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Abstract Cloud computing enables the access of the
resources such as network hardware’s, storage, applications
and services that are configurable based on the demand in
a network especially specific to the operations on the data.
The need for data security in the cloud is progressively
higher as the abundant sensitive data in the cloud are trans-
ferred among various stakeholders for data operations leads
toloss of data confidentiality. To maintain data confidentiality
in the cloud, the data need to be encrypted with crypto-
graphic algorithms. Existing cryptographic algorithms face
the challenges of key management, dynamic encryption, and
computational complexity. In this paper, a novel variant of
DNA cryptosystem is proposed to secure the original data
within the DNA nucleotides providing greater storage space,
reduced overhead and dynamic operations. The significance
of DNA is incorporated in the proposed Novel DNA cryp-
tosystem, which encrypts the data transferred between the
Data Owner and the Data User in the cloud. Enhanced ElGa-
mal cryptosystem is the proposed asymmetric cryptosystem
used to address key management issues in the cloud, by
securely transferring the key file between the Data Owner
and the Data User. Enhanced ElGamal cryptosystem pro-
vides better user authentication and performance with respect
to the security accomplishment against attacks. At the same
time, Novel DNA cryptosystem achieves better performance,
reduced the complexity of implementing the properties of
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DNA and embarks upon a standardized algorithmic approach
among the existing DNA cryptographic methodologies. The
performance analysis, mathematical proof as well as secu-
rity analysis forms the security metrics and it meets out the
proposed objectives. Thus, on utilizing the proposed Novel
DNA and Enhanced ElGamal cryptosystems (i.e) both sym-
metric and asymmetric cryptosystems, enhances the security
and performance of data storage and retrieval in the cloud.
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1 Introduction

Cloud has become a prominent technology in almost every
business organization that handles a large amount of data
for its business operations. It raises the eventual objective of
the organization to safeguard the data from security breaches
for its successful growth. The goal to accomplish data con-
fidentiality in cloud prevails with lots of challenges to be
resolved [1]. Cloud computing is the base technology for
any real-time applications. Cloud services can be portrayed
as “X as a Service (XaaS)”, where X can be everything rele-
vant to computing like hardware, software, platform, etc... In
cloud computing, three entities play the major roles, namely
Cloud Server (CS), Data Owner (DO) and Data User (DU).
CS provides storage services for application owners and dis-
tributed users. DO can create, store and update any kind of
data on the cloud server. DU can access the data stored in
the cloud through proper authentication. It is hard to choose
cloud-based storage or non-cloud based storage at the time of
storing confidential data. By the continuous development of
cloud technology, many security problems arise in deploy-
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ment and usage. Data Security is the primary requirement
for any kind of data in the cloud, because of internet based
service. DO will face a major problem if their sensitive or
confidential data has been accessed by any unauthorized
users.

Data confidentiality [2] is an essential component for data
owners to store and retrieve the cloud data in a secure man-
ner. In order to maintain data confidentiality, data need to be
encrypted in the cloud using cryptographic techniques, while
stored and transferred. The management of cryptographic
keys [3] is the challenging problem of the implementation
of cryptographic techniques in the cloud. The significance
of cryptographic techniques is to scramble the content of
the data and make the data in unreadable or meaningless
forms, during storage and data transmission. Cryptography
can be categorized into two types, namely, (i) Symmetric
cryptosystem, (ii) Asymmetric cryptosystem. The variation
between two cryptosystems lies in the usage of encryption
and decryption keys. In a symmetric cryptosystem, DO need
to share a secret key for DU, which is utilized for both encryp-
tion and decryption. In Asymmetric cryptosystems, DO and
DU needs to generate the public and private keys individu-
ally. Then, using DU’s public key, data will be encrypted by
DO and using DU’s private key, data will be decrypted by the
DU itself. The parameters and key length are high in an asym-
metric cryptosystem. If the key length is high, it is difficult
to break the cryptosystem. Throughput is high in symmetric
cryptosystems. If the throughput is high, power consumption
will be low. In real time scenario [4], the data communica-
tion will take place between the User’s web browser and the
cloud service provider such as Google, Amazon, etc. The
data is encrypted using symmetric key cryptosystem and the
keys to authenticate DO and DU is managed through public
key cryptosystem. This concept is adopted in the proposed
cloud framework with novel algorithms to serve the purpose.
A novel cryptosystems need to be proposed by maximizing
throughput and data security.

To solve the complex computational problems such as
Hamilton path problem—an NP-complete problem, Adle-
man [5] used DNA molecules and solved it, which leads to a
new field of computing known as DNA Computing. In order
to increase throughput and security of the cryptosystems [6],
aunique field of cryptosystem using the concept of Deoxyri-
bonucleic acid (DNA) known as DNA cryptosystem came
into existence.

DNA has a massive power to store nearly 700 terabytes of
data in its one single gram. DNA molecules hold the genetic
information for the growth and development of the living
organisms. It can be visualized as a double helix structure,
which is two strands of polynucleotides. Adenine (A), Gua-
nine (G), Cytosine (C) and Thymine (T) are four nucleotides
of the DNA molecule. Adenine is complementary paired
with Thymine, Guanine is complementary paired with Cyto-
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Table 1 The properties for an efficient DNA cryptosystem

Complete character set To provide encoding of every unique
encoding sequence for the complete ASCII characters
sets entries.

Dynamic Encoding
table generation

To generate a distinct encoding table for
every data transfer between the Data Owner
and the Data User.

Unique sequence for
character encoding

The sequences are encoded with different
characters in every data transfer in every
session.

Robustness of encoding Randomness is ensured by varying the intron
sequence, collating values and encoding
table values for each access.

Biological process
simulation

To involve the biological properties of DNA
in encryption, decryption and encoding
table generation.

Dynamic encryption
process

To produce different ciphertext for a plaintext
through every unique generation of the
encoding table.

sine and vice versa. Binary values are assigned to DNA
nucleotides, Adenine (A)—O00, Guanine (G)—O01, Cytosine
(C)—10, and Thymine (T)—11. These binary values are used
in the transformation of DNA sequences. Using a defined
character set, amino acids in protein synthesis are used to
convert intermediate ciphertext into collated ciphertext.
Existing research works on DNA cryptosystems concerns
with the requirements of DNA cryptosystems, storage space,
computational speed and security against intruders in a digi-
tal world. Through many rigorous studies and research, DNA
cryptography has been evolved where the confidential data
are hidden inside the DNA molecules to enhance data secu-
rity. DNA sequences like NCBI, DDBJ and EBI databases
are available. Based on the data user, DNA sequences can
be selected at random. These DNA sequences are used in
DNA cryptosystems to provide uncertainty for the intruders.
The biological process of DNA is hard to break. It reduces
the level of complexity in computation. Thus, these factors
depict the need of DNA Cryptography in cloud computing,
where fast computation and increasing complexity in crypt-
analysis are achieved. In recent years, researchers proposed
variants in DNA cryptosystems to solve the confidentiality
issues, but each cryptosystem differs from one another based
on the usage of the biological and arithmetic operations. Still,
there has not been a standardized method for evaluating exist-
ing variants of DNA cryptosystems to prove the results of
measured metrics. Noorul Hussain et al. [7] identified the
six properties for the security measures of an efficient DNA
cryptosystem, as shown in Table 1. Thus, the Novel DNA
cryptosystem forms the symmetric key cryptography that can
be used for data encryption [8]. The significance of DNA
molecules has been proved by maximizing computational
speed, minimizing computational power and efficient stor-
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age. The key file of DNA cryptosystem needs to be shared
secretly between DO and DU. While public key cryptogra-
phy is used to encrypt as well as transfer the keys securely
through an insecure channel between DO and DU [9].

In 1985, ElGamal [10] proposed a public key cryptosys-
tem, which had a wide range of attention these days. The key
idea behind the cryptosystem is the use of the discrete log-
arithm problem. It is hard to find the solution for a discrete
logarithm problem. The ElGamal algorithm is described as
follows:

User A - Receiver:

Key Generation:

Choose q, a large prime number, and «, primitive root of q
Choose X, a random integer such that 1 <X <q-1
Compute Y as a* mod q

Private Key: X, Public Key: {q, o, Y}

User B - Sender:
Encryption:
Represent message as integer m, such that 0 < m < g-1
Choose a random integer k, such that 1 < k< g-1
Compute one-time key, K = Y* mod q
Encrypt message 'm' as a pair of integers (C;,C,) Where
¢, =a®modq, C, =K.mmodq

User A - Receiver:
Decryption:
Recover key by computing K = C;* mod q
The message, m can be retrieved as
m= C,.K™! mod q

In ElGamal cryptosystem, if the private key X is derived
then the entire system can be broken easily as the message
can be retrieved asm = C, - C I_X mod q. The security of the
ElGamal cryptosystem lies in the difficulty of the discrete
logarithm problem. But, many algorithms [11,12] like naive,
pollard’s tho method and baby-step/giant-step methods [13]
has been proposed to solve the discrete logarithm problem.

Enhanced ElGamal Cryptosystem has been proposed and
used in the cloud framework to address the key manage-
ment issues. Enhanced ElGamal cryptosystem provides data
integrity and security by increasing the complexity in deriv-
ing the private key of the DU by the intruder.

The rest of the paper is organized into various sections
as follows: Sect. 2 describes the related work in variants
of ElGamal cryptosystem and DNA cryptosystem, Sect. 3
describes the proposed framework, Sect. 4 describes an
Implementation and results of the Novel DNA cryptosystem,
as well as the Enhanced ElGamal cryptosystem and Sect. 5,
describes the security analysis of the proposed cryptosys-
tems. The conclusion is summarized in Sect. 6.

2 Related work

In cloud computing, ensuring data confidentiality and manag-
ing cryptographic keys avoids the events of data breaches or

data loss. Since there are many malicious users in the cloud,
the data security may be at risk. So, Cloud Server needs to
ensure data confidentiality to avoid unauthorized data access
in the cloud storage.

