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Abstract Software maintenance is regarded as an activity
of high cost. Developing meaningful metrics to assess the
quality characteristics of software has become one of the
most effective ways to reduce the cost. In this paper, we
propose metrics to quantify the software stability from a
complex network perspective. First, the topological struc-
ture of software at the class level is represented by a Class
Coupling Network (CCN). Second, based on the CCN, we
further propose a Node Influence Network (NIN) which con-
siders both the directed and indirected (transitive) coupling
strength between classes. Finally, based on NIN, we propose
a metric to quantify the class stability and further propose
a metric to quantify the stability of software as a whole.
The proposed metrics are validated theoretically using widely
accepted Weyuker’s criteria and empirically using Java pro-
grams. The theoretical evaluation shows the proposed metrics
satisfy most of Weyuker’s properties, and the empirical eval-
uation shows the effectiveness of our proposed metrics as
indicators of the external software qualities such as scalabil-
ity and change proneness.
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1 Introduction

Software maintenance has been widely regarded as an activ-
ity of high cost, with typical estimates ranging from 60 to
80% of the total software cost [1]. In software maintenance
process, there are two key activities, performing changes and
change impact analysis, which account for more than 40%
of the total software maintenance cost [2]. It has become
an urgent as well as tough problem to control the change-
related cost and further reduce the total maintenance cost.
There basically exist two ways to control the cost [3]. The
first way is to provide effective techniques or tools to ease the
maintenance tasks. The second way is to develop or utilize
meaningful metrics to assess the quality characteristics that
may affect the cost. In this paper, we follow the second way
to reduce the maintenance cost.

During the life cycle, software should be changed to cor-
rect faults, improve performance, or adapt to a changed
environment [4]. Evolution has become an intrinsic prop-
erty of software. However, the effect of a change may not
be local to the change, and it may affect other parts of the
software. Such kind of ripple effects are largely affected by
the software stability [3,5]. Software stability is defined as
the resistance of a piece of software to the amplification
of changes in the software [3]. If the software stability is
poor, the impact of any change of the software may be large,
and the maintenance cost will be high. But how to mea-
sure the software stability is still a problem faced by many
people.

The topological structure of a software system explicates
the structure of the software in terms of software entities such
as methods/attributes, classes/interfaces, and packages, and
their couplings. With the increase of the complexity, soft-
ware structure has become one of the key factors greatly
influencing the software quality [2]. Complex network the-
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ory provides an effective tool to study the software structure
and its dynamics. In recent years, a few researchers intro-
duced the complex network theory to software engineering
domain by representing the software structure as a com-
plex network (namely software network), and many shared
physics-like laws of software systems have been revealed
[6-9], which could later be applied in practice. The interdis-
ciplinary research between complex networks and software
engineering provides us a new way to study complex software
systems, and it also provides a promising way to quantify the
software stability.

The objective of this paper is to propose metrics to quantify
the software stability from a complex network perspective,
by using a software network representation of the soft-
ware structure. To fulfill this task, the topological structure
of software at the class level of granularity is first rep-
resented by a weighted directed software network named
Class Coupling Network (CCN), in which classes are nodes,
and their couplings are directed links which are annotated
with weights corresponding to the direct coupling strength
between classes. Second, by considering all the directed
paths between every pair of class nodes in the software net-
work, we compute the coupling strength between all pairs
of classes by taking into consideration both the directed
and indirected (transitive) coupling strength between classes,
and a Node Influence Network (NIN) is built correspond-
ingly to formally represent all pairs of classes and their
couplings. Finally, based on the NIN, we propose a metric
to quantify the class stability and further propose a metric
to quantify the stability of software as a whole. The pro-
posed two metrics are validated theoretically using widely
accepted Weyuker’s criteria [10]. Moreover, the proposed
metric for software stability as a whole is validated empiri-
cally using five Java programs, and the results show it is an
effective indicator of the software scalability. The usefulness
of the proposed metric for class stability is evaluated empir-
ically by correlation analysis with the change proneness of
classes.

