
Cluster Comput (2018) 21:1395–1410
https://doi.org/10.1007/s10586-017-1344-z

An accurate resource scheduling system for virtual machines
based on CPU load monitoring and assessment

Ying Li1 · Jing Zhang2 · XiaoJun Chen2 · JunHuai Li2 · JuLan Ding2

Received: 18 May 2015 / Revised: 12 August 2017 / Accepted: 6 November 2017 / Published online: 13 November 2017
© Springer Science+Business Media, LLC, part of Springer Nature 2017

Abstract An accurate resource scheduling system (RSS)
for virtual machines based on CPU monitoring and load
assessment is presented to solve the shortcoming of resource
scheduling in cloud computing systems. A new architecture
is designed to improve Credit scheduler, including three core
components: CPU load monitoring component (CLMA),
CPU load assessment component (CLAA), and the resource
adjustment component (RSA). On the basis of the proto-
type design,wemake an evaluation betweenCredit scheduler
and our system with a typical example in Xen platform. The
experimental results show that the proposed systemcould sat-
isfy the personalized resources requirements from users with
higher tasks resource utilization and lower system resource
utilization when compared with Credit scheduler. RSS has a
strong sensitivity to meet the requirements of cloud com-
puting systems, since it can accelerate the executions of
applications via dynamic resource scheduling.

Keywords Cloud computing · Virtualization · Load
monitoring · Load assessment · Resource adjustment ·
Resource scheduling

B Ying Li
gniyil_xaut@126.com

Jing Zhang
zhangjing@xaut.edu.cn

1 School of Automation and Information Engineering, Xi’an
University of Technology, Xi’an, China

2 School of Computer Science and Engineering, Xi’an
University of Technology, Xi’an, China

1 Introduction

As a new computing mode, cloud computing provides
resources as services to users via network. Infrastructure
service is the most basic service in cloud computing sys-
tems, but it is urgent to solve the problem that how to use the
increasingly powerful resources to satisfy the users’ flexible
application requirements in cloud computing systems [1].
The advent of system virtualization provides a new way of
solving the problem. The virtual machine technology, satis-
fying the dynamic hardware resource allocation, is currently
widely used because of the advantages in flexibility and effi-
ciency. The influential products in virtual machine include
VMware, Hyper-V, Xen and so on. Xen, a virtual machine
monitor (VMM) developed by Systems Research Group of
Computer Laboratory in the University of Cambridge, has
been employed in many cloud computing systems, such as
Amazon Elastic Computing Cloud, AbiCloud, Eucalyptus,
Enomaly’s Elastic Computing Platform, etc. The Multitask-
ing, as the key characteristic of Xen, is implemented as
multiple guestOS to share resources in a host, which makes
Xen allocate host’s CPU time slices to guestOS in turn.
Resource scheduling refers to the scheduling of VCPUs over
virtual machines in cloud computing systems [2]. The CPU
scheduling in virtualized environment is divided into three
levels: (1) VMM allocates the CPU time slices to VCPUs;
(2) guestOS allocates VCPU time slices to processes; and
(3) the process allocates the time slices to threads. The CPU
scheduling algorithms based on virtual machines directly
determines the performance of Xen virtualized environment
with the goal of equity and efficiency [3]. Xen employs
BVI, SEDF, Credit and some others as the CPU schedul-
ing algorithms, among which, Credit scheduler performs
the best on SMP host because of its support for load bal-
ancing of SMP and accurate allocation of VCPUs [4]. In

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-017-1344-z&domain=pdf
http://orcid.org/0000-0002-8925-7325

1396 Cluster Comput (2018) 21:1395–1410

consideration of this, it is set as the default scheduler in Xen
hypervisor.

Currently, methods for scheduling resources accurately
in virtual computing systems are still few. However, the
accurate resources scheduling is the key to satisfy the per-
sonalized resource requirement of users in cloud computing
systems [5]. The accurate resources scheduling is required
to monitor CPU load over virtual machines dynamically
and determine the satisfaction of resources periodically. The
aim of CPU load monitoring is to determine a reasonable
calculation of CPU utilization, and then create a scientific
monitoringmechanism to collect and record resource utiliza-
tion. The collected and recorded data provide an implication
for making strategies of scheduling virtual machines. The
CPU load assessment aims to evaluate the rationality of CPU
load monitoring results, in order to make further judgement
if the resource utilization could satisfy the requirements of
tasks [6]. The results of the CPU load assessment would
be taken as the evidence to complete CPU scheduling (that
VMM takes to virtual machines). In current research results,
there is less related works on load monitoring and assess-
ment methodologies for applications, and the calculation of
resource utilization tends to be limited to the entire systems.
Therefore, the resource scheduling methodologies based on
the results of monitoring and assessment are less [7]. The
contribution of this paper is to solve such problems in Xen
hypervisor. In a Para-virtualization environment, the short-
coming of Credit is the static weights based on the priority
of guestOS, we improve Credit architecture via computing
the dynamic weights of guestOS from the feedback of their
loads, and the improved Credit scheduler can satisfy the
personalized requirements of tasks better. Then, the imple-
mentation of the accurate resource scheduling system goes
from the following three ways: (1) to perform the statistics of
resource utilization to complete CPU load monitoring, (2) to
perform the CPU load assessment to decide the satisfaction
of resource utilization, and (3) to perform the CPU schedul-
ing to complete the scheduling of guestOS. We developed a
prototype to improve the Credit CPU scheduler and rebuild
the treatment details of Xen API functions in this prototype
to implement an accurate resource scheduling system.