The incidents of data breaches or data loss have become
quite common these days. In 2014, the leakage of confiden-
tial information on Sony such as email exchanges among
the Sony employees. It revealed the Personally Identifiable
Information (PII) which helps to identify, contact or to track
a particular person. It caused an expense of 15 million dol-
lars to address the damages. Similarly, Codespaces, an online
hosting provider was hacked and the impact was most of their
customer data were compromised. Based on the Cost of Data
Breach study of 2015 by Ponemon Institute and IBM, the cost
incurred for the loss of sensitive and confidential information
has increased from 201 to 217 dollars. These data breaches
have occurred due to the vulnerabilities of data security that
caused malicious attacks and process failures. At 2016, the
data breach of the health care records has gone high. The
loss of health care records is due to lack of security mea-
sures in cloud storage environment. As the volume of data is
increasing the data confidentiality methodologies need to be
enhanced to suit the needs.

The various research works on modified ElGamal and
DNA cryptosystems are analyzed to enhance the cryptosys-
tems for real-time implementation in the cloud framework.
Key management issues can be addressed through Public Key
Cryptosystems. The security features like confidentiality and
authentication are achieved through ElGamal cryptosystem
[14]. To improvise this system many variants were proposed
by the researchers, but the security of the algorithm depends
on the level of difficulty of solving the discrete logarithm
problem remains unchanged.

Shiang et al. [15] proposed an ElGamal-based cryptosys-
tem for enciphering the plaintext based on Diffie-Hellman
key exchange [16]. The computational complexity was com-
paratively less to ElGamal cryptosystem and it relies on
the discrete logarithm problem. Similarly, modified ElGa-
mal cryptosystem algorithm (MECA) [17, 18] was proposed
to enhance the existing ElGamal cryptosystem, but still, it
depends on integer factorization problem along with the dis-
crete logarithm problem. Since it was based on a one-way
function with increased execution time, it was unable to
be used for authentication purpose. A variant of ElGamal
cryptosystem with less time-consuming hash functions was
used to encrypt short length messages such as passwords,
PIN codes and details of credit card [19]. It proved secure
encryption against Chosen — Ciphertext Attack. A modified
ElGamal cryptosystem was also proposed to encrypt gray
and color images in MATLAB depending on the discrete
logarithm problem [20,21]. These variants of the ElGamal
cryptosystem used different algorithms [13] to solve discrete
logarithm problems such as naive, pollard’s tho method and
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baby-step/giant-step method. But research works to improve
security by using hybrid concepts like combining any two
public key cryptosystems and modifying the algorithmic con-
cept making it as a novel approach. Most of the research work
was combining the ideas of RSA and ElGamal cryptosystems
[10,22-24]. Among which there was a digital signature algo-
rithm based on the same discrete logarithm problem and the
integer factorization problem making it harder to break the
cryptosystem [25,26].

Few research works were based on elliptic curve cryptog-
raphy, which is used for key distribution and authentication
of user’s identity. But the drawbacks were the size of the
ciphertext was doubled and increased computation for a key
generation [27]. A variant methodology operated on the hex-
adecimal representation that reduced the above drawbacks,
but the security analysis of the cryptosystem was unproven
[28]. In this methodology, the time taken for encryption and
decryption is quite lesser than ElGamal cryptosystem, but
still, it depends on the difficulty of integer factorization and
discrete logarithm problems. Based on the related works,
the Enhanced ElGamal cryptosystem needs to be designed,
where security of the cryptosystem must not depend only on
the discrete logarithm problem, but also on the level of ran-
domness [29]. This increases the computation complexity for
attackers to break the proposed cryptosystem.

In order to provide a secure data storage and retrieval in
the cloud, data confidentiality need to be ensured through
data encryption. Variants of DNA cryptosystems are ana-
lyzed based on the requirements to the fulfillment of the
efficient DNA cryptosystem [7]. Yunpeng et al. [30] proposed
a scheme of symmetric key cryptography where the XOR
operation is performed between the plaintext and the key.
The resulting sequence is mapped to a reference sequence and
the positions are indexed to form the ciphertext. This system
mainly depends on arithmetic operations without involving
the biological process of DNA. Likewise, Abbasy et al. [31]
initially converts the plaintext to binary, then finds the com-
plement of the sequences and finds the index in the reference
string which forms the ciphertext. The chances of occurring
unique sequences are quite less and there is less need for an
encoding table in this framework.

The concept of using codebooks to encrypt and decrypt is
by finding the matches of the key file with the sequences in
the codebook [32]. But here only the prefabricated messages
can be communicated. The codebook remains static until the
Data Owner and Data User decides to change the codebook.
Thus encoding in a different manner has been performed
where the biological processes are less involved.

In another approach, a substitution array is created, the
plaintext is converted into ASCII and the values of the array
is divided by the ASCII value, the quotient and remainders
are converted into DNA nucleotides and then into amino acid
sequences [33]. It is dynamic and follows few biological
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properties, but the encoding process for the unique sequence
is less emphasized.

Mandge et al. [34] proposes an encryption scheme which
involves a XOR operation, mini cipher generation and con-
version of values into DNA sequences and then to amino acid
sequences using a toolbox in MATLAB. It does not have any
encoding table and so dynamicity of encoding table is not
achieved. Majumder et al. [35] contributed towards block
based encryption where the blocks of 256-bit plaintext are
converted to 64-bit blocks and performed a XOR, a straight
D-Box permutation and later the binary values are mapped to
form the ciphertext. Thus, it incorporates very few biological
processes.

Jain et al. [6] proposed a methodology of converting the
plaintext into binary through ASCII values. The binary values
are converted into decimal values which are mapped to a
DNA sequence belonging to the DNA sequence dictionary.
It uniquely maps for the given number of 0 to 255 with the
corresponding DNA sequences. It involves very few steps
and that contributes less towards the biological process.

A DNA cryptosystem involves generating a random key
which is a DNA sequence adjusted to the binary length of
the plaintext with its binary sequence values [36]. It is split
into odd and even parts that are replaced with O’s in the first
part and all 1’s in the second part. It forms a dummy key with
the initial bit as ‘1’ and remaining with the replaced odd and
even parts. It is done a XOR operation along with the original
adjusted key to form an OTP key. This OTP key is used
to encrypt the plaintext through XOR operations. Finally,
the key and the ciphertext are converted into alphabet form.
The usage of encoding tables to encode the character set of
96 elements of unique DNA sequences dynamically forms a
robust system [7]. The encoding table becomes dynamic as it
is generated with two new DNA sequences for every process.
It involves the biological process of DNA like transcription,
translation and protein synthesis. It operates completely on
DNA sequences. But the computational complexity is high
as it involves too many preprocessing and multiple rounds of
algorithmic steps.

Majumder et al. [37] proposes a cryptosystem that divides
the plaintext to blocks of 256 bits, each block is split into
blocks of 64 bits. It is then performed four rounds of the XOR
operation with the subkeys that get shifted by one block of
values in each round. Finally, the resulting sequences are con-
verted into DNA sequences and are appended with a random
DNA sequence as a front primer and end primer. It does not
involve an encoding table but performs dynamic encryption.
The method of using biological equipment and processes
like PCR amplification along with the usage of primers and
codons is less feasible to be used in real time scenario [38]. In
general, it uses DNA sequences and complementary pairs in
the process of encryption. Similarly, another DNA cryptosys-
tem involves cellular automata to support the robustness of
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Table 2 Analysis on various DNA cryptosystems

Authors Complete character ~ Dynamic encoding  Unique sequence Robustness of Biological Dynamic
set encoding table generation for character encoding process encryption

encoding simulation process

Yunpeng [30] * X * v X

Gao [32] X X X X

Abbasy [31] X X v X v

Dhawan [33] * X * v * v

Mandge [34] * X * v v v

Cui [38] * X * v v v

Majumder [37] * X X v X v

Jain [6] X X v * X *

Aich [36] * * v v * X

Rahman [7] v v v v v v

Majumder [35] * X X v X v

Sundaram [39] v v N * * X

Aich [40] * * v v v v

Gugnani [41] * X X * X v

Our Cryptosystem v/ v v v v v

V" Follows to a greater extent, x follows to a least extent, * follows to an average extent

the system [39]. Here, the plaintext is converted into a DNA
sequence using an encoding table with 66 elements. It is then
converted into binary and performed XOR operation with the
keys generated and the final binary sequence is applied with a
pattern of rule 51 in cellular automata. Then it is transformed
to DNA sequence and performed a transition using automata
to generate the ciphertext. Here, it forms a static encoding
table known as a codebook.

The DNA cryptosystem proposed by Aich et al. [40] uses
Diffie — Hellman technique to generate and share a secret key
which is converted to DNA sequence. The plaintext is con-
verted into DNA sequence and appended with primers and
then converted to binary and performed DNA hybridization
with the key to forming the ciphertext. Here, the encoding
table is static.

Gugnani et al. [41] applies DNA cryptography in XML-
SOAP file encryption. Initially, the important data like
Account PIN numbers, passwords, etc. present in the file
are extracted and converted into binary. It is then converted
into DNA bases, complementary pairs are replaced with the
bases. A DNA reference string is then hybridized with this
sequence and outputs the position values as the ciphertext
string. It does not generate a unique character encoding as
the reference sequence bases repeat multiple times in the
sequence.

The DNA cryptosystem [23] is unique in handling the
UNICODE characters and has been utilized for secure data
transfer in the cloud. The plaintext can be in any lan-
guage. Initially, the plaintext is converted from UNICODE to
ASCII character considering each eight bits. It is converted

to a binary sequence using hexadecimal values. The DNA
sequence is encoded based on the key combination table
that maps two DNA nucleotides with four binary digits. This
becomes the ciphertext. Another DNA cryptosystem uses a
key to convert the plaintext into a DNA ciphered sequence
using its molecules [1]. This is implemented for secure data
transfer in the AWS cloud environment.