The main contributions of this paper can be summarized
as follows:

— We propose a more accurate software network model
(i.e., CCN) to represent software structure at the class
level which takes into consideration both the coupling
direction and strength.

— We propose a NIN network which considers both
the directed and indirected coupling strength between
classes. Based on the NIN, we develop metrics to quan-
tify class stability and stability of software as a whole,
respectively.

— The proposed metrics are validated theoretically using
widely accepted evaluation criteria, and they are also
evaluated empirically using open source Java programs.
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The rest of this paper is organized as follows. Section 2
contains a brief and incomplete summary of the related work.
Section 3 describes our approach in detail, with focus on
the definitions of the software network models and software
stability metrics. Sections 4 and 5 present the theoretical and
empirical validation of our proposed metrics, respectively.
We conclude in Sect. 6.

2 Related work

This paper can be categorized as the software metric research.
In this section, we give a brief overview of the related work.
It falls into two categories: (i) traditional software metrics,
and (ii) software metrics based on complex networks.

2.1 Traditional software metrics

The traditional software metrics mainly contain the metrics
for Procedure-Oriented Programming (POP) and Object-
Oriented Programming (OOP).

Till now, lots of software metrics for POP have been pro-
posed in the literature. Wolverton proposed LOC (line of
code) metric to measure the productivity and efficiency of
the programmers [11]. McCabe proposed the Cyclomatic
Complexity to indicate the software complexity by measur-
ing the number of linearly independent paths through the
source code of software [12]. Halstead proposed the Hal-
stead metric to identify measurable properties of software,
and the relations between them [13]. Yin and Winchester pro-
posed primary metrics and secondary metrics to evaluate the
software design [14]. McClure proposed a complexity metric
to measure the control structures [15]. Woodfield proposed
a metric to measure the complexity of the component [16].
Henry and Kafura proposed a new set of information flow
based metrics [17]. Tai proposed a data flow based metric to
quantify the software complexity [18].

Moreover, a significant number of software metrics for
OOP have also been proposed in the literature. Chidamber
and Kemerer proposed the CK metrics to evaluate the soft-
ware complexity from inheritance (DIT and NOC), class
coupling (RFC and CBO), and in-class complexity (WMC
and LCOM) [19]. Abreu et al. proposed the MOOD (metrics
for object oriented design) metrics [20], which reflect a set of
basic properties of the object-oriented (OO) paradigm includ-
ing encapsulation (MHF and AHF), inheritance (MIF and
AIF), polymorphism (POF), and message passing (COF).
There also exist many other software metrics such as the
metrics proposed by Abreu and Carapuca [21], the metrics
proposed by Li and Henry [22], and the metrics proposed by
Lorenz and Kidd [23].
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2.2 Software metrics based on complex networks

In recent years, many researchers began to measure the soft-
ware complexity using complex network theory, and many
metrics has been proposed. Ma et al. proposed the structural
entropy which is based on the degree of nodes to measure
the order of a specific software structure [24]. They fur-
ther examined the relationships between structural entropy
and software robustness, and between structural entropy and
the efficiency of the communication. Their work laid the
basis for the software optimization [24]. Girolamo et al.
proposed some betweenness-based metrics to identify prob-
lematic classes at different levels of granularity [25]. Ma et
al. proposed a hierarchical metric suit and used it to analyze
the software complexity from a macro-meso-micro perspec-
tive [26]. Jenkins et al. proposed a I, metric to measure
the evolution stability of software across successive ver-
sions based on the classes and their couplings [27]. Vasa
et al. proposed some metrics to quantify the evolution stabil-
ity of some software properties, and some laws have been
found, such as the size and complexity of class changed
little over time, and classes with a large degree are tend
to be modified [28]. Ma et al. applied network motif to
explore the software structure [29], and found that sub-graphs
with high statistical importance are hard to form rings and
tend to be more stable. Gu et al. proposed metrics to quan-
tify the class cohesion from a complex network perspective
[30].