2 Related work

Xen hypervisor, as a high performance VMM, is taken as
the infrastructure virtualization environment by some cloud
computing systems. There are several mainstream Xen CPU
scheduling algorithms: (1) BVT algorithm [8]: BVT sets a
weight to each domains in systems to allocate the time slices
of CPU in their proportion, and it is applied to the occasion
oriented real-time demand, (2) SEDF algorithm [9]: SEDF
also allocates the time slices of CPU in their proportion, but

a domain can’t occupy all the CPU resources in a time. We
can reserve a part of them for the services in other domains,
and it is applied to the occasion with the demand of real-
time, (3) Credit algorithm [10]: Credit is designed for SMP
hosts system, and each CPU of them is a local queue of
VCPU. Each VCPU in this queue has two priorities: over or
under. In addition to these mainstreamCPU scheduling algo-
rithms, some scheduling algorithms were also presented. For
example, literature [11] presented a scheduling methodology
based on the priority choosing the virtual machines to run in
accordance with their I/O status. Literature [12] discussed
the I/O performance of a domain scheduling algorithm in
Xen hypervisor with more stress on resources exchanging in
VMM. In the studies of resources allocation to multiple vir-
tual machines, literature [13] presented that the traditional
CPU scheduling algorithms can allocate resources to pro-
cesses with fairness, but in virtualization environment, the
scheduler should adopt other flexible scheduling policies, of
which, it is a excellent policy for guestOS to avoid preemptive
blocking [14]. Literature [15] evaluated a CPU scheduling
algorithm in Xen by analyzing the effects of parameter set-
tings. These methodologies have two characteristics: on the
one hand, they stress on the effect that the I/O has on the
real time scheduling. On the other hand, the open-source vir-
tualization software is taken to perform the experiments to
test I/O overheads and CPU multithreading abilities in file
server, web server, and high performance computing server.
Beside those studies, dynamic configurations of CPUs are
a vital research area, and in this area, dynamic configura-
tions policies oriented the virtual machines status [16] and
applied requirements [17]were presented. TheCPU schedul-
ing includes the determination of resources requirements,
the setting of interrupt cycle, and the selection of diversity
scheduling algorithms [18].

The virtual machines monitors are shortage of the knowl-
edge in virtual machines, so unexpected assignments make
it more difficult to allocate the resources accurately. Some
researchers presented a scheduling algorithm with sense
perception [19]. The virtual machines scheduling mecha-
nism with sense perception was used in reasoning about
knowledge to infer the I/O roundedness of user-level tasks
combined with the event in I/O binding tasks. Literature [20]
designed a scheduling algorithmbased on the priority of tasks
to ensure the fairness of CPU oriented dynamic requirements
from applications in SMPhosts. Literature [21] proposed that
a modified VMM can perceive an implicit guestOS by infer-
ring the information of guestOS. Literature [22] presented
a CPU scheduling algorithm for communication perception
with a better cost and performance. Some researches have
verified the feasibility of the virtualization in high perfor-
mance computing in clusters. Literature [23] proposed an
algorithm for virtual machine placement in clusters, provid-
ing the function of partition in hardware and an extended

123

Cluster Comput (2018) 21:1395–1410 1397

operation system, which can effectively transform a physi-
cal cluster into a virtual cluster. Literature [24] presented a
resource allocation criterion in a virtual cluster including a
scheduling algorithm with several continuous operations.

The shortcomings of related work in CPU scheduling
based on virtual machines are as follows:

(1) The current established methods to monitor the
resource utilization for application are less effective because
of coarse-grained calculations. For example, in literature
[25–27], the CPU utilization is usually determined by col-
lecting CPU working time. Given total as a period of time
and idle as the running time of idle tasks, the CPU utilization
is (total-idle)/total . It is a very simple method, but we can
only determine the entire system resource expenditure and
suppose that the CPU is working in full load. Despite the sys-
tem shows that tasks have higher resource utilization, in the
use of resources, most of them are not the effective utilization
of application. Even most of their working time is in system
status, such as communication, synchronization and switch-
ing, not the executing time of tasks [28]. It is concluded that
the load of applications should be computed by using the real
instruction execution time. Therefore, it is necessary to calcu-
late the applications’ effective resource utilization in a more
fine-grained way, andmake an accurate resources scheduling
based on these results.

(2) The system usually sets the priority and weight to vir-
tual machines according to Service-Level Agreement (SLA),
which decides the resource allocation rate, so the resource
allocation rate would keep unchanged once they were set to
tasks at first [10]. There are currently somemethods to main-
tain Quality of Service (QoS) for assessing the satisfaction of
resource utilization of applications during system operation
[29–31]. The SLA is usually determined by the estimated
resource requirements. The application may be affected by
many factors, such as other applications and hardware adjust-
ment, so there are great inconsistencies between QoS and
SLA [32]. It is necessary to adjust the resources dynami-
cally and make QoS close to SLA as much as possible. As a
result, the resource utilization and billingmanagementwould
become more reasonable.

(3) Despite some researchers have presented some
methodologies to monitor and assess CPU load, but they
generally take the minimum overall load, the maximum
assignments, the best performance and load balancing as the
goals [33,34]. As a result, they attached great importance to
system optimization and paid less attention to the satisfaction
of individual tasks. Cloud computing systems, stressing on
personalized services, would not exchange the overall objec-
tives at the expense of the individuals. So we should make
an accurate CPU scheduling for the tasks in virtual machines
[35].

An improved Credit scheduler to solve above shortcom-
ings is proposed in this paper. The difficulties of our work

are: (1) CPU monitoring and load assessment architecture
for resources scheduling involves multiple levels, because
its components locate at different CPU-rings with different
permissions. For example, the collection of CPU utilization
should be in Xen hypervisor, which owns the highest priv-
ilege level, but at the same time, the collection of VCPU
utilization is in guestOS with subsidiary permissions and the
load assessment and storage are designed as an application
in the lowest CPU permission [36]. It is very complicated
and difficult to switch the CPU-rings in different permis-
sions. Secondly, resource monitoring and load assessment
methodologies should reflect the effective resource utiliza-
tion comprehensively. We solve the first problem by using
the Para-virtualization mechanism of Xen hypervisor. The
system-call and kernel device drivers provide an approach for
the switching of resource manager to guestOS. Meanwhile,
the hyper-call and event channel provide a way to exchange
the data between guestOS and Xen hypervisor. We reference
the present methodologies to solve the second problem and
improve their shortcomings, in which, the pre-control chart
method of quality management is extended and used in this
paper to judge the satisfaction of resource requirement. We
complete the resource scheduling by adding a Credit prop-
erty to the VCPU structure, and then adjust the weights of
domains to change the time slices of VCPU based on the
results of load assessment.