From the above-studied DNA cryptosystems, it is very
clear that very few cryptosystems are dynamic and others
work with static keys, encoding tables, code books, etc. The
utilization of biological properties of DNA is very less among
the proposed cryptosystems which are less secure for cloud
data security. Thus, our proposed DNA cryptosystem is made
dynamic in encoding table generation as well in encryption. It
utilizes the biological properties of DNA like complementary
pairs, translation, transcription, and amino acid processes. It
satisfies the six properties which have been framed in [7] and
also overcomes the larger permutations without compromis-
ing data security in the cloud.

The study on various DNA cryptosystems based on the
six properties is shown in Table 2.

3 Proposed work

The proposed framework involves major stakeholders who
operate on the data in a cloud environment such as the Data
Owner who sends the data to the Data User when he/she
requests for. Initially, the Data Owner converts the unique
ID of the Data User into a DNA sequence known as Data
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5. Requests the Key File

(G 6. Sends the Key File encrypted by
( Enhanced EIGamal Cryptosystem #

Data Owner Data User

1. Generates Key file and 7. Decrypts the files and
Cipher text on DNA encryption obtains the original data

Fig. 1 Architecture of data storage and retrieval from cloud

User sequence. The Data Owner generates a random DNA
sequence known as Data Owner sequence. Then Data Owner
encrypts the data with both the DNA sequences using Novel
DNA cryptosystem and outputs a key file and ciphertext file.
The ciphertext file is stored in the cloud. The key file is then
encrypted with the public keys of the Data User generated
using the novel Enhanced ElGamal cryptosystem. When the
Data User requests the ciphertext to cloud it checks the Data
User and sends the corresponding ciphertext as shown in
Fig. 1.

The Data User then requests for the key file to the Data
Owner. Data Owner sends the encrypted key file which
is decrypted with the private keys of the Data User using
Enhanced ElGamal cryptosystem. It then decrypts the key
file and the ciphertext file using Novel DNA cryptosystem to
obtain the original data.

Thus, the proposed framework consists of two cryptosys-
tems namely, symmetric key cryptosystem to encrypt the data
is a Novel DNA cryptosystem and the public key cryptosys-
tem to authenticate the user and to encrypt the key file is an
Enhanced ElGamal cryptosystem.

The Enhanced ElGamal cryptosystem (EEC) security lies
on the randomness and the discrete logarithm problem. The
increase of randomness leads to increase in the security of the
cryptosystem. It also authenticates the Data Owner and Data
User with their private keys and public keys. The key file
could be decrypted only by the intended Data User using his
private key. Thus, the confidentiality of the data is maintained
among the stakeholders in a cloud environment.

3.1 Novel DNA cryptosystem

The Novel DNA Cryptosystem upholds the data confiden-
tiality in a cloud environment with utmost security. It makes
it harder to break up by involving the biological processes of
DNA, which are highly randomized in the proposed mecha-
nism.

DNA Cryptography causes less computational time, but
its robust process increases the attack time. This essential
tradeoff is least achieved by most of the traditional crypto-
graphic approaches proving the significance of the proposed
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Novel DNA Cryptosystem. The proposed Novel DNA cryp-
tosystem comprises of three phases,

1. Novel DNA encoding table generation
2. Novel DNA encryption algorithm
3. Novel DNA decryption algorithm

3.1.1 Novel DNA encoding table generation

The generated encoding table is based upon the process of
protein synthesis by the amino acids of DNA forming the vital
part of our framework. Initially, the sequence of both the Data
Owner and the Data User is generated. The unique ID of Data
User is transformed to form a DNA sequence of having four
unique nucleotides known as Data User sequence and Data
Owner generates a random DNA sequence known as Data
Owner sequence. These sequences are converted into mRNA
sequence and then to tRNA sequence. A 4*4 matrix is formed
by considering the sequences as row and column. The entries
are formed by combining the row and column nucleotides. It
is extended to a 16%16 matrix in a similar manner. It forms
the amino acid table, where the values are collated with the
collating amino value. The ASCII character set is extended
to 256 values and it is collated with the collating character
value. The collating value is a number that can be from 1
to 256. Both the amino sequences and the character set are
mapped to form the DNA encoding table as shown in Fig. 2.
The pseudo code for the generation of encoding table is,

Encoding_table (DO,DU,ca,cc)
Input: Data Owner Sequence DO, Data User Sequence
DU, Collate amino ca, Collate character cc
Output: Encoding Table Ey
Method Variables: ASCII character set c¢so4, Extended
character set ¢s,s6, MRNA sequence of DO DO,
mRNA sequence of DU DU,,, tRNA sequence of DO DOy,
tRNA sequence of DU DU,
4 * 4 matrix of DO, * DU, Dy 16 * 16 matrix of D4* D4 Dy6
Procedure:
convert DO, DU into mRNA sequence
DO,,, DU,, respectively
convert DO,,, DU, to tRNA sequence
DOy, DU, respectively
compute Dy
compute Dy
collate Dy with ca
generate ¢soq and extend €So4 tO €S2s6
collate ¢s,s6 with cc
map Dy and ¢sys6 to form Er

The steps to generate the encoding table is as follows:

Step 1: Initially, the Data Owner DNA sequence and Data
User DNA sequence, each having four nucleotide
bases of DNA are taken in a unique order.

Step 2: Convert both the sequences into mRNA sequence.

Step 3: Convert the resulting mRNA sequences into tRNA
sequences which form the input for the encoding
table.
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Data Receiver's
Sequence

Data Owner's
Sequence
Convert to
mRNA

Convert to
tRNA

Convert to
mRNA

Convert to
tRNA

Construct 4*4 matrix

Construct 16*16 matrix

Generate

Character set

Collating Value

Collating Value (Amino sequence)

(Character set)

Amino acid table

Generate collated
Character set

Generate collated |

DNA Encoding Table

Fig. 2 Encoding table generation

Step 4: Compute the 4*4 matrix of sequences using the
tRNA sequences as row and column.

Step 5: The values of the above matrix are taken as row and
column to generate a 16* 16 matrix of sequences that
forms the amino acid table.

Step 6: A collating value is chosen to circularly shift the
generated amino sequences.

Step 7: The entire ASCII character set of printable 94 ele-
ments is extended to 256 elements by having the
prefix of the character ‘D’ for the first time on the
character set, then it is prefixed with the character
‘N’ and for the remaining elements it is prefixed
with the character ‘A’.

Step 8: A collating value is chosen to circularly shift the
generated 256 character set elements which are then
mapped to the amino sequences to form the encod-
ing table.

3.1.2 Novel DNA encryption algorithm

The encryption process is done as shown in Fig. 3. The
data needed by the Data User would be as a plaintext to
the Data Owner. It is converted into binary form through
ASCII and it has performed an XNOR operation with the
concatenated binary sequence of the Data Owner and the
Data User.

Itis further splitinto N blocks based on the value of a num-
ber of bits per block which can be 16, 32, 64, 128,256, 512 or
1024. The odd blocks are performed a XOR operation with
the intron sequence made to the length of the block by either
appending or splitting it. The even blocks are performed a
XOR operation with the reverse of the intron sequence. The
obtained block is then reversed and all blocks are concate-
nated. It is converted into DNA sequence, then to mRNA
sequence and further to tRNA sequence. The tRNA sequence
is considered with sequences of four nucleotides and mapped
to the encoding table. The encoded values are split into odd
digits converted into special characters by mapping with the
characters such as D-$, N-*, A-@ which forms the cipher-
text along combined with even digits. The key file holds the
collating values, DNA sequences, bits per block value and
mapping with special characters. The pseudo code for the
encryption process is as follows:

DNA_Encryption (pt, DO, DU, N, D, M, Y, H, Mij, S,
RN, Ey)
Input: plaintext pt, Data Owner Sequence DO,
Data User Sequence DU, bits per block N, date D,
month M, year Y, hour H, minute Mi, second S,
random number RN, Encoding Table Er, Collate_amino ca,
Collate _character ce
Output: key file cl, ciphertext ct
Method Variables: binary plaintext pt,, binary DO DOy,
binary DU DU, block Ny, intron sequence iseq,
binary intron sequence iseq,, DNA sequence DNA,
mRNA sequence mRNA,.q, tRNA sequence tRNA,,
odd position oy, even position e,
Procedure:
convert pt into ASCII values
transform ASCII values to binary plaintext to form pt,
convert DO, DU to binary DOy, DU,
concatenate DOy, DU, to form DO,.DU,
XNOR DO,,.DU, with pt,
split into N blocks N},
generate iseq with D, M, Y, H, Mi, S, RN
convert iseq to binary iseqy,
for each N,
if odd then XOR Ny and iseqp,
if even then XOR Nj, and reverse of iseqy,
reverse Ny
combine all Ny and concatenate iseqy,
convert to DNAq, then convert to mRNAeq
convert to tRNAq , then encode with Ex
split odd position o, and even position e,
map o to $,*,@ for D.N,A
combine o, and e, as ct
append N ca, cc, DO, DU as cl
have ¢l & send ct

The Data Owner encrypts the plaintext by the following
steps:

Step 1: Convert the plaintext into ASCII code which is fur-
ther converted into a binary sequence.

Step 2: Convert the DNA sequences of Data Owner and
Data User into binary sequences and concatenate them as a
single binary sequence.
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Plaintext
Data User l

Data Owner
S S e
SR N AsCII

| Binary I | Binary I I Binary |

XNOR

Splitinto N blocks
0dd blocks Even blocks

Reverse of
Intron @ XNOR Intron
Sequence Sequence

I Reverse ] l Reverse I

I Convert to DNA Sequence I

Concat

l Convert to mRNA Sequence |

l Convert to tRNA Sequence |

Encode the sequence

0dd digits Even digits
[ Clue ]

Fig. 3 DNA encryption process

DNA Encoding table

{ Cipher text ]

Step 3: Perform XNOR operation on the plaintext binary
sequence with the above resulting sequence.