3 The proposed approach

Our approach to measure the software stability works as
follows. First, we analyze the source code files of a spe-
cific software system to collect classes (interfaces) and
their couplings which will be further represented by a
CCN. Second, we further propose a NIN which consid-
ers both the directed and indirected (transitive) coupling
strength between classes. Finally, we propose two metrics
based on the NIN to quantify the class stability and soft-
ware stability as a whole, respectively. Figure 1 shows an
overview of our proposed approach. In the following sub-
sections, we will discuss the main parts of our approach in
detail.

Java software

Systems

. . . Weighted directed software
» Structural information extraction —» e ‘

network building

v
Class stability measurement
Software stability measurement

Node influence network building -

Fig. 1 An overview of the proposed approach

3.1 Software networks

In this paper, we focus our work on analyzing software sys-
tems coded in Java. It is mainly because Java has been one
of the most widely used OO programming languages, and
software systems developed by Java have a relatively clear
internal structures which are amenable to extraction and anal-
ysis. However, it should be noted that, although we focus on
Java software systems, our approach can be easily extended
to software systems developed by other OO languages such
as C++, C# and VB.NET.

A typical Java software system is usually composed of
many software entities at different levels of granularity
such as packages, classes/interfaces, and methods/attributes,
which are interacting reciprocally by different types of cou-
plings. We perform static analysis of the source code files
of a Java software system to extract the structural informa-
tion at the class level of granularity, i.e., we extract classes,
interfaces, and the couplings between them. Note that we
only consider classes/interfaces that are actually defined in
the code, neglecting those that were only referenced to the
imported package [31].

In our approach, the obtained static structural information
will be formally represented by a CCN. Based on the CCN,
we further build a NIN to represent class and their couplings.

3.1.1 Class coupling network

Definition 1 CCN is a weighted directed graph which repre-
sents the classes/interfaces and the couplings between them
in a software system. Specifically, all classes and interfaces
of a software system are modeled as nodes in the graph.
The coupling between every pair of classes, every pair of
interfaces, or every pair of class and interface is denoted by
a directed link between the nodes. For example, if class i
implements interface j, there exists a directed link (n;, n;)
(n; — nj) in the graph, where n; is the node denoting class
i, and n; is the node denoting interface j. We do not differ-
entiate the class and interface and will treat them the same
from here on. Every link in the graph is assigned a weight to
signify the coupling strength between the two classes. The
graph can be formally represented as G = (N, L), where N
is the node set and L is the link set.

Note that, for Java software systems, the link (n;, n;) can be
defined under the following seven circumstances [32,33]:

— Inheritance relation (INR) If class i inherits from another
class j via keyword extends.

— Implements relation (IMR) If class i realizes interface j
via keyword implements.

— Parameter relation (PAR) If one of class i’s methods has
at least one parameter with type of class j.
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Global variable relation (GVR) If class i has at least one
attribute with type of class j.

— Method call relation (MCR) If one of class i’s methods
calls a method on an object of class j.

Local variable relation (LVR) If alocal variable with type
of class j is declared in one of class i’s methods.

— Return type relation (RTR) If one of class i’s methods
has the return type class j.

The graph G is associated with an adjacency matrix ¥ to
encode the coupling between every pair of classes in CCN. Its
entry v;; signifies the coupling between any pair of classes
iand j:

wij(ni,nj) eL
Vij = , (1)

0 otherwise

¥ is a [N| x |N| matrix. w;; is the weight on the link
(ni, nj), which denotes the coupling strength between n; and
n ;. Generally, a small value of w;; indicates a low coupling
strength between the classes that n; and n; denote.

The weights on the links of G allow us to consider the
coupling strength between classes, which provides us a more
accurate representation of the software structure. However,
how to determine the weights on the links becomes a new
problem that should be resolved. As mentioned above, there
are many different types of couplings that can exist between
two classes such as INR, IMR, and RTR. It is reported that
the coupling strengths vary with the coupling types [32].
Moreover, the coupling frequency also affects the coupling
strength between classes [32]. So, to measure the coupling
strength between every pair of classes, we should consider
both the coupling types and frequencies.