3 The architecture design

At present, the majority of modern operating systems sup-
port parallel processing of multi-task and multi-process, and
tasks and processes do not interfere during performing. It is
inseparable from the CPU architecture of X86 and X64. X86
CPU architecture provides four privilege levels, which is the
mechanism whereby the OS and CPU cooperate to restrict
the ability to execute certainmachine instructions. These four
privilege levels are called rings which are respectively ring0,
ring1, ring2 and ring3 [37]. Ring0 is most privileged while
ring3 is least privileged. Every privilege level can access the
data in itself and less privileged ones. X64 CPU architec-
ture uses only two privilege levels, ring0 and ring3. Ring0
is still most privileged. Xen hypervisor runs in ring0, and
applications run in ring3.

Our work involves three components, CPU load monitor-
ing component (CLMA), CPU load assessment component
(CLAA), and the resource adjustment component (RSA).
These three components are implemented in different lev-
els of Xen hypervisor. Figure 1 is the structural schematic
diagram of accurate resource scheduling system, which sim-
ply introduces the relationship between the key components
and subcomponents. Themain subcomponents of CLMA are
Resource collector, Resource reporter, Resource Manager

123

1398 Cluster Comput (2018) 21:1395–1410

Fig. 1 The components of
accurate resource scheduling
system

DomainU
Xen hypervisor

PM

Thread

guestOS
Domain0
guestOS

Middleware

DomainU

Thread

guestOS
Middleware

...

Xen
Daemon

Resource
Manager

XML-RPC

ResourceDB

Hyper-call-A
Event-A

CPU scheduler

CLMA=Resource collector+Event-A+Hyper-call-A+Event-B+Event-B+Resource
reporter+Xen Daemon+ResourceManager

Event-B

Resource collector

CLAA

Hyper-call-B

ResourceManager∈
CRSA=ResourceManager+Kernel driver+Hyper-call- B+CPU scheduler

Kernel driver Resource reporter

Hyper-call-C

andXenDaemon.Resource collector, as a tool to compute the
load of CPU,VCPUand process, collects resource utilization
in Xen hypervisor. It is the core of resource monitoring and
resource collection of Xen hypervisor, and it keeps running
soon after startup of Xen hypervisor, and helps guestOS on
domainUs to collect resource utilization of VCPU and tasks.
Resource reporter is a calculator to compute the resource uti-
lization of VCPU and process in guestOS, which is achieved
by modifying the operating system kernel. Resource Man-
ager not only manages the static and dynamic information
from Xen hypervisor and guestOS, but also stores them into
the database, it runs after launches of guestOS. XenDaemon,
is a service process, manages Xen by providing an XML-
RPC interface to users. Resource Manager and Xen Daemon
execute in guestOS of domain0, and run in ring3. CLMA, as
a component of CPU load monitoring, needs to collect the
resource utilization of CPU, VCPU and process. However,
collecting these information involves multiple privilege lev-
els ofXen. For instance, the resource utilizationofCPUneeds
to be collected in Xen hypervisor which runs in ring0, while
that of VCPU and process need to be collected in guestOS
which runs in ring1. It is very difficult to exchange informa-
tion among different privilege levels, and Xen hypervisor
cannot directly acquire the resource utilization of VCPU
and process. In order to solve the problem, event channels
and hypercalls, which are Event-A, Hyper-call-A, Event-B
and Hyper-call-B, were added in CLMA. Event channels,
working in Xen hypervisor, are asynchronous communica-
tion channels between Xen hypervisor and guestOS, and
guestOS communicates with Xen hypervisor through hyper-
calls. Event-A informs the virtual machines periodically
to report the VCPU and process utilization on domainUs.
Hyper-call-A, a hyper-call that Xen hypervisor provides
to guestOS on domainUs, is used to report their resource
usage. Event-B is used by Xen hypervisor to periodically
notice guestOS on domain0 to save the resource utilization
of CPU, VCPUs and processes. Hyper-call-B, a hyper-call
that Xen hypervisor provides to guestOS on domain0, is used
to collect the dynamic and static information of platform in
guestOS of domainU. CLAA algorithm, also implemented
in Resource Manager, reads the resource monitoring logs

and performs the load assessment. RSA algorithm involves
ResourceManager, Kernel driver, Hyper-call-C, CPU sched-
uler. Resource Manager would make resource adjustment
policies according to the results of load assessment. Ker-
nel driver, working in the kernel of guestOS, provides a
methodology for Resource Manager working in ring3 to
switch to the guestOS Kernel, while Hyper-call-C provides
a way to transfer the adjustment results to CPU scheduler in
Xen hypervisor working in ring0. CPU scheduler, working
in Xen hypervisor, is a part of the CPU scheduling subsys-
tem.

Above 11 subcomponents, included inCLMA,CLAAand
RSA components, distributed in Fig. 2a in X86 CPU archi-
tecture, and distributed in Fig. 2b in X64 CPU architecture.
One more thing to be aware of in Fig. 2 is that Kernel driver
works in non-root-ring0 and guestOS runs in non-root-ring3,
which is different from that in X86 CPU architecture. It is
due to the Para-virtualization mechanism of Xen hypervisor.
In a Para-virtualization environment, Xen hypervisor runs in
root operation mode, and guestOS runs in non-root operation
mode.

To further explain howRASworks, the following is work-
flow of RSS:

Step 1:Xen hypervisor notices the virtualmachines to collect
the resource utilization of VCPU and tasks in guestOS of
domainUs through Event-A;

Step 2: Resource reporter computes the resource utilization
of VCPUs and tasks in guestOS of domainUs.

Step 3: Xen hypervisor computes the CPU utilization
directly, and obtains the resource utilization of VCPUs
and tasks computed in Step 2 through Hyper-call-A, then
sends them to Resource Manager in guestOS of domain0
through Hyper-call-B.

Step 4: Xen hypervisor notices domain0 to save the resource
utilization of CPU, VCPUs and tasks to
ResourceDB through Event-B.

Step 5: Resource Manager performs the load assessment.
If the assessment result is not satisfied, go to Step 6.
Otherwise, go to Step 1 after the cycle is complete.

Step 6: Resource Manager calculates the weights of domai-
nUs for Credit scheduler, and then calls Hyper-call-C to

123

Cluster Comput (2018) 21:1395–1410 1399

Resource

CPU

driver

call-A

-B

Xen

 collector

scheduler

(a) X86 CPU Architecture (b) X64 CPU Architecture

Resource

CPU

driver

call-A

-B

Xen

 collector

scheduler

Fig. 2 The architecture design

transfer the adjustment to CPU scheduler in Xen hyper-
visor.