Step 4: The resulting binary sequence is split into N bit
blocks, where N varies as 16, 32, 64, 128, 256, 512 and
1024 based on the N-value given by the Data Owner.

Step 5: The intron sequence is generated from the values for
Date, Month, Year (last two digits), Hour, Minute, Second
each having two digits and a four digit random number.
Step 6: The values of the intron sequence are converted into
binary for each digit, resulting in an intron binary sequence
which is either split or concatenated depending on the block
size.

Step 7: For every block of binary plaintext,

Step 7.1: If they are odd blocks, perform the XOR opera-
tion for the odd blocks with the binary intron sequences.
Step 7.2: If they are even blocks, perform the XOR
operation for the even blocks with the reverse of the
binary intron sequences.

Step 8: Reverse the bits for every resulting block and com-
bine them as a single binary sequence. The binary intron
sequence is concatenated with this binary sequence of the
blocks.

Step 9: Convert the binary sequence into a DNA sequence
by mapping binary values with the DNA nucleotides shown
in Table 3.

@ Springer

Table 3 DNA nucleotide to

‘ ’ Nucleotide Binary value
binary value mapping
A 00
T 11
C 01
G 10

Step 10: The DNA sequence is converted into mRNA
sequence where the Thymine (T) is replaced with
Uracil (U).

The mRNA sequence is then converted into tRNA
sequence by taking the complement of each of the
nucleotides.

Step 12: The obtained tRNA sequence is now mapped with
the encoding table sequence values to form the
encoded sequence.

The encoded sequence is split into odd position
digits and even position digits.

Step 14: The odd position digits will be of characters as
D, N, and A. It is then replaced with the special
characters as $, * and @.

The DNA sequences of Data Owner and Data User,
the bits per block size value, the collating value for
the amino sequences and the collating value of the
character set elements are combined to form the
key file. The odd position values and even position
values are combined to form the ciphertext.

Step 11:

Step 13:

Step 15:

The final key file is encrypted with the public key of the
Data User is using EEC and kept by the Data Owner and the
ciphertext is sent to the cloud storage on completion of the
encryption process.

3.1.3 DNA decryption algorithm

The ciphertext is received from the cloud storage server and
the key file received from the Data Owner and the ciphertext
is decrypted using the private key of the Data User by EEC
and both of these files are used for the DNA decryption pro-
cess as shown in Fig. 4. The key file is synthesized to get
the various values combined together in the file such as col-
lating values, etc. It is combined with the ciphertext to form
a sequence. It is converted into tRNA sequence, then con-
verted to mRINA sequence and further converted into a DNA
sequence. The intron sequence is obtained by removing the
last bits of the block size value obtained from the key file.
Split it into N blocks and perform the XOR operation with
the intron sequence for odd blocks and perform the XOR
operation with the reversed intron sequence for even blocks.
Combine all the blocks and do the XOR operation with the
concatenated binary sequence of Data Owner and Data User.
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Fig. 4 DNA decryption
process

Key file ] [ Cipher text

0dd digits

[ DNA Encoding table ]—> Convert to tRNA Sequence

Intron
Sequence

Data User
Sequence

Data Owner
Sequence

Even digits

Combine

l

| Convert to mRNA Sequence |

Y
| Convert to DNA Sequence |

Y
[ Splitinto N blocks ]

Odd blocks Even blocks

| Reverse | | Reverse |

Reverse of
Intron
Sequence

Combine

The resulted sequence is converted into ASCII and then to
the original plaintext sent by the Data User.

The procedure to perform DNA decryption process is as
follows:

Step 1: The DNA sequences of Data Owner and Data User,
the bits per block size value, the collating value for the
amino sequences and the collating value of the character
set elements are split from the key file.

Step 2: The odd position digits will be of characters as D,
N, and A. It is then replaced with the values as $, * and @.
Step 3: The ciphertext is processed to form the encoded
sequence by combining the odd position digits and even
position digits.

Binary

Plaintext

Step 4: The encoded sequence is mapped with the encoding
table values to form the tRNA sequence.

Step 5: The mRNA sequence is obtained by taking the
complement of the tRNA sequence nucleotides.

Step 6: The mRNA sequence is then converted into a DNA
sequence by replacing Uracil (U) with Thymine (T).

Step 7: The resulting DNA sequence is transformed into
the binary sequence.

Step 8: The bits per block value is obtained from the key
file and that a block size of bits is removed from the binary
sequence to obtain the binary intron sequence.
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Step 9: The sequence is split further to obtain the blocks
and each block are reversed to obtain the final blocks of
values.

Step 10: For every block obtained,

Step 10.1: If they are odd blocks, perform the XOR
operation for the odd blocks with the binary intron
sequences.

Step 10.2: If they are even blocks, perform the XOR
operation for the even blocks with the reverse of the
binary intron sequences.

Step 11: The blocks are combined together to form a single
binary sequence.

Step 12: The Data Owner DNA sequence and the Data
User DNA sequence are converted into binary sequences
and concatenated to form a single sequence.

Step 13: The binary string of the blocks and the above
resulting sequence are XNORed and it results in a binary
sequence of the plaintext.

Step 14: The binary sequence is converted into ASCII val-
ues.

Step 15: The ASCII values are converted to form the final
original plaintext.

Thus, the Data User obtains the original plaintext sent by
the Data Owner securely.
The pseudo code for DNA decryption is as follows:

DNA_Decryption (cl, ct, E1)
Input: key file cl, ciphertext ct, Encoding Table E¢
Output: plaintext pt
Method Variables: Data Owner Sequence DO,
Data User  Sequence DU, bits per block N,
binary plaintext ptp, binary DO DO, binary DU DUy,
block Ny, intron sequence iseq,
binary intron sequence iseq,, DNA sequence DNA;,
mRNA sequence mRNA,,, tRNA sequence tRNAq,
odd position o, even position e,
Procedure:
split el into N, ca, cc, DO, DU
map $,*,@ to D,N,A for o,
combine odd position 0, and even position e,
encode with E
convert to tRNAq
convert to mMRNAq
convert to DNAeq
split all Ny and iseqy,
reverse all Ny,
for each Ny,
if odd then XOR Nj, and iseqj,
if even then XOR Nj, and reverse of iseqp,
combine all Nyto form pt,
convert DO, DU to binary DOy, DU,
concatenate DOy, DUy, to form DO,,.DU,
XNOR DOb.DUb with ptb
transform pt, to ASCII values
convert ASCII values into pt
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3.2 Enhanced ElGamal cryptosystem (EEC)

Inthe EEC, the Data User computes the public key and private
key of the system. Then, the Data Owner selects the random
keys and the key file to be communicated. The encryption
function is invoked by the Data Owner to encrypt the key file
with the computed keys. The ciphertext will be sent to the
Data User through any kind of networks. The Data User will
decrypt the ciphertext to retrieve the key file by computing
the random key.

The Enhanced ElGamal cryptosystem works as follows:
The key generation procedure involves choosing a large
prime number, q and finding its primitive roots, o, p and per-
form the modular inverse for the multiple values of primitive
root which is denoted as ‘d’. It also involves the selection
of a random number for setting up a private key X, which
should be 1 < X < q— 1 and determine the public key from
the random number Y.

The encryption procedure involves by choosing 2 ran-
dom numbers as ki, kp and selecting a shared secret key,
ks. Using these 2 random numbers and a secret key, compute
one time secret key K, to encrypt the key file. The key file is
encrypted as C = (Cp, C2, C3). The decryption procedure
involves retrieving the one time secret key K. The ciphertext
is decrypted by computing the value of K, and the private key
{X, d}.

The proposed EEC algorithm is given as pseudo code.

Data User:
Key Generation:
Choose q, a large prime number and a, § primitive roots
ofq
Findd = (a.5) ! mod q
Choose X, a random integer such that 1 <X <q-1
Compute Y as Y = (a.8)* mod q
Private Key: {X, B,d}, Public Key:{q, a, Y}
Data Owner:
Encryption:
Represent message as integer m such that 0 < m < g-1
Choose 2 random integers ky, k,,
such that 1< ky,k; < g-1
Select shared secret key k3, 1< k3 < g-1
Compute one-time key K = (k;)*2.Y*3 mod q
Compute C; = a®3mod q
Compute C, = kfzmod q
Compute C3 = K.m.Y mod q
Ciphertext C = (Cy, C,, C3) send to the Data User.
Secretly share k3 to the Data User
Data User:
Decryption:
Recover one time key by computing
K = C¥.C,.%% mod q
Find K~'mod q
Retrieve message m = K~1.C;.dX mod q

The proposed algorithm can be proved mathematically
by the following way: The decryption equation m =



Cluster Comput (2018) 21:1411-1437

1421

K~1.C3.dX mod q is taken and the proof involves getting
back the original message from it.

m =K '.C5.dX mod g (substitute K value)

=c Xt g X .c3.d¥ mod g
(substitute C, Covalues)

= a kX %2 g8 X C5.d4% mod g
(substitute Czvalue)

= aik3‘x.kfk2.ﬂ7k3‘X.K.m.Y.dX mod q
(substitute K value)

=a kX kR gR X gk vk iy X mod g
(substitute Y value)

= oz_k3‘x.kl_k2./3_k3 ‘X.k’fz.ak3‘x.ﬂk3'x.m.Y.dX mod q
(inverses cancel each others)

= m.Y.d* mod g (substitute Y value)

=m.a¥. ,BX.dX mod q (substitute d value)

= m.aX.ﬂX.a_X.ﬂ_X mod q
(inverses cancel each other)

=m

Thus, the proposed algorithm has been proved mathemat-
ically.