The coupling frequency can be obtained by simply count-
ing their occurrences in the source code. However, estimating
the coupling strength of different coupling types is a sub-
ject of empirical estimation [34]. There are many different
frameworks that can be used to estimate it [32]. Here we will
use the conceptual ideal proposed by Kang et al. [35-38] to
assign the weights for different coupling types simply for
its effectiveness has been demonstrated [36-38]. Kang et al.
use an ordinal scale to quantify the relative coupling strength
of different coupling types which is shown in Table 1. The
weights, Hi—H o, are arranged in an ascending order. Actu-
ally, the absolute values of the weights are not important but
their relative ratios [35,38]. So in the current work, arbi-
trary value of 1-10 are respectively set to Hi—Hjo as that
of [35,38] do. Based on these values, we can compare the
strengths between different coupling types.

As mentioned above, different types of coupling may exist
between classes. Note that even a pair of classes, i and j, may
have several coupling types at the same time. For example, as
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Table 1 Ranking of strength of different coupling types between
classes

No. Coupling types Strength
1 Dependency H;
2 Common association H,
3 Qualified association Hj
4 Association class Hy
5 Aggregation association Hs
6 Composition association He
7 Generalization (concrete parent) Hy
8 Binding Hg
9 Generalization (abstract parent) Hog
10 Realize Hio

the simple example shown in Fig. 2, class “Adoptor’ has one
local attribute with type class “Dog”, and at the same time it
has a method “getDog()” with return type class “Dog”. So,
when computing the final coupling strength between classes
i and j, we should sum up the weights of different coupling
types.

Once the coupling types and their corresponding coupling
frequencies are obtained for any pair of classes, i and j,
we can compute the final coupling strength w;; on the link
n; — n; as

10 10
wij =Y fx He=> fhxk. )
k=1 k=1

where fl]; is the frequency of the kth coupling type from class
i to class j, and Hy is the strength of the k-th coupling type
in Table 1.

Due to the fact that we extract the structural information
from the source code using a static analysis based approach,
we are unable to recover coupling types between classes
with a very fine granularity. But we managed to identify
“Dependency” (identified by “method call”, “parameter”,
“local variable”, and “return type” relations defined in Defi-
nition 1), “Aggregation/Composition association” (identified
by “global variable” relation defined in Definition 1), “Gen-
eralization” (identified by “inheritance” relation defined in
Definition 1), and “Realize” (identified by “implements”
relation defined in Definition 1) which respectively corre-
spond to Hy, Hs/Hg, H7/Ho, and Hjq in Table 1. But we are
also unable to differentiate “Aggregation” from “Composi-
tion” for they are usually distinguished semantically. The best
way to recover them from the source code is to gain suffi-
cient knowledge of the architecture of the software analyzed.
It is a very hard work for those not involved in the develop-
ment of the software. So, in the current work, we will treat
“Aggregation” and “Composition” as the same relationship,
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Fig. 2 A simple code segment
(left) and its corresponding
CCN (right)

public interface Animal {

public abstract void animalMethod()
}
class Mammal implements Animal {

Implements relation Hyo: 1 time

WMammal,Amma\l=1 xHjo
=1x10=10

public void animalMethod() { |
System.out.println ("Mammal”) ;

}
b

}

class Dog extends Mammal {
public void animalMethod() {
System.out.println("Dog"):

}
}
class Zoom {
public void say() {

System.out.println("Zoom") ;

}
}
class Adoptor {

private Zoom myZoom;
public void setZoom(Zoom newZoom) {
nmyZoom = newZoom;

}
public Dog getDog ()

Dog myDog = new Dog():

return myDog;

}

public void say() {
myZoom.say() ;

}

and we use the strength of “Aggregation” to represent both
scenarios.