Step 7: CPU scheduler adjusts the weights of domainUs, go
to Step 1 after the cycle is complete.

We will discuss the work principle of above components
in detail in next section.

4 The key technologies design

4.1 CPU monitoring based on virtual machines

We implement CPU monitoring in CLMA. Load monitor-
ing based on virtual machines is to determine a calculation
approach for CPU utilization. Present methodologies tend to
calculate the CPU utilization in systems, which rarely reflect
the amount of resources utilized by applications. Hence, we
present a way to monitor and calculate CPU utilization of
applications. There are a number of indicators about the CPU
utilization of applications as follows:

(1) The calculation of average CPU utilization
The timer of Xen hypervisor records the working time of

each CPU from power time to t time. The timer of guestOS
in virtual machines keeps the records of the working time of
each VCPU from power time to t time. The working time
is the number of clock ticks for CPU, VCPU or process in
running time.

CPUutilization can be determined by the ratio of the quan-
tity of working CPUs and the quantity of all CPUs. But we
cannot obtain the instantaneous status ofCPU, sowe estimate
their average utilization in a period. The operation system
measures the utilization through the ratio of working time to
total time. In normal circumstances, Xen hypervisor records
the working time from power time to t time,We take the total

working time with Δt seconds from (t−Δt) to t to compute
the CPU utilization, the value of i th CPU utilization is:

UCPU
i (t) = Ti (t) − Ti (t − �t)

�t
(1)

where Ti (t) and Ti (t − �t) respectively denotes the total
working time of the i th CPU (0 ≤ i ≤ n − 1) from power
time to t time and that of i th CPU (0 ≤ i ≤ n−1) from power
time to (t − �t) time, and Ti (t) − Ti (t − �t) represents the
total working time of the i th CPU (0 ≤ i ≤ n−1) during�t .

UCPU (t) =

n−1∑

i=0
Ti (t) − Ti (t − �t)

n�t

=

n−1∑

i=0
Ti (t)

n�t
−

n−1∑

i=0
Ti (t − �t)

n�t
(2)

where n represents the quantity of CPU. The average CPU
utilization is an indicator embodying the performance of vir-
tualization platform.

(2)The calculationof virtualmachines resource utilization
Under virtual environment, it is hard to directly moni-

tor the CPU utilization of application. Thus, our research
goes the way of monitoring resource utilization that virtual
machines take toCPU inXenhypervisor and resource utiliza-
tion that applications take to VCPU in guestOS respectively,
and multiplying them together to get the CPU utilization of
application.

The CPU utilization of the lth VCPU in the j th virtual
machine is:

UVCPUl j
C PU (t) = Tl j (t) − Tl j (t − �t)

n�t
(3)

123

1400 Cluster Comput (2018) 21:1395–1410

where Tl j (t) denotes the total working time of the lth VCPU
(0 ≤ l ≤ k(t) − 1) in j th virtual machine from power time
to t time, while Tl j (t −�t) represents the total working time
of lth VCPU (0 ≤ l ≤ k(t) − 1) in j th virtual machine
(0 ≤ j ≤ m − 1) from power time to (t − �t) time.

Let the quantity of VCPU in j th virtual machine is k in t
time (k would change with the time, so k ∼ k(t)). Then the
CPU utilization of the j th virtual machine is:

UCPU
j (t) =

k(t)−1∑

l=0
Tl j (t) −

k(t−�t)−1∑

l=0
Tl j (t − �t)

n�t
(4)

Resource utilization that virtual machines take to CPU is
an indicator embodying the performance of all guestOS in
virtualized platform.

(3) The calculation of application resource utilization
Assuming there is only one application task j and several

service processes run in the j th virtual machine. At t time,
let the total working time that a task occupies the lth VCPU
in virtual machine be Vl(t), thus, the VCPU utilization that
task j takes to VCPU is:

Utask j
VCPU (t) =

k(t)−1∑

l=0
Vl(t) −

k(t−�t)−1∑

l=0
Vl(t − �t)

k(t)−1∑

l=0
Tl j (t) −

k(t−�t)−1∑

l=0
Tl j (t − �t)

(5)

In the formula above, the numerator is the total working time
that task j occupies the lth VCPU in virtual machine during
�t time, and the denominator is the total working time of the
lth VCPU (0 ≤ l ≤ k(t) − 1) in j th virtual machine during
�t time.

(4) The calculation of application CPU utilization
Based on the above analysis, we can obtain the CPU uti-

lization of task j is:

Utask j
C PU (t) = Utask j

VCPU (t) ·UCPU
j (t) (6)

The CPU utilization of task j is an indicator embodying
the performance of application in virtualized platform.

(5) The calculation of application resource utilizationwith
domain0 resource expenditure

There are usually several virtualmachines running inXen,
which are called as domain. Domain is divided into domain0
and domainU. Domain0, a special virtual machine, manages
domainUs. I/O drivers that domainUs require are installed
in domain0. The front-back drivers are created by Xen to
provide the input and output services for domainUs. The
resource expenditure that domain0 should be taken as the
resource expenditure of related domainUs. Let the task in

domain0 be an idle process, unrelated to other domainUs,
then, the resource expenditure of Domain0 kernel is:

Sdomain0(t) =
k(t)−1∑

l=0

[Rl(t) + Wl(t)]

−
k(t−�t)−1∑

l=0

[Rl(t − �t) + Wl(t − �t)] (7)

where Rl(t) represents the total working time that guestOS
kernel occupies the lthVCPU in the j th virtual machine from
power time to t time, and Wl(t) represents the total working
time that the daemon process occupies the lth VCPU in the
j th virtualmachine. In our study, the virtualmachine j = 0 is
called as domain0, then, Sdomain0 is attributed to other virtual
machines respectively. The application resource utilization
with Domain0 resource expenditure is:

U ′
task j

C PU
(t) = Utask j

C PU (t)

+ Uj
CPU (t)

m−1∑

j=1
Uj

CPU (t)

.
Sdomain0(t)

nΔt
(8)

As you can see from Formula 8, the domain0 resource
expenditure was divided according the CPU utilization of
related virtual machines and taken as the resource expendi-
ture of tasks running in the virtual machines. The application
resource utilizationwith domain0 resource expenditure is the
subscription basis for users in systems.