3.3 Detailed example

The plaintext is taken as "mRNA”. The random Data
Owner’s sequence is ATCG. The Data User’s sequence gen-
erated from his unique ID is CTAG (Let the unique ID be 72.
Converting to DNA sequence through binary values of each
digit forms the DNA sequence CTAG using Table 3).

3.3.1 Novel DNA encoding table generation

Step 1: The Data Owner’s sequence ATCG and the Data
User’s sequenceCTAG is taken.

Step 2: Both the sequences are converted into mRNA
sequence, where T is replaced with U.

ATCG => AUCG
CTAG => CUAG

Step 3: Convert the resulting mRNA sequences into tRNA
sequences which form the input for the encoding table.
(Replace A with U, C with G and vice-versa).

AUCG => UAGC
CUAG => GAUC

G A U C

uG UA uu ucC
AG AA AU AC
GG GA GU GC
CG CA CU CcC

a0 Q »

Fig. 5 4*4 matrix formation

Step 4: Compute 4*4 matrix of sequences using the tRNA
sequences as row and column as shown in Fig. 5.

Step 5: The values of the above matrix are taken as row
and column to generate a 16* 16 matrix of sequences such
as in Fig. 6.

Step 6: The collating amino value is chosen as 3 and the
amino sequences are circularly shifted in the generated
16* 16 matrix entries.

Step 7: The entire character set of 94 elements is extended
to 256 elements by having the prefix of the character ‘D’
for the first time on the character set, then it is prefixed
with the character ‘N’ and for the remaining elements it
is prefixed with the character ‘A’. It is shown in Fig. 7.
Step 8: The collating character value is chosen as 3 and it
is used to circularly shift the generated 256 character set
elements which are then mapped to the 16* 16 sequences
generated to form a complete encoding table as shown in
Fig. 8.

3.3.2 Novel DNA encryption algorithm

For simplicity, the plaintext of the Data Owner is taken as
‘GmRN 7’.

Step 1: The plaintext into ASCII code which is further
converted into a binary sequence.

mRNA > 109 82 78 65 109 82 78 65

=> 01101101010100100100111001000001
Step 2: The Data Owner’s and Data User’s DNA
sequences ATCG,CTAG are converted into binary
sequences and are concatenated.

=> 0011011001110010

Step 3: XNOR operation in the plaintext binary sequence
with the above resulting sequence is performed and the
result is,

=>10100100110111111000011111001100
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UG UA U UC | AG | AA | AU | AC | GG | GA [ GU | GC [ ¢G | ¢€a [ cu [ cC
UG | UGUG UGUA UGUU UGUC UGAG UGAA UGAU UGAC UGGG UGGA UGGU UGGC UGCG UGCA UGCU UGCC
UA | UAUG UAUA UAUU UAUC UAAG UAAA UAAU UAAC UAGG UAGA UAGU UAGC UACG UACA UACU UACC
UU | UUUG UUUA UUUU UUUC UUAG UUAA UUAU UUAC UUGG UUGA UUGU UUGC UUCG UUCA UUCU UUCC
UC | UCUG UCUA UCUU UCUC UCAG UCAA UCAU UCAC UCGG UCGA UCGU UCGC UCCG UccA Uccu ucce
AG | AGUG AGUA AGUU AGUC AGAG AGAA AGAU AGAC AGGG AGGA AGGU AGGC AGCG AGCA  AGCU  AGCc
AA | AAUG AAUA  AAUU  AAUC AAAG  AAAA AAAU AAAC AAGG AAGA  AAGU  AAGC  AACG AACA  AACU Aaacce
AU | AUUG AUUA AUUU AUUC AUAG AUAA AUAU AUAC AUGG AUGA AUGU AUGC AUCG AUCA AUCU AUCC
AC [ ACUG ACUA ACUU ACUC ACAG ACAA ACAU ACAC ACGG ACGA ACGU ACGC ACCG ACCA ACCU  Accc
GG | GGUG GGUA GGUU GGUC GGAG GGAA GGAU GGAC GGGG GGGA GGGU  GGGC  GGLCG GGCA GGCU - GGCe
GA | GAUG GAUA GAUU GAUC GAAG GAAA GAAU GAAC GAGG GAGA GAGU GAGC GACG GACA GACU GAcc
GU | GUUG GUUA GUUU GUUC GUAG GUAA GUAU GUAC GUGG GUGA GUGU GUGC GUCG GUCA GUCU GUCC
GC | GCUG GCUA GCUU GCUC GCAG GCAA GCAU GCAC GCGG GCGA GCGU  GCGC  GCCG GCCA  GCCUu  Gcce
CG | CGUG CGUA CGUU CGUC CGAG CGAA CGAU C(CGAC C(CGGG CGGA (CGGU CGGC  CGCG  CGCA  ceCu  cece
CA | CAUG CAUA CAUU CAUC CAAG CAAA CAAU CAAC CAGG CAGA CAGU CAGC CACG cAcA cAcu cAcce
CU | CUUG CUUA CUUU CUUC CUAG CUAA CUAU CUAC C(CUGG CUGA CUGU CUGC CUCG CucA CUuCU cucc
CC | CCUG CCUA CCUU CCUC CCAG CCAA CCAU CCAC CCGG  (CCGA CCGU  CCGC  CCCG  cccA  cccu  cccc
Fig. 6 Amino acid table generation
D! D" D# DS D% D& D' D( D) D* D+ D, D- D. D/ DO
D1 D2 D3 D4 D5 D6 D7 D8 D9 D: D; D< D= D> D? D@
DA DB DC DD DE DF DG DH DI DJ DK DL DM DN DO DP
DQ DR DS DT DU DV DW DX DY DZ D[ D\ D] D* D_ D
Da Db Dc Dd De Df Dg Dh Di Dj Dk DIl Dm Dn Do Dp
Dq Dr Ds Dt Du Dv Dw Dx Dy Dz D{ D| D} D~ N! N"
N# N$ N% N& N N( N) N* N+ N, N- N. N/ NO N1 N2
N3 N4 NS N6 N7 N8 N9 N: N; N< N= N> N? N@ NA NB
NC ND NE NF NG NH NI NJ NK NL NM NN NO NP NQ NR
NS NT NU NV NW NX NY NZ N[ N\ N] N~ N_ N Na Nb
Nc Nd Ne Nf Ng Nh Ni Nj Nk NI Nm Nn No Np Nq Nr
Ns Nt Nu Nv Nw Nx Ny Nz N{ N| N} N~ Al A" A# AS
A% A& A A( A) A* A+ A, A- A A/ A0 Al A2 A3 A4
AS A6 A7 A8 A9 A: A; A< A= A> A? A@ AA AB AC AD
AE AF AG AH Al AJ AK AL AM AN AO AP AQ AR AS AT
AU AV AW AX AY AZ Al A\ A] Ar A A Aa Ab Ac Ad
Fig. 7 Character set
LU TeC. TCAG - TG - TCAU. TCAC- UL - TeCA - (7 i ULl e TCCA - ({7448 TLC- CALG - CAUA.
De 1) D% D& U X D) b D- D D D D DY nl D2
VALY - CALC UAAG - UAAL - raav TAAC UAGG - UAGA - UAGU - VAGC - UVACG - UACA UACU - TACC e TTUA-
D3 D DS Dé D* D9 D D, D D= D o Da DA D8
. v UAC A AU ac TG - TUCA - et - e - e A ey - wcc - e TCUA -
DC oo DE oF G DH ot DJ DK DL oM DN DO or DQ DR
uav- (¥4 e UCAG - A UCav UCAC - UG GA ot - - e wca Ty - e AGLG - AGLA
DS DT U o ow LAY DY 1224 D’ D Dy D D Da o
AT ACLC- AGAG - AGAA AGAU ACAL- AL ALK AL~ ACCL- ALG AGCA - AT ALLC AALG - AATA-
D Dd De DA D D) Dk o] Da Ds Do
| AArT- LT UG- UL - T L~ JrAe e~ AL~ G- K- AT~ u?( AlDY,(u ACCA- |
D Dt Ds D= Dy Dz D o D) D~ N x No N§
AU AT AUAG AUAA ACAU- ALAC ALGG AlGA AUCU - AUCC - ALCG ALCA - AUCU- AUCC ACLG - ACUA
W N& N ~ . N+ N N. N N ~ N N3 N4
AT ACTC ACAC ACAL ACAU ACAC ACCC ACGA - ACCU - ACCC - ACCC ACCA ACCU - ACCC ol LA
N§ N§ N N3 hd N N N Ne N- » Na NA NC ND
AT - [ CGAG - CGGAA - GAL CGAC - LA - CAAGA - GLGU - AL - LG - CLCA - AT - GCC GALG GALA
NE NF NG NH N1 N N NL N\ N NO NP NQ NR NS NT
CALL - CALC - CAAG - CA - GAAL . GAAC - CALL - CACGA GAGL - CGACC CGACG - GACA - GACT - GACC oG- oA
NU NV NW NX NY N2 NL N N No N N Na Ne N4
[£48i (SR CTAS CUAR - CUAT- CUAC [AL~4 [ALAY [2{en [E(74 [AVEA CUCA- CICT. ST [Z4¥-n [ZE¥Y
Ne Nt Ng Y N N Y N Ns No Np Nq N5 Nt
[Z48\n [Z4 e CLAG- [Ze vy CCAU AL [Z{~= [~{AY [Z{2\n [~ [Z<¢A CCCA- [ZC4\ [#4¢q G- [CAN)
Nu Nv Nw N1 Ny Nz N{ N N~ A A" A AS AW
[CARE [Ce Ve CCAG [CAxY (€AY CGac [eea [eAY [(Zein [(F 7 [£7{ [Cray [Ee4s [£Fes [E149 CATA-
A AL A) A* A~ A A- A A A Al A2 A AL As As
Aty CALC CAAG [S VLY caav A C CAGG CAGA CAGU - CACC - CACG - CACA - CACU - CACC ave CTUA-
AT AS A A A As A A? As AL AB AC AD AE AF
av «axc CUAG (U Y CUAL CUAC (et (i or . - UG - CUCA - [SES e - oG CCUA -
AC AH Al AJ AL AM AN AO AP AQ AR AS AT AU AV
[{44¥ <] CCAG AL <Al CCAC- [{¢7 9 (LY ol (L~ (L n CCCA - (U [C4¢y OG- LA
AW AX AY A Al A A A A A Ac A D!
Fig. 8 Encoding table
Step 4: The resulting binary sequence is split into N bit ~ Table 4 Input values for intron Date — 07 H o1
A . ate — our =
blocks, where N is taken as 16. sequence generation i
. . Month = 06 Minute = 37
Step 5: The intron sequence is generated from the values
Year = 89 Second = 01

as given in Table 4.
Step 6: The values of the intron sequence are converted
into binary for each digit, resulting in an intron binary
sequence which is split to form a 16-bit sequence.