To illustrate the idea to build CCN from the source code,
we give a simple example in Fig. 2. However, due to the
limitation of space, we only take Mammal — Animal as an
example to show how to establish a link and compute the cor-
responding weight Whmammal, Animal. Since class “Mammal”
implements interface “Animal”, there is a link Mammal —
Animal in CCN. At the same time, the frequency of this
“implements” relationship is 1, and the strength of the
“implements” relationship (i.e. “Realize” in Table 1) is Hyp.
SO WMammal,Animal = 1 X Hjg. Other links and weights in
Fig. 2 can be similarly established. The notes beside the link
show the coupling types, coupling frequencies, and weights
assigned to the link.

3.1.2 Node influence network

Based on the CCN, we further define a NIN to represent all
classes of a software system and the coupling between all
pairs of classes.

Definition 2 NIN is a weighted directed graph whose nodes
represent the classes/interfaces of a software system, and
links represent the direct and indirect couplings between
nodes. It can formally be defined as G’ = (N, L'), where
N is same as that of CCN. L’ is adapted from L of CCN, i.e.,
if there is no link between nodes n; and n ; in CCN, but there

Mammal ‘/ Animal

0

Inheritance relation H;: 1 time

/ Wpog Mammal= 1 XH7

=1x7=7

Adoptor

<
<

Dog /

Local variable relation H;: 1 time
Return type relation H;: 1 time

WAdoptor,Dogzl xH;+1xH;
=1x1+1x1=2

Global variable relation Hs: 1 time
Parameter relation H;: 1 time
Method call relation Hy: 1 time
Wadoptor.Zoom= 1 XHs+1xH+1xH;
=1x5+1x1+1x1=7

Zoom

is a directed path n; — t; — o — ... — t, — n; between
nodes n; and n;, then we will add a link (n;, n;) between
the nodes n; and nj in G’. The weight assigned to (n;, n;) is
computed over all the directed paths between the two nodes
n; and n; by

w'i, =)

rkeGIRG,j)

(w(i, Hw(k, j)

n—2
[Twin i tiza): (3)
a=0

where w’(i, j) is the weight of (n;,n;), GIR(i, j) returns
all the directed paths between nodes n; and n; (indirected
coupling), ¥ denotes the k-th directed path, and tlk is the /-th
node of the r¥.

If in CCN, there exist not only a link between nodes n;
and n;, but directed paths n; -ty - tp - -+ = t, = nj,
then we will add a link (n;, n ;) between the nodes n; and n;
in G’. The weight assigned to (n;, n) is computed over all
the directed paths (indirected coupling) and the link (directed
coupling) between the two nodes n; and n; by

w, )=y

rkeGIR(,j)

(w(i, tHwk, j)

n—2
[Twahoi i) +wa. . )
a=0
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Fig. 3 A simple example to —
build NIN from CCN

Class B

0.25

Class C

To illustrate how to build the NIN from CCN, we give a
simple example in Fig. 3, where the left part is the CCN and
the right part is its corresponding NIN. As shown in the CCN
of Fig. 3, there is no link between node “Class A” and “Class
C”, but there are three directed paths between them, i.e.,
“Class C” — “Class B” — “Class A”, “Class C” — “Class
B” — “Class E” — “Class A”, and “Class C” — “Class E”
— “Class A”. So there is a link (ClassC, ClassA) in NIN,
and according to Eq. (3), w’(ClassC, ClassA) = 0.25 x 0.33
+0.25 x 0.5 x 0.67 +0.5 x 0.67 =0.08 + 0.335 + 0.08375
=0.5. As shown in the CCN of Fig. 3, there is a link between
node “Class B” and “Class A”, and there exist two directed
paths, i.e., “Class B” — “Class E” — “Class A” and “Class
B” — “Class C” — “Class E” — “Class A”. So, according to
Eq. (4), w'(ClassB, ClassA) =0.33 + 0.5 x 0.67 +0.5 x 0.5
x 0.67=0.33+0.335+0.1675 = 0.8325 ~ 0.83. Other links
and weights in NIN of Fig. 3 can be similarly established.