(6) The calculation of working efficiency of the task
We take the ratio of the application CPU utilization to the

application CPU utilization with domain0 expenditure as the
working efficiency of the task:

r j (t) = Utask j
C PU (t)

U ′
task j

C PU
(t)

(9)

Theworking efficiency of the task is an indicator embody-
ing the matching degree between the application and the
architecture of virtualized platform.

U ′
task j

C PU
(t), themost concerned indicator from the view

of users, can embody the personalized resource requirement
of the QoS, so we make the CPU load assessment with it in
next section.

(5) CPU monitoring flows
The CPU scheduling subsystem of Xen hypervisor col-

lects Ti (t) for CPUs periodically in a time interval �t.
The kernels of guestOS in domain0 and domainUs transfer
the total working time of Ti j (t) for VCPU via the hyper-
call in Xen hypervisor. The CPU load monitoring flows are
described as follows:

123

Cluster Comput (2018) 21:1395–1410 1401

Step 1: Resource collector in the kernel of Xen hypervisor
obtains the static resource information: CPU, domain,
VCPU and process.

Step 2: Resource collector obtains the current time, and then
initializes the timer forCPU, domain,VCPUandprocess.

Step 3: Wait a period of time �t, Resource collector collects
Ti (t) from CPU.

Step 4: The event channel Event-A notices the guestOS ker-
nel in domain0 and domainUs to collect Ti j (t), Vl(t),
Rl(t), Wl(t) for all VCPU, and then, domain0 and
domainUs transfer theTi j (t), Vl(t), Rl(t), Wl(t) to Xen
hypervisor by calling Hyper-call–A.

Step 5: Compute UCPU (t), Uj
CPU (t), Utask j

C PU (t),

U ′
task j

C PU
(t) and r j (t).

Step 6: The event channel Event-B transfers UCPU (t),
Uj

CPU (t), Utask j
C PU (t), U ′

task j
C PU

(t) and r j (t) to the
kernel of domain0. Xen Daemon would wake Resource
Manager to call the Kernal Drivers, and then exe-
cute hyper-call Hyper-call-B. Finally, the data would be
received and stored into ResourceDB.

Step 7: Go to Step 3.

4.2 CPU assessment based on load stability and
capability

We implementCPUassessment inCLAA.Present researches
about CPU scheduling tend to lack of accuracy and effective-
ness. Cloud computing systems take the resource utilization
as the billing base. If we allocate a fewer resources to virtual
machines, the requirement would not be satisfied. But if we
allocate toomany resources to virtualmachines, it would lead
to the waste. The accuracy in resource allocation requires us
to make a dynamic assessment to virtual machines based on
CPU load. So, it is important to figure out the distribution
of tasks’ resource utilization. In general, the CPU sched-
uler limits the resource utilization in a certain scope, and the
fluctuation of the resource requirements belongs to normal
distribution.

Five indexes of UCPU (t), UCPU
j (t), UCPU

task j
(t),

U ′
task j

C PU
(t) and r j (t) are the assessment objects of CPU

load. In this section, we take U ′
task j

C PU
(t) as the study

focus, and the other indexes are similar to it. Figure 3 is
the frequency diagram of tasks’ resource utilization in one of
guestOS we collected during the testing, which reveals that
most of them have size in a specific range.

As we can see from the above figure, resource utilization
of tasks is almost in accord with normal distribution, and it
is a very important index in describing SLA for computing
task. As CPU utilization belongs to the normal distribution,
so SLA can be determined as a specification in the scopewith
centerline, upper deviation, and lower deviation. We need to

0 0.1 0.2 0.3 0.4 0.450

0.01

0.02

0.03

0.04

0.05

CPU utilization of tasks

P
ro

ba
bi

lit
y

Fig. 3 The frequency diagram of resource utilization

select amethodology to determinewhether the resourcemon-
itoring results can satisfy SLA. We choose the pre-control
chart in quality management to make an assessment to the
CPU load. We select the pre-control chart, as it is very simi-
lar to the assessment of quality characteristics in small-batch
production. Combinedwith the CPU loadmonitoring results,
we divide it into load stability assessment and load capability
assessment.

(1) Basic principle
Based on the basic thought of pre-control chart, we define

some important concepts for CPU load assessment.

Load distribution For a task in Xen hypervisor, CLMA col-
lects a series of values of resource utilization that computing
task takes to host in a period of time. As previous mentioned,
so they are approximately thought as normal distribution:

U ′
task j

C PU
(t) ∼ (μ, σ) (10)

Load specification The scope of CPU load, satisfying users’
requirement, is named as load specification. Load specifica-
tion consists of specification center M , upper limit TU and
lower limit TL . The specification center is SLA, and upper
and lower limit is its upper deviation and lower deviation.

It is known from load distribution and load specification
that if the centerline of load distribution is not coincident
with the specification center, there must exist a deviation
ε (ε = |M − μ| > 0).

CPU load stability We use the process stability in quality
management to perform the assessment combined with load
specification, and then, judge whether load distribution is in
a stable status in a period of time. CPU load stability would
determine whether the systems can provide a continuous and
good QoS. If CPU load stability is not in stable status, the
system requires to adjust parameters.

CPU load capabilityWe use the process capability index Cp
to determine load capability combined with the load spec-
ification, and then, to judge whether load distribution is in
a capability satisfying status in a period of time. CPU load

123

1402 Cluster Comput (2018) 21:1395–1410

Fig. 4 The limits of pre-control
chart

M

Goal regionWarning
region

Refusing
region

Low limitTL Upper limitTULow pre-control line PCL Upper pre-control line PCU

-6σ 6σ-3σ 3σμ

Refusing
region

Warning
region

Goal region

M

Goal regionWarning
region

Refusing
region

Low limitTL Upper limitTULow pre-control line PCL Upper pre-control line PCU

-6σ 6σ-3σ 3σμ

Refusing
region

Warning
region

Goal region

capability would determine whether the systems can provide
enough resource to the task. If CPU load cannot satisfy the
capability status or CPU load has exceeded the capacity, the
system requires to adjust parameters.

The control limits of pre-control chart are shown in Fig. 4.
We describe its determination approach as follows: The load
specification is divided into four equal sizes. The center
line between the specification centerline M and the upper
and lower limits TU\TL are defined as the control limits
PCL\PCU . The goal region is the zone between PCL and
PCU , the warning regions are the zones between PCL and
TL , and PCU and TU , and refusing regions are the regions
outside TU and TL [38].