=> 0000011100000110
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Step 7: The blocks of binary plaintext (step 3) are,
B1 =1010010011011111 B2 = 1000011111001100

Step 7.1: The odd blocks are XORed with the binary
intron sequence.

Step 7.2: The even blocks are XORed with the reverse
of the binary intron sequence.

Step 8: Every block is reversed and combined them as
a single binary sequence and it is combined with intron
sequence as,

=> 10011011110001010011010011100111000001110
0000110

Step 9: The binary sequence is converted into a DNA
such as,

=> GCGTTACCATCATGCTAACTAACG

Step 10: The DNA sequence is converted into an mRNA
sequence where the Thymine (T) is replaced with Uracil
W)

=> GCGUUACCAUCAUGCUAACUAACG

Step 11: The mRNA sequence is then converted into
tRNA sequence. => CGCAAUGGUAGUACGAUUG
AUUGC

Step 12: The obtained tRNA sequence is now mapped
with the encoding table sequence values (Fig. 8), to form
the encoded sequence as, => A2N + D; N < DJDL
Step 13: The encoded sequence is split into odd position
digits and even position digits.

Odd position digits => ANDNDD
Even position digits => 2+; < JL

Step 14: The odd position digits will be of characters as
D, N and A. It is then replaced with the special characters
such as $, * and @ respectively.

0Odd position digits => @*$*$$
Even position digits => 2+; < JL

Step 15: The key file and the ciphertext are obtained as,

Key file => 000300160003ATCGCTAGS$D*N@A
Ciphertext => @2* + $;* < $JS$L

The final key file is then encrypted with the public key of
the Data User using Enhanced ElGamal cryptosystem and the

ciphertext is stored in the cloud. When the Data User requests
the corresponding file Data Owner sends the encrypted key
file.

3.3.3 Novel DNA decryption algorithm
The key file after decrypting through Enhanced ElGamal

cryptosystem is taken along with the ciphertext for the
decryption process by the Data User as follows:

Step 1: The key file and the ciphertext are,

Key file = > 000300160003ATCGCTAG$D*N@A
Ciphertext = > @2* + $;* < $JSL

Step 2: The odd position digits are replaced with the values
as D, N and A.

Odd position digits = > ANDNDD
Even position digits = > 2+; < JL

Step 3: The odd position digits and the even position digits
are combined to form the encoded sequence.

=> A2N + D; N < DJDL

Step 4: The encoded sequence is mapped with the encoding
table values to form the tRNA sequence.

=> CGCAAUGGUAGUACGAUUGAUUGC

Step 5: The mRNA sequence is obtained by taking the com-
plement of the tRNA sequence nucleotides.

=> GCGUUACCAUCAUGCUAACUAACG

Step 6: The mRNA sequence is then converted into a DNA
sequence by replacing Uracil (U) with Thymine (T).

=> GCGTTACCATCATGCTAACTAACG

Step 7: The resulting DNA sequence is transformed into the
binary sequence.

=> 10011011110001010011010011100111000001110
0000110

Step 8: The bits per block value obtained from the key file
is 16 and the binary intron sequence is,

=> 0000011100000110
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Step 9: The sequence is split further to obtain the blocks and
each blocks are reversed to obtain the final blocks of values.
Step 10: For every blocks obtained,

Step 10.1: The odd blocks are XORed with the
binary intron sequences.

Step 10.2: The even blocks are XORed with the
reverse of the binary intron sequences.

They final blocks obtained are,

B1 =1010010011011111
B2 = 1000011111001100

Step 11: The blocks are combined together to form a single
binary sequence.

=> 10100100110111111000011111001100

Step 12: The Data Owner’s DNA sequence obtained from
the key file and the Data User’s DNA sequence is converted
into binary sequences and concatenated to form a single
sequence.

=> 0011011001110010

Step 13: The binary string of the blocks and the above result-
ing sequence are XNORed and its results as,

=> 01101101010100100100111001000001

Step 14: The binary sequence is converted into ASCII val-
ues.

=> 109 82 78 65

Step 15: The ASCII values are converted to form the final
original plaintext.

=> mRNA
Thus, the original plaintext is obtained.
3.3.4 Enhanced ElGamal cryptosystem

Data User:

Key Generation

Take a small prime (for testing purpose), q = 101 and its
primitive root is taken as o = 2, § = 72

Compute d = (@.p)"" mod g, d = 47

Choose a random integer such that ] < X <¢ —1,X =10
Compute Y = (a.8)X mod q, Y = 95

Private Key: {X, B, d}, Public Key: {q, «, Y}

Private Key: {10, 72, 47}, Public Key: {101, 2, 95}
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Data Owner:

Encryption

Choose 2 random integers k1, kp suchthat1 < ky,ky < g—
1,ki =25,ky =16

Choose k3, suchthatl < k3 < g—1,k3 =7

Compute one time key K = (k)2 .Y mod g, K = 54
Compute C; = oP®modq, C; = 27, C; = klfzmod q,
C; =52

Convert the key file characters into ASCII values as,

Key file

= > 000300160003ATCGCTAGSD*N@A
= > {4848485148484954484848516584677167
846571366842786465}

Let the messagem = {48 4848514848 495448484851 65
84 6771 67 84 657136 68 42 78 64 65},

Compute C3 = K.m.Ymod q,C3 ={22240228278222
4049 54 7247 54 49 24 52 8727 79 70 49}

Ciphertext C = (C1, C3, C3) are send to the Data User.
Secretly share k3 = 7 to the Data User.
Data User:

Decryption:

Recover keys by computing K =
K=54

Retrieve message m = K ~!.C5.d% mod q,

CX.C2.85%mod q,

m = {4848 48 51 48 48 49 54 48 48 48 51 65 84 67 71 67
84 65 71 36 68 42 78 64 65}

Convert the ASCII values into characters to obtain the orig-
inal key file as,

=> {48 48 48 51 48 48 49 54 48 48 48 51 65 84 67 71 67
84 65 71 36 68 42 78 64 65}
Key file => 000300160003ATCGCTAGS$D*N@A

4 Implementation and results

The implementation of the proposed framework has been
done in a private cloud using Eucalyptus is running on a
2.50 GHz Intel ®Core™ i5-3120 M Processor and 16 GB
RAM. Twelve clusters are formed with the sufficient num-
ber of nodes (owners/users) for representing each cluster.
The node which initiates to upload a file will be the owner,
who encrypts and shares the key file to the user. The Data
Owner encrypts the data and sends to the Data User. The
Data User decrypts the data in order to access it. With this
cloud setup, the performance analysis of the proposed frame-
work has been made. The various metrics are analyzed for
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the novel cryptosystems, Enhanced ElGamal cryptosystem
and DNA cryptosystem.

4.1 Performance analysis of enhanced El1Gamal
cryptosystem

In order to commit that the Enhanced ElGamal cryptosys-
tem is more secure than the traditional ElGamal cryp-
tosystem, the private key term needs to be made complex
against cryptanalysis. Here, X is a private key, p is a
primitive root and d is the inverse of primitive root multi-
ples, which is kept secret (i.e.,) not shared with the Data
Owner.

In the case of cryptanalysis, X need to be computed by
solving discrete logarithm problem and B, d needs to be
selected through randomness. In the ElGamal cryptosystem,
m = Cz.Cl_X mod q, so that cryptanalysis can be easily
done by randomly identifying the private key *X’.

But in the Enhanced ElGamal cryptosystem
(- C2)71 - C3 - d¥mod q, so the cryptanaly-
sis has made complex by introducing private key more
than once and the modular inverse of the public terms,
while performing the decryption. So basically the amount
of time taken to break the Enhanced ElGamal cryptosys-
tem will be higher compared to the ElGamal cryptosys-
tem.

In the ElGamal cryptosystem, (i) for encryption, two
power modulus and one multiplication modulus operations
need to be performed, and (ii) for decryption, one power
modulus, one multiplicative inverse and one multiplicative
modulus operations need to be performed. But in Enhanced
ElGamal cryptosystem, (i) for encryption, four power modu-
lus and two multiplication modulus operations need to be
performed, and (ii) for decryption, three power modulus,
one multiplicative inverse and four multiplicative operations
need to be performed. So, as comparatively both encryp-
tion time and decryption time of an Enhanced ElGamal
cryptosystem will be higher than ElGamal cryptosystem

m =

4.2 Performance analysis of enhanced DNA
Cryptosystem

Based on the survey [42], we have identified that a stan-
dardized DNA cryptosystem with experimental analysis is
an emerging research area. The time taken to encrypt and
decrypt the data is dependent on the size of the plaintext
whereas the time taken for the generation of the encoding
table is the same always and it is independent of the plain-
text always. Similarly, the various metrics analyzed in our
proposed algorithm and the results obtained are emphasized
below.