3.2 Definitions of metrics

According to the stable design principle (SDP) [39], pack-
ages should only depend upon packages that are more stable
than themselves. The structural stability of a package can
be computed by counting the number of links that enter and
leave the package. Generally, a package is more stable when
its in-degree is high and its out-degree is low. In the current
work, we applied SDP to a class node in NIN and calculated
the class stability S, of node n;, S, in NIN by
wi'

Si - 5
< wit + wol ©)

where wi’ and wo' denote the weighted in-degree and out-
degree of node n;, respectively. wi' is the sum of the weights
of the links with its head ends being adjacent to n;. wo'
is the sum of the weights of the links with its tail ends
being adjacent to n;. For example, as shown in Fig. 3,
the stability of “Class A” can be calculated as SC13%A =

0.25+0.125 _ i
0257015510 5+0975083 — 0.14285714. S. has the range
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[0, 1], where Sé = 0 when wi’ = 0 indicates a maximally
unstable class, and S = 1 when wo' = 0 indicates a max-
imally stable class. Under this definition, n; is more stable
when its value of S’ is greater. Let S° = 0 when wi' = 0
and wo' = 0.

Based on S, the stability of the software as a whole, S,
can be defined as

1 [N

So=—Y S, (6)
) NI

where |N| is the number of nodes in NIN. Obviously, Sy is
the average of S, over all the nodes in NIN.

4 Theoretical validation

Our proposed metrics belong to the category of software
complexity metrics. It can be used to measure the structural
complexity of OO software systems. In previous literatures,
Weyuker has proposed a set of properties for evaluating
the usefulness of software metrics [10]. Although some
researchers offered critique on these properties especially
on the Property 9 [40,41], these properties do provide for-
mal criteria for evaluating the behavior of a metric and are
therefore widely adopted [19,36,42]. Our proposed metrics
are evaluated against Weyuker’s nine properties, which are
paraphrased as follows (M denotes any software complexity
metric).

Property 1 A complexity measure should not rate all pro-
grams as equally complex. That is, for two given programs
P and Q, it can always be found such that: M(P) # M(Q).
Obviously, for two different Java software systems P and Q,
they may have different sets of classes and internal structures,
which results in different NINs for the two systems and dif-
ferent values for S, and S;. Therefore, our proposed metrics
do adhere to Property 1.
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Property 2 There are only finitely many programs of a given
complexity. That is, if ¢ is a non-negative number, there are
only finitely many programs P with M (P) = c. Since the
universe of discourse deals with at most a finite set of appli-
cations. There are only a finitely many programs with the
same NIN and measurement values. Therefore, Property 2 is
satisfied by our proposed metrics.

Property 3 There exist two different programs of the same
complexity. That is, for two distinct programs P and Q, it
can be found such that: M(P) = M(Q). It is reasonable
to assume there are two different programs having the same
structure and measurement values. Therefore, Property 3 is
satisfied by our proposed metrics.

Property 4 Two different programs with the same func-
tionality need not have the same complexity. That is, there
are functionally equivalent programs P and Q satisfying
M(P) # M(Q). The same set of functionalities can be
designed or implemented in different ways, leading to differ-
ent structures of NINs and measurement values. Therefore,
Property 4 is satisfied.

Property 5 The complexity of a program segment should be
less than or equal to the complexity of the whole program.
Formally, for all programs P and Q, the following must hold:
M(P) < M(P+ Q)and M(Q) < M(P + Q). Because this
property is only suitable for metrics that measure software
size, and the metrics proposed in this paper is only used to
measure software stability (not size related metrics), it is not
suitable for evaluating our metrics.

Property 6 The resulting complexity of the composition of
two program P and R is not necessarily the same as the
composition of program Q and R, even though P and Q
have the same complexity. Formally, there exist programs
P, Q and R such that M(P) = M(Q) and M(P + R) #
M(Q + R). Let P and Q be two different software systems
with M (P) = M(Q), there exists another software R that
can be combined with P and Q. The combination may result
in different NINs. Therefore, M(P + R) #= M(Q + R) and
Property 6 is satisfied.