We determine the assumptions for the pre-control charts
as two conditions:

(I) Assumption in load distribution coincidingwith the load
specification is that the load monitoring results belong
to normal distribution and the load capability is Cp≥ 1
[39].

(II) Considering the probability, the actual load distribution
center coinciding with the load specification center is
very low, so we would pay more attention to the non-
overlapping status. When ε > 1.5σ , combined with the
features of 6σ whose process capability index is Cp≥ 2
[40], the load distribution can be thought as unsatisfied
because of its great deviation. We study on ε ≤ 1.5σ .
When the load distribution does not coincide with load
specification, we assume that they are in normal distri-
bution and load capability is Cp≥ 2.

(2) Load assessment rules
We divide the CPU load assessment into three stages: load

stability assessment in initial stage, load capability assess-
ment in initial stage and load stability assessment in running
stage. The initial stage means the task loading process. In
this time, the QoS that the task takes to resource requirement
is higher than later time, so the CPU load should keep con-
sistent with SLA. We are required to perform the CPU load
stability assessment and CPU load capability assessment in
initial stage. After the task is loaded, we need to perform
CPU load stability assessment in running stage.

(1) Rule 1: Load stability assessment in initial stage

In initial stage, CLMA component continuously acquires
the CPU monitoring data to make an assessment. But the
systems shoulddetermine a reasonable sample size to analyze
firstly, which is the base of assessment.

Based on the basic assumption ε ≤ 1.5σ , combined with
the process capability index [41,42]:

Cpm = CP
√
1 + (ε/σ)2

(11)

When Cp is 1, 1.33, 1.67, 2 and 2.33 respectively, Cpm is
0.5547, 0.7377, 0.9263, 1.1094 and 1.2924. Literature [38]
sums up the probability of different samples falling to goal
regions under different Cp in load distribution center coin-
ciding with the load specification center, and suggests that
when Cp≥ 1, the sample size should be 10 in initial stage.
When load distribution center does not overlap with speci-
fication center and Cp ≥ 2, we assume that Cpm ≥ 1.1094
would coincide with Cp ≥ 1, so we decide the sample size
10 [43].

Combined with the setting of pre-control chart [44], we
present the rule of pre-control in initial stage. For ten samples
fromResourceDB in architecture: (I) If themonitoring results
of CPU utilization X fall into the goal regions, the initial
stage can satisfy the requirement. (II) If there is one sample
in ten falling into thewarning regions, the system should read
next sample. If next sample is falling into the goal regions,
the initial stage can satisfy the requirement. Otherwise, it
cannot satisfy the requirement. (III) If there are two samples
in ten samples falling into warning regions or one sample
falling into refusing regions, the initial stage cannot satisfy
the requirement.

(2) Rule 2: Load capability assessment in initial stage
Based on the assumption, when the distribution center

does not coincide with the specification center, there are:

ε =
∣
∣
∣
∣X̄ − Tu + Tl

2

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

1

n

n∑

i=1

xi − Tu + Tl
2

∣
∣
∣
∣
∣

(12)

σ ≈ S =
√
√
√
√

n∑

i=1

(xi − X̄)
2

n − 1
(13)

The relationship of process capability index and the
Taguchi capability index is:

123

Cluster Comput (2018) 21:1395–1410 1403

Cpm = T

6S
√
1 + (ε/S)2

= CP
√
1 + (ε/S)2

(14)

Based on the basic assumption,when theCPU load satisfying
6σ, σ < T/12, ε < 1.5σ and load capability index Cp > 2,
we get the Taguchi capability index Cpm > 1.667. When the
condition of load distribution center does not overlap with
the load specification, we take Cpm > 1.667 as the load
capability assessment base.

(3) Rule 3: Load stability assessment in running stage
When the task has been loaded or entered into the running

state, the assessment in stable status should be different from
that in initial stage.The systemshoulddetermine a reasonable
sample size to make an assessment.

Literature [45] suggests the sample size to be 3 in Cp ≥ 1
under the condition of load distribution center coinciding
with the load specification. When the condition of load dis-
tribution center does not overlap with the load specification
and ε ≤ 1.5σ, we also suggest sample size to be 3inCp≥ 2
and Cpm ≥ 1.1094.

Based on the basic assumption, let CPU utilization of a
task be F(X) in Fig. 3. As X has randomness, and it belongs
to normal distribution (T = TU − TL , σ ≤ T/12), the upper
bound isM+6σ , the lower bound isM−6σ , and the deviation
is ε ≤ 1.5σ . Let the probability of X falling into goal regions
be Pg , and the probability of X falling into 2 warning regions
be Pyl and Pyu , and the probability of X falling into two
refusing regions be Prl andP

,
ru then:

Pg ≥ P{−4.5σ ≤ x ≤ 1.5σ }
= P

{−4.5σ − μ

σ
≤ x − μ

σ
≤ 1.5σ − μ

σ

}

= P

{

−1/4T + ε

σ
≤ x − μ

σ
≤ 1/4T − ε

σ

}

= P

{

−4.5 ≤ x − μ

σ
≤ 1.5

}

= �(1.5) − �(−4.5) = 0.9331866 (15)

Py ≤ Pyl + Pyu = P{−7.5σ ≤ x < −4.5σ }
+ P{1.5σ < x ≤ 4.5σ }

= P

{−7.5σ − μ

σ
≤ x − μ

σ
<

−4.5σ − μ

σ

}

+P

{
1.5σ − μ

σ
<

x − μ

σ
≤ 4.5σ − μ

σ

}

= P

{

−1/2T + ε

σ
≤ x − μ

σ
< −1/4T + ε

σ

}

+ P

{
1/4T − ε

σ
<

x − μ

σ
≤ 1/2T − ε

σ

}

= [�(−4.5) − �(−7.5)] + [�(4.5) − �(1.5)]

= 0.0000034 + 0.0668066 = 0.06681 (16)

Pr ≤ Prl + Pru

= P{x < −7.5σ } + P{4.5σ < x}
= P

{
x − μ

σ
<

−7.5σ − μ

σ

}

+ P

{
4.5σ − μ

σ
<

x − μ

σ

}

= P

{
x − μ

σ
< −1/2T + ε

σ

}

+ P

{
1/2T − ε

σ
<

x − μ

σ

}

= �(−7.5) + [1 − �(4.5)]

= 0 + 0.0000034 = 0.0000034 (17)

In a period of time interval, the system reads three samples
from ResourceDB, and there are 53 = 125 statuses because
these three samples may fall into the goal region, warning
regions and refusing regions [46]. We sum up the probability
of three samples falling into goal region, and 10 combinations
are shown in Table 1.