Table 5 Character count and time taken to encrypt and decrypt

Character count Encryption time (ms) Decryption time (ms)

4 47 15
8 47 15
16 47 15
32 47 15
64 47 15
128 62 21
256 78 46
512 125 63
1024 202 125
2048 437 312
4096 905 826
8192 4227 3183
16,384 15,194 11,544
100000
E 10000
g
Z 1000
=
£ 100
(=7
z
2 10 A
=
1 -<|‘ W O &N I 0 O AN T X © o <
— N O N VN — o T & &N ©
SERER8ZE

Character Count

Fig. 9 DNA—<character count—encryption time

4.2.1 Time taken to encrypt and decrypt a range of
characters

For the characters of varying count, the encryption time and
decryption time is computed as shown in Table 5.

From the results, it is found that the encryption time
increases linearly with increase in the count of characters,
but the time taken to decrypt is lesser than the encryption
time. Similarly, when the character count increases, the time
taken for encryption and decryption also increases. It proves
that the computational complexity is less, as shown in Figs. 9
and 10.

4.2.2 Time taken to encrypt and decrypt a range of words

The encryption and decryption time for the corresponding
word count is shown in Table 6.

The time taken to decrypt is lesser than the time taken to
encrypt thus enables faster retrieval of the original data by
the Data User in the cloud (Fig. 11).
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100000 : ; : o
P Table 7 Ciphertext length for corresponding plaintext varying in block
E 10000 size
E 1000 Plaintext length Block Size (in Ciphertext length
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e 256 16 516
g 101 32 520
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Character Count 256 576
512 640
Fig. 10 DNA—-character count—decryption time 1024 768

Table 6 Word count and time taken to encrypt and decrypt

Word count Encryption time (s) Decryption time (s)
4 0.062 0.015
0.062 0.015
16 0.063 0.031
32 0.078 0.031
64 0.109 0.072
128 0.125 0.078
256 0.49 0.43
512 0.5 04
1024 2 1.6
2048 7 6
4096 27 25
8192 118 114
16,384 483 330
600

TN
g8 8
—

Encryption time (s)
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Fig. 11 DNA—word count—encryption time

4.2.3 Impact of block size

The length of the ciphertext varies for the number of bits
per block of plaintext. The plaintext bits are fixed in 256.
Thus, the change in block size hides the plaintext in different
ciphertext with different length enabling better security as
shown in Table 7 (Fig. 12).
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Fig. 12 DNA—word count—decryption time
Table 8 Comparison of files size
Plaintext file Key file file Ciphertext file
size (KB) size (KB) size (KB)
0.028 8.0
0.028 16.1
16 0.028 322
32 0.028 64.6
64 0.028 129.0

4.2.4 Comparison of file size

The key file data is constant in its structure and so the file
size has not been changed, whereas the file size of ciphertext
is linearly increased. It supports in optimal space utilization,
reducing the space complexity as shown in Table 8.

Thus, the tradeoff between time and space complexity is
well balanced without compromising security.

4.2.5 Frequency analysis

The frequency analysis of the ciphertext reveals the correla-
tion between the ciphertexts compared. It should be distinct
from the fact that no two ciphertexts are the same for the given
plaintext. This minimal correlation decreases the chances of
breaking the ciphers. It is achieved with the factors like Data
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Owner’s sequence, Data User’s sequence, Intron sequence,
Encoding Table and Collating values of our framework.

The plaintext taken for frequency analysis is:

DNA Cryptography is the secret to achieve faster and
highly robust encrypted communication. The four nucleotides
Adenine (A), Thymine (T), Guanine (G) and Cytosine (C) are
the backbone of DNA cryptography which hides the entire
data within itself and exposes only few ciphertext charac-
ters. It enhances confidentiality of the data in cloud.

The frequency of the characters occurring in the plaintext
is shown in Fig. 13. This plaintext is kept fixed, whereas the
other factors are made dynamic to analyze the correlation

15 Ciphertext 2—ciphertexts generated using same encoding tables

Characters

among the varying ciphertexts. The frequency of the charac-
ters occurrence rather than the occurrence of mapped special
characters is displayed.

For all the upcoming graphs, the x-axis value represents
the characters and y-axis value represents the frequency
count.

(a) Ciphertexts generated using same encoding tables

The ciphertext generated for the same plaintext and the
same encoding table is analyzed as shown in Figs. 14 and 15.
From the results obtained, it is proved that the ciphertexts are
not correlated to each other.

(b) Ciphertexts generated using different intron sequences
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Fig. 18 Ciphertext l—ciphertexts generated using different collating values

The graphs in Figs. 16 and 17, shows the correlation
among the two ciphertexts generated with different intron
sequences but having the remaining values as same.

(c) Ciphertexts generated using different collating values

When the collating values are varied, keeping the other
values same, the ciphertext differs as shown in Figs. 18 and
19.

(d) Ciphertexts generated using different data owner
sequence and data user sequence

When the sequences of the Data Owner and the Data User
are changed, the ciphertext eventually changes leading to the
dynamic encryption process. It is shown in Figs. 20 and 21.
(e) Ciphertexts generated using different sequences and col-
lating values
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When all the dynamic factors are changed with their val-
ues, the ciphertext ultimately changes as shown in Figs. 22
and 23.

(f) Ciphertexts generated for different plaintext having
same sequences and collating values

Here, two different plaintexts are considered with the
varying frequency of occurrence of characters as shown in
Figs. 24 and 26. Though the sequences and the collating
values are kept same, but still it produces two different cipher-
texts as shown in Figs. 25 and 27. Thus, cryptanalysis is quite
harder to perform.

(g) Ciphertexts generated for different plaintext having dif-
ferent sequences and collating values
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Fig. 20 Ciphertext l—ciphertexts generated using different data owner sequence and data user sequence
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Fig. 24 Plaintext 1—ciphertexts generated for different plaintext having same sequences and collating values
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Fig. 25 Ciphertext 1—ciphertexts generated for different plaintext having same sequences and collating values
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Fig. 27 Ciphertext 2—ciphertexts generated for different plaintext having same sequences and collating values
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Fig. 28 Plaintext 1—ciphertexts generated for different plaintext having different sequences and collating values
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Fig. 29 Ciphertext 1—ciphertexts generated for different plaintext having different sequences and collating values
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Fig. 30 Plaintext 2—ciphertexts generated for different plaintext having different sequences and collating values
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Fig. 31 Ciphertext 2—ciphertexts generated for different plaintext having different sequences and collating values

When the two different plaintexts as shown in Figs. 28
and 30 with different sequences and different collating values
are performed encryption, the two different ciphertexts are
generated as shown in Figs. 29 and 31.

5 Security analysis

The need to provide security to the data in a cloud environ-
ment has the equal need and importance to protect it from
recovering the plaintext through cryptanalysis. The security
analysis for both the proposed cryptosystems are as follows:

5.1 Novel DNA cryptosystem

In specific to DNA cryptosystem, security can be analyzed
through the six properties as metrics and they are,

5.1.1 Complete character set encoding

The encoding table generated provides sequences to be
encoded with the complete character set. The character set
contains all the 94 ASCII characters which are extended to
256 elements by prefixing the first set of ASCII characters
with the alphabet *D’, the second set of ASCII characters with
the alphabet "N’ and the remaining characters are prefixed
with the alphabet *A’. Thus, unique sequences are encoded
with a unique character set.

5.1.2 Dynamic encoding table generation

The Encoding table has to be dynamic since the plaintext has
to be transformed into different ciphertext for every access
of data in the cloud. It has been fulfilled by using distinct
values for Data Owner sequence, Data User sequence, col-
lating values for the encoding table and amino acid table for
every access of data in the cloud. The encoding table is used
only once for a particular session between the Data Owner
and the Data User enabling confidentiality in the cloud.
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5.1.3 Unique sequence for character encoding

Each sequence is encoded with a unique character and
thereby it prevents from security issues like cipher attacks and
frequency analysis. The uniqueness of encoding is supported
for every generation of encoding tables in our algorithmic
approach.

5.1.4 Robustness of encoding

It is strengthened by the randomness involved in the usage
of intron sequence, collating values and encoding table gen-
eration. Thus, it makes harder to perform cryptanalysis.

5.1.5 Biological process simulation

Our algorithm inherits the major biological processes of
DNA such as transcription (conversion of DNA to mRNA
sequence), translation of DNA to amino acid sequence, com-
plementary pairs of DNA and it is also exhibited in encryption
process as well as decryption process.

5.1.6 Dynamic encryption process

The process of encryption is made dynamic by the encod-
ing table, unique values given for the encryption process
resulting in unique generation of ciphertext. The ciphertext
generated is eventually distinct for every encryption process
carried out. Thus, every requirement has been met out in our
algorithm to strengthen our framework.

In the Table 9, by considering cryptosystem factors, the
enhanced DNA cryptosystem has been compared with AES
Symmetric cryptosystem and RSA Asymmetric cryptosys-
tem.