Property 7 If the statements within a program are per-
mutated, the complexity of the resulting program is not
necessarily equal to the complexity of the original program.
Thatis, for two programs P and Q (Q is formed by permuting
the order of the statements of P), it can be found such that:
M(P) # M(Q). This property is meaningful in traditional
programming languages, while in Java software, changing
the order of the statements does not affect the structure of
NIN and the value of metrics. Therefore, Property 7 is not
satisfied by our proposed metrics as it is not applicable to
Java software systems.

Property 8 Renaming the attributes or methods has no effect
on the measure. Formally, if P is a renaming of Q then
M(P) = M(Q). As our proposed metrics are independent
of the name of the attributes or methods, our metrics satisfy
Property 8.

Property 9 The complexity of the composition of two pro-
grams may be greater than the sum of the complexities of
the two taken separately. Formally, there exist programs P
and Q such that M(P) + M(Q) < M(P + Q). Consid-
ering an extreme example where there is only one node in
the NIN of P and Q, it is obvious that M (P) = M(Q) = 0.
After composing P and Q, the resulting NIN may have a link
connecting the two nodes with M (P + Q) > 0. Therefore,
M(P)+ M(Q) < M(P + Q), satisfying Property 9.

As discussed above, our proposed metrics satisfy the
majority of the properties proposed by Weyuker, only with
two exceptions, Properties 5 and 7. By Property 5 it implies
that the complexity should be increased monotonically. In
our study, our proposed metrics do not satisfy this property.
It may because our metrics are calculated in term of struc-
ture, instead of size. Such exception has also been observed
in other work. Property 7 is not applicable to our metrics for
they are initially produced for traditional languages rather
than OO languages like Java.

S Empirical evaluation

In this section, we perform empirical studies to assess
whether the proposed metrics are useful indicators of the
external software qualities such as scalability and change
proneness. We have applied the proposed metrics to measure
a set of Java software system collected from online sources,
and we briefly discussed some observations obtained from
the empirical analysis. Our experiments were carried out on
a PC at 2.6 GHz with 8§ GB of RAM.

5.1 Research questions

In order to investigate the effectiveness of our proposed met-
rics as the predictors of external software qualities, we focus
on the following two research questions (RQ):

— RQI Is our proposed metric Ss a good indicator of soft-
ware scalability? As an effective indicator for software
scalability, it should have the ability to identify the soft-
ware with a better scalability from two software systems
with the same functionalities. We wish to know whether
our proposed metric Sy has such an ability.

— RQ2 Is the proposed metric S. a good indicator of the
change proneness of classes? As an effective indicator for

@ Springer
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Fig. 4 CCNs built from the
programs before using bridge
design patterns (the left part)
and after using bridge design
patterns (the right part).
NO_NAME in the class name
denotes the corresponding class
is defined in an unnamed
package, and the color of the
nodes does not carry special
meanings. See online versions
for colors (Color figure online)

(a) before

change proneness, it should also have the ability to indi-
cate the change proneness of classes. We wish to know
whether our proposed metric S, has such an ability.

5.2 Answer to RQ1

Using design patterns in software development is widely
accepted as an effective way to improve software scalabil-
ity [43]. Such kind of software quality improvement should
be captured by our proposed metric Ss. In order to answer
RQ1, five Java programs have been examined, each of which
has two versions. The two versions for each program have
the same set of functionalities. Their only difference is one
employs design patterns and one does not. It is estimated that
the program developed by using design patterns should be
easy to be extended, i.e., it has more extended points (classes
whose S, < 1), and the S; should be smaller.

For illustration purpose, we shown in Fig. 4 the CCNs built
from the programs before using bridge design pattern (the left
part) and after using bridge design patterns (the right part).
Enlarging the corresponding CCN can give you the details
such as the name of the class each node denotes, the link
between every pair of classes if it exists, and the weight on
the link. These figures are automatically produced by our
own developed analysis tool SNAP using the Spring layout
algorithm [9].