The principle of pre-control chart is the same as control-
chart, and when a small probability event (less than 0.01)
happens, the process is considered as abnormal load. It is
seen from Table. 1 that the system continuously reads three
samples tomake this assessment. (I) If the probability of three
samples falling into the goal regions is greater than 0.01,the
load is judged as normal. (II) If ε ≥ 0.6815σ , or the prob-
ability of a sample falling into right regions of warning area
and two others falling into goal regions is greater than 0.01
(not belongs to small probability event), the load is judged as
normal. But if a sample falls into left regions of warning area
and two others fall into goal regions is less than 0.01 (small
probability event), the load is judged as abnormal. (III) If
ε < 0.6815σ , the probability that a sample falls into right
regions of warning area and two others fall into goal regions
is less than 0.01 (small probability event), and the load is
judged as abnormal. (IV) If a sample falls into goal regions
and two others fall into warning regions, the probability is
less than 0.01, and the load is judged as abnormal. (V) If
three samples fall into refusing regions, the load is judged as
abnormal.

(3) Load assessment steps
Domain0 in Xen hypervisor runs a Daemon process from

power time, which collects and stores the CPU monitoring
results. Resource manager reads these data and performs the
assessment. The assessment results can be divided into four
unsatisfied marks A, B, C, D and a satisfied mark S, load
assessment steps are described as follows:

Step 1: Compute the deviation ε. If ε ≤ 1.5σ , the algorithm
return the unsatisfiedmarks A,whichmeans that the load
distribution is far from the specification.

123

1404 Cluster Comput (2018) 21:1395–1410

Table 1 Probability for three samples falling into different regions

Regions Probability

Anti-side regions Goal regions Ipsilateral
regions

ε = 1.5σ ε = 0.6815σ ε = 0

1 1 1 2.1 × 10−7 < 0.01 1.2 × 10−6 < 0.01 1.8 × 10−6 < 0.01

1 2 3 × 10−6 < 0.01 0.000114 < 0.01 0.001343 < 0.01

1 2 1.5 × 10−8 < 0.01 1.2 × 10−8 < 0.01 2.5 × 10−9 < 0.01

2 1 1.1 × 10−11 < 0.01 1.3 × 10−8 < 0.01 1.8 × 10−6 < 0.01

1 2 0.004165 < 0.01 0.000102 < 0.01 1.8 × 10−6 < 0.01

2 1 7.7 × 10−13 < 0.01 1.4 × 10−10 < 0.01 2.5 × 10−9 < 0.01

2 1 0.9332 × 0.067 = 0.058178 0.01 0.001343 < 0.01

3 0.9333 = 0.812654 0.98973 = 0.969457 0.99733 = 0.991922

3 3.9 × 10−17 < 0.01 1.6 × 10−12 < 0.01 2.5 × 10−9 < 0.01

3 0.000298 < 0.01 1.1 × 10−6 < 0.01 2.5 × 10−9 < 0.01

Step 2: Determine the stage: initial stage or running stage.
Go to Step 7 if it is in running stage.

Step 3: Wait for a period of time, read 11 load monitoring
dataU ′

task j
C PU

(t) of current cloud computing task from
ResourceDB and take them as the data source of assess-
ment.

Step 4: Perform load stability assessment in initial stage
based on rule 1. If the result is unstable, return the unsat-
isfied mark B, which means that the load distribution is
unstable in initial stage.

Step 5: Perform load capability assessment in initial stage
based on rule 2. If the result is shortage of capability or
exceeds the capacity, then returns the unsatisfied mark
C , which means that the load distribution is incapacity in
initial stage.

Step 6: Go to Step 1.
Step 7: Wait for a period of time, and read 3 load monitoring

data U ′
task j

C PU
(t) from ResourceDB and take them as

the sources of assessment.
Step 8: Load stability assessment in running stage based on

rule 3. Return the unsatisfiedmark D if the result is unsta-
ble, which means that the load distribution is unstable in
running stage.

Step 9: Return the satisfied mark S, and then go to Step 7.

4.3 Resource adjustment based on CPU assessment

We implement CPU assessment in RSA. Credit is a main-
stream scheduler in Xen hypervisor, designed for SMP host
systems and suitable for cloud computing systems. But the
shortcoming of Credit is that Xen determines the static
weights according to the priority of guestOS.We improve the
Credit to be a dynamic adjustment algorithm via the chang-
ing of weights, in which, the time slices of all VCPUs in
every cycle are determined dynamically.

(1) The calculation of time slice and the weights
We determine the relationship between VCPU time slices

and CPU utilization in this section. In Credit scheduler, the
Credit value is created in domain, but in RSS, we set Credit
into VCPU. Although domain has several VCPU, they also
have their difference in scheduling. The Credit of k(t)VCPU
is called asCredit i j in each virtual machine. Let Xen hyper-
visor run m virtual machines and their weights be Weight j
(0 ≤ j ≤ m − 1), and let the time slice in a fixed executing
cycle H be Hl j (0 ≤ j ≤ m − 1, 0 ≤ l ≤ k(t) − 1), then the
relationship between Weight j and Creditl j is:

Weight j =
k(t)−1∑

l=0

Creditl j (18)

The relationship among H , Hl j and Creditl j is:

Hl j = H · Creditl j
k(t)−1∑

l=0
Creditl j

(19)

The relationship between UVCPUl j
C PU (t) and Hl j is:

UVCPUl j
C PU (t) = Hl j

k(t)−1∑

l=0
Hl j

(20)

Based on the relationship among UCPU
task j

(t),U ′
task j

C PU
(t),

UCPU
j (t) and UVCPUl j

C PU (t) mentioned above, we can

necessarily compute weight j based on U ′
task j

C PU
(t) with

the function f : weight j = f (U ′
task j

C PU
(t)).