The inference from the Table 9: Enhanced DNA Cryp-
tosystem rounds and key file can be decided by the users
before the communication. The small variants in the key
file reflects an major changes in the ciphertext generation.
With the minimal key size, Enhanced DNA cryptosystem
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Table 9 Factors comparison of EDNAC, AES and RSA cryptosystems

Factors Enhanced DNA cryptosystem AES—symmetric cryp- RSA—asymmetric cryp-
tosystem tosystem
Key size 104 bits 128/192/256 bits 128/256/512/1024/2048
bits
Ciphering and deciphering key Same Same Different
Key used Minor variations in key causes Changes completely Changes
complete change in the ciphertext. completely
Algorithm Partially symmetric and asymmetric Symmetric type Asymmetric type
type
Encryption Faster Moderate Slower
Decryption Faster Moderate Slower
Power consumption Very low Low High
Security High secure High secure Less secure
Deposit of keys Needed Needed Needed
Inherent vulnerabilities Brute force attack Brute force attack Brute force,
Timing and

Rounds

Trojan horse

Ciphering and Deciphering

Not limited to 1 round, depends on the
users

No

Same

10/12/14

Not proved
Different

Oracle attack
1

No

Same

algorithm

Table 10 Performance of EDNAC, AES and RSA cryptosystems

Word count ~ EDNAC AES RSA
E(s) D() E(® D@ E@) D)
4 0.062 0.015 0.2 0.1 0.9 0.6
0.062 0.015 0.3 0.2 1.3 1.0
16 0.063 0.031 0.4 0.3 1.5 1.2
32 0.078 0.031 0.6 0.5 1.8 1.4
64 0.109 0.072 0.8 0.5 2.2 1.8
128 0.125 0.078 1.3 0.8 4.7 35
256 0.49 0.43 1.5 1.1 9.5 6.4
512 0.5 0.4 1.8 1.3 11.5 8.5
1024 2 1.6 2.5 1.7 18.7 10.7

E encryption time, D decryption time

provides very high security for the data transmission and
storage.

Table 10 illustrates the performance comparison between
enhanced DNA, AES—symmetric and RSA—asymmetric
cryptosystems for the variable word counts in the
file.

The inference from the Table 10: compared to AES
and RSA cryptosystems, enhanced DNA cryptosystem are
computationally fast. The time complexity is less com-
pared to symmetric and asymmetric standard cryptosys-
tems.

5.2 Enhanced ElGamal cryptosystem

The security of the Enhanced ElGamal cryptosystem is
analyzed against chosen plaintext attack, chosen ciphertext
attack and brute force attack.

5.2.1 Chosen plaintext attack

The EEC algorithm provides more security against Chosen
Plaintext Attack (CPA) than ElGamal cryptosystem, which
is due to the fact that the proposed algorithm involves two
random integers in order to compute encryption key.

In order to apply CPA on the proposed cryptosystem,
the adversary chooses an arbitrary m and having access to
the encryption oracle obtains the corresponding Ciphertext
C. The adversary wins, if the assumption on C is correct.
Table 9 is based on the assumption that the adversary’s guess
on ki, ko, ks, f,d and X are correct. Recall that in EEC,
C; =ad®modq, C; = klf2m0d qand C3 = K.m.Y mod q,
where m is chosen by the adversary at random. Now cho-
sen that Y = (a.f)*modqg, C; = a°modq and C, =
bdmod g, where B, a, b, ¢, and d are taken at random. C3
is chosen at random, but gives a valid encryption of m as
C3 = (0)?.Y’.m.Y mod q )

Now K = G = @LYomy  _ )d ye

Using the derived key K, the adversary can access the
encryption oracle to encrypt the chosen m and obtains C3.
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Table 11 Performance against chosen plaintext attack

Table 12 Performance against chosen ciphertext attack

KeySize—size of ElGamal cryptosys- Enhanced ElGamal

KeySize—size of  ElGamal cryptosystem  Enhanced  ElGamal

q (in bits) tem (in s) cryptosystem (in s) q (in bits) (in's) cryptosystem (in s)
2 0.353 0.86 2 0.519 1.379
0.412 0.991 0.811 1.615
0.582 1.231 8 1.22 2.891
16 0.62 1.8 16 1.836 3.34
32 1.25 45.89 32 8.15 98.54
64 32.72 357.15 64 56.14 789.45
128 628.65 7996.57 128 6547.12 35894.35
256 3247.12 35781.54 256 12355.25 753158.24
512 52558.25 486375.98 512 417224.64 9852348.45
1024 6662587.14 15987332.74 1024 5714625.11 77588965.46
2048 258963147.27 3579514574.22 2048 95214478.21 485585446.74
The adversary wins if the guess on C3 is correct. The major
difficulty faced by the adversary is to predict all keys X, f, B X
d, k1, kp and k3 correctly as involved in the communication. = mYd
Since, all the values are in the limit g-1 and q is the large = maXpXa¥p X = m
prime number, it is too difficult for the adversary to predict

the key values.

The implementation results of performing CPA on the
ElGamal cryptosystem and Enhanced ElGamal cryptosystem
are shown in Table 11 shows that it is competitively difficult
to perform CPA on Enhanced ElGamal cryptosystem.

5.2.2 Chosen ciphertext attack

The proposed algorithm also provides more security against
Chosen Ciphertext Attack (CCA), where it consumes more
time compared to ElGamal Cryptosystem. Applying CCA
on the proposed cryptosystem involves that the adversary
chooses an arbitrary C’ (say 2C) which is related to a Cipher-
text C. The adversary is able to access the decryption oracle,
but not able to request the decryption of C. The adversary
provides the decryption oracle with C” and obtains m’(say
2m). From which the adversary retrieves original plaintext
m. The adversary computes C’ as (Cy, C2, 2C3) and accesses
the decryption oracle to decrypt C’ and obtains 2m. Then the
adversary computes 5 which gives m as,

205.c7 7.0yt g X aX
2
= o BX R gk X 0.aX

= oKk gk X K y.a¥
gk X jk gka X o ks y X

= g X R gmh X ke gk X gha X 4y y gX

m
2
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The major difficulty faced by the adversary is to predict all
the keys and plaintext values correctly as involved in the com-
munication. Since all the values are at the limit of q, which
is the large prime number; it is too difficult for the adver-
sary to predict all the parameters involved in the encryption
and decryption. The implementation results of performing
CCA on the ElGamal Cryptosystem and Enhanced ElGamal
Cryptosystem are shown in Table 12 shows that it is com-
petitively difficult to perform CCA on Enhanced ElGamal
cryptosystem. For a secured communication, the encryption
and decryption key will be computed periodically. If one time
the key is generated, it can be utilized several times for the
purpose of encryption and decryption. In order to increase
the security, the key generation of EEC has been introduced
with randomness to bring the complexity for the attacker.

5.2.3 Brute force attack

For brute force attack, in EIGamal cryptosystem, the private
key { X} value alone needs to be tried at random to obtain the
plaintext. In Enhanced ElGamal cryptosystem, private keys
{X, B, d} and secret key k3 need to try as combinations to
obtain the plaintext. Analyzing the EEC algorithm for brute
force attack it results in better performance, which is shown
in Table 13. From the table, it is very clear that the time
was taken to apply brute force attack on EEC is far greater
than the time taken to apply brute force attack on ElGamal
Cryptosystem. So, EEC is comparatively difficult to break.
As the key size increases, brute force attacking time is also
increased for EEC compared to the EIGamal cryptosystem.
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Table 13 Brute force attack

time KeySize—size of q (in bits)

Time taken to do brute force attack

ElGamal (in s) Enhanced ElGamal (in s)

2 0.164 100.282
4 0.253 192.378

10.502 287.184
16 35.981 496.721
32 451.975 5877.016
64 6548.57 78952.015
128 15789.17 125756.85
256 3557885.52 7532159.47
512 74588966.12 85245667.98
1024 654412544.45 7531598565.24
2048 4521896321.57 44887566354.45

Moreover, for security purposes, normally key size will be
higher for the communication.

Since EEC scheme based on the discrete logarithm prob-
lem and randomness, it is very difficult for an unauthorized
user to compute the private key X from the equation
Y = (oc.B)X mod q. It is also difficult to find the two
random numbers k; and k, from the encryption equations
C> = k¥?mod q and K = (k)" .Y mod q. The difficulty
of the cryptanalysis relies on solving discrete logarithm prob-
lem.

Even though, if the intruder solves the discrete logarithm
problem, it is computationally infeasible to break the EEC
unless primitive § and d values are obtained. The primitive
root B has been selected purely based on the randomness.
Based on primitive roots a, p, the value of ‘d’ is calculated.
The security of EEC lies both on the discrete logarithm prob-
lem and randomness. Since the prime number ’q’ is large, it
is difficult to succeed in identifying exact random values for
cryptanalysis. So the amount of time taken to break EEC
by solving the discrete logarithm problem and randomness
is too high compared to ElGamal cryptosystem. Thus, EEC
is secure against chosen plaintext attack, chosen ciphertext
attack and brute force attack. From the literature survey, it is
prominent that all the research works challenges to increase
the throughput. But, we considered security as a major factor
for the improvisation of ElGamal cryptosystem.

6 Conclusion

In this paper, an Enhanced ElGamal cryptosystem is pro-
posed. The proposed work improvises the randomization for
key generation, encryption, and decryption from the ElGa-
mal cryptosystem. Consequently, for the proposed algorithm,
key generation is a time-consuming one, since it will be
done periodically, it is tolerable. And also it proves the user

authentication of the Data Owner and the Data User thereby
resulting in secure transfer of the key file between the Data
Owner and the Data User. From the experiments, it is proved
that the system is highly secure and hard to perform a brute
force attack and cryptanalysis attacks like CPA and CCA
as compared to ElGamal cryptosystem. And EEC security
relies on the difficulty of randomness and the discrete loga-
rithm problem. Similarly, the proposed DNA cryptosystem
provides data confidentiality for the data transferred between
the Data Owner and the Data User in a cloud environment.
The DNA nucleotides are used to completely hide the origi-
nal data for a secure communication. The dynamic generation
of encoding table and intron sequence reduces the possibil-
ity of cryptanalysis and also enhances the security of data.
The biological properties of DNA make the system yet more
randomized and a prudent system as well as becomes the
efficient system in practice while most of the DNA cryp-
tosystems are theoretical. The possibility for an attack on
the cloud environment for cryptanalysis is hard due to the
dynamicity of our proposed cryptosystem. Thus, the pro-
posed hybrid cryptosystems are novel as well as efficient in
terms of performance and security. Further, on implement-
ing the proposed framework with both the cryptosystems for
real-time applications could result in future enhancements
towards the efficiency of the system.
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