The results of our proposed metrics applied to the subject
programs are shown in Table 2, where #c is the number of
classes whose S, < 1.

As we can see from Table 2, in all the five programs, #c
of the version employing design patterns is equal to or larger
than that of the version which does not use design patterns,
and S; of the version employing design patterns is smaller
than that of the version which does not use design patterns.
The results are in line with our expectations, indicating our
proposed S; is an effective metric for software scalability.

@ Springer
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Table 2 Results obtained from the five Java programs

Design pattern Before After

#c S #e S
Bridge 4 0.36 6 0.34
Composite 1 0.67 3 0.38
Iterator 1 0.5 3 0.45
Sate 1 0.5 7 0.27
Decorator 6 0.38 6 0.22

Fig. 5 The CCN built from lucene-2.4.0. The color of the nodes does
not carry special meanings. The source file used to produce the Figure
can be downloaded from http://pan.baidu.com/s/1pLn2FOn. See the
online version for colors (Color figure online)

5.3 Answer to RQ2

It is not an reasonable design that all the classes of a software
system are maximally stable. If this were the case, then the
software system would be impossible to be extended. So,
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Table 3 Pearson correlation analysis between ten metrics with the change proneness of classes

Software WMC DIT NOC CBO RFC LCOM NPM LCcoM3 LoC Se
lucene-2.4  0.174*%*  0.265%* —0.118* 0.048 0.261**  0.072 0.121* — 0.310%* 0.129* — 0.430%*
xalan-2.6 0.196**  0.258%* 0.077#*  0.310%*  0.310%*  0.107**  0.188** —0.045 — 0.237%* — 0.445%%*

**Correlation is significant at the 0.01 level (2-tailed)
*Correlation is significant at the 0.05 level (2-tailed)

Sc can be an indicator of the change proneness of classes.
In order to answer RQ2, two open source software systems,
lucene-2.4 and xalan-2.6, are selected as objects of study.
We applied our approach to quantify the S, of all the classes
in the two systems, and analyzed the correlation between
S¢ of each class with their change proneness using Pearson
correlation analysis. It is estimated that there exists a strong
negative correlation between class stability and their change
proneness. We also compare S, with other nine OO metrics
such as WMC, DIT, and NOC [44]. Note that the change
proneness data of classes are computed using the approach
proposed in [45].

For illustration purpose, we show in Fig. 5 the CCN built
from the subject system lucene-2.4.0. Enlarging the CCN can
give you the details such as the name of the class each node
denotes, the link between every pair of classes if it exists, and
the weight on the link.

Table 3 shows the pearson correlation analysis between 10
metrics and the change proneness of classes. The measure-
ment data of the two subject systems can be downloaded from
http://pan.baidu.com/s/1b1khbg. Obviously, we can see that,
in the two subject systems, there exists a strong negative cor-
relation between S, and the change proneness of classes. The
results are in line with our expectations, indicating our pro-
posed S, is an effective indicator for the change proneness of
classes. Moreover, compared with other nine OO metrics, S,
is more effective, with its absolute value being much more
closer to 1.

6 Conclusions

In this paper, we proposed two metrics, class stability (S.)
and software stability as a whole (Sy), to quantify the software
stability. Our metrics proposed are based on two software net-
works, i.e., class coupling network (CCN) and node influence
network (NIN). CCN is a weighted directed software network
at the class level of granularity, where nodes represent classes
and links represent their couplings. NIN is also a weighted
directed software network, which is adapted from CCN by
taking directed and indirected couplings into consideration.

We evaluated our metrics theoretically using widely
accepted Weyuker’s criteria and empirically using Java pro-
grams. The theoretically evaluation shows that the proposed

Sc and Ss metrics satisfy most of Weyuker’s properties, and
empirical evaluation shows the effectiveness of our proposed
metrics as indicators of the external software qualities such
as scalability and change proneness. Moreover, our proposed
S metric is better than other nine OO metrics in predicting
the change proneness of classes.
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