(2) Resource adjustment flows

123

Cluster Comput (2018) 21:1395–1410 1405

If the load assessment is unsatisfied, Resource Manager
analyzes the U ′

task j
C PU

(t) distribution based on the unsat-
isfied marks and decides resource adjustment policies, and
then, notices the Xen Daemon to transfer the policies. Xen
Daemon posts requests to guestOS, and then it is received
by Xen hypervisor through hyper-call. CPU scheduler in
Xen hypervisor changes the weights of domains, and then
change the Credit of VCPU. Therefore, the resource utiliza-
tion would be adjusted in next executing cycle. Resource
adjustment flows are described as follows:

Step 1: Resource Manager decides the reasons of abnormal
data based on the unsatisfied marks.

Step 2: Determine the abnormal U ′
task j

C PU
(t).

Step 3: Determine the adjustment of U ′
task j

C PU
(t).

Step 4: Compute the weights for domains.
Step 5: Resource Manager notices the Xen Daemon and

Kernal driver, and then calls Hyper-call-C to transfer the
adjustment to CPU scheduler in Xen hypervisor.

Step 6: CPU scheduler adjusts the weights for domains.

5 System evaluations

Combined with the thought of RSS mentioned above, we
design their components and implement their functions. Our
prototype has completed their key technologies in CPU
monitoring, load assessment and resource adjustment. The
prototype is based on Xen3.3 and VZlinux2.6.48 for Xen3.3
source codes, and is developed via Eclipse for Linux with
C language and GCC compiler in operation system Fedora
core 12.0. For a complex parallel program, there is only
one the starting point, which is development machine. It
is running on the domain0. Similar to a management node,
development machine is not responsible for the actual exe-
cutions of tasks. The testing experiments are launched and
initiated from it, and all experimental data are recorded in
development machine for general viewing. The development
machine is a PCmachinewith an Intel core2 CPU (2.8GHZ),
2 GB memory with PAE, and a 160 GB hard disk. After the
source codes are developed and compiled, they are placed
into a platform to deploy and install. Because of the limit by
conditions, we install the prototype in a high performance
host. The host has 4 Intel Xeon 1.6 GHz CPU and with 4 GB
DDR RAMS. The system adopts Xen 3.3 as the virtualized
platformand takesRedHatEnterpriseLinux5 as the guestOS
of virtual machines. The virtual machine is packaged as the
virtual appliance to save in Xen domain0.

In this section, the experiments are made to evaluate the
prototype via an example.We take the simulation of cold flow
impulsive experiment for a car engine (CFIE) as this instance,
which is the typical coupling process considering the affect-

ing relations between flow field and structure. Because of
the large scale and complicated computation, the simulation
would run for a long time. The task has a higher requirement
to its stability of SLA, so it can well verify the efficiency of
RSS.

We divide CFIE into four subtasks to accelerate the execu-
tion of computation. Because of the parallel computing, four
domainUs in Xen 3.3 are created, and four applications are
implemented with C language for them. During the analysis
of four subtasks, we determine their SLA via U ′

task j
C PU

(t).
SLA1, as the leading task of four tasks, is 25% in the specifi-
cation of resource utilization. SLA2, as the main computing
process, is unstable and present the increasing trend in the
specification of resource utilization, but its minimum value is
lower than 15%. SLA3 and SLA4, as the auxiliary computing
process, are 22% in the specification of resource utilization.
The upper and lower deviations of above specification are
controlled in 4%.

We run CFIE in Credit scheduler and RSS respectively.
The experiments are designed to achieve three goals: (1)
study the features of three components: CLMA, CLAA and
RSA to verify the feasibility of themselves in input, output
and running, (2) compare the differences between the Credit
scheduler and RSS in resource utilization, and (3) compare
the differences between Credit scheduler and RSS in com-
pletion time.

Based on such requirements, after the task has been com-
pleted, we present the results as follows:

(1) The analysis of the components CLMA, CLAA and
RSA

For the example in RSS, we save the important data for the
input, output and runningofCLMA,CLAAandRSA.CLMA
savesUCPU (t),UCPU

j (t),Utask j
C PU (t),U ′

task j
C PU

(t) and
r j (t) into the ResourceDB by using the CPU monitor. Their
average values in different stages are listed in Table 2, in
which,UCPU

j (t),UCPU
task j

(t),U ′
task j

C PU
(t) and r j (t) are from

domain1.
We can see from Table 2 that UCPU (t) are above 98.9%,

which shows that the CPUs are in full load. The effective
resource utilization that virtualmachines take to host is above
90%. The total resource expenditure of Xen kernel and CPU
idle is controlled and limited within 10%. The working effi-
ciency of the task is above 60%, which shows that the total
time ofXen kernel, guestOS kernel, service process, idle pro-
cess and CPU idle time in virtualized platform is limited to
40%. The matching degree between the features of applica-
tion and the architecture is much higher in RSS than that in
Credit scheduler. It is concluded from thedata inResourceDB
that the CLMAcomponent has implemented the goal of CPU
load monitoring.

CLAAmade an assessment forU ′
task j

C PU
(t) by using the

CPU assessment method above. Four unsatisfied marks, i.e.

123

1406 Cluster Comput (2018) 21:1395–1410

Table 2 The statistics of
resource utilization in CLMA Stages (%) UCPU (t) (%) Uj

CPU (t) (%) Utask j
C PU (t) (%) Utask j

C PU (t) (%) r j (t) (%)

0–5 98.92 90.89 15.42 25.00 61.68

10–15 98.96 90.47 15.53 25.02 62.07

50–55 99.02 91.25 16.08 23.50 68.43

75–80 99.03 94.36 19.71 26.50 74.38

85–90 99.12 95.23 18.71 25.14 74.54

95–100 99.31 95.56 17.59 23.55 74.69

Fig. 5 The trends of Weights
for five domains under RSA

A, B, C , D, and the satisfied mark S are recorded and dis-
cussed below. With the increase of progress, the weight of
satisfied mark S presents the trend of increase. In the frontier
of task loading, the weight is 48.37%, but in the end of task,
the weight is 92.16%. In the beginning of task, the load dis-
tribution center is far from the load specification center, so
the system requires to make much adjustment in this stage
than that in others.

While the system runs for a certain time, and it arrives
to relative stable status, the unsatisfied weight would be
necessarily decreasing. The weight progress, and the load
distribution is much closer to load specification center. In
initial stage, the unsatisfied mark B has the greatest weight
of all and arrives to 27.15%. The weight of unsