation: a new
method to discover set of analogies from dataset characteristics.
IET Software, https://doi.org/10.1049/iet-sen.2013.0165

Malathi, S., Sridhar, S.: Estimation of effort in software cost anal-
ysis for heterogenous dataset using fuzzy analogy. Int. J. Comput.
Sci. Inf. Secur. 10(10), (2012)

Shanker, M., Jaya, J., Thanushkodi, K.: An effective approach to
software cost estimation based on soft computing techniques. Int.
Arab. J. Inf. Technol. 12(6), 1-12 (2015)

V. Resmi is working as Assis-
tant Professor in the department
of Computer Applications and
research scholar of Anna Univer-
sity, Chennai. Published few
papers in the international level
conferences. Interested in doing
research in the area of data mining
and software project management.

S. Vijayalakshmi is working as
Assistant Professor in the depart-
ment of Computer Applications in
Thiagarajar College of Engineer-
ing. Madurai. Published several
research papers in various reputed
journals. She has supervised sev-
eral Ph.D scholars from different
universities. Has conducted many
workshops for scholars and stu-
dents. She is a certified IBMWeb-
sphere application developer and
external member of board of gov-
erners in Taminadu polytechnic
college, Madurai. Published sev-
eral books.

R. Subash Chandrabose is work-
ing as a professor and principal
of a reputed engineering college
of Tamilnadu. Published several
research papers in various jour-
nals. Has guided research scholars
from different universities.

https://doi.org/10.1155/2012/46763
https://doi.org/10.1049/iet-sen.2013.0165

	An effective software project effort estimation system using optimal firefly algorithm
	Abstract
	1 Introduction
	2 Related work
	3 Problem definition
	4 Proposed method
	4.1 Expectation maximization (EM) algorithm for clustering
	4.2 Effort estimation using fuzzy analogy with firefly algorithm
	4.2.1 Fuzzy analogy
	4.2.2 Rule optimization by firefly algorithm

	4.3 Effort estimation

	5 Results and discussion
	5.1 Data set description
	5.2 Performance analysis
	5.3 Comparative analysis of proposed work with some of the available existing techniques

	6 Conclusion
	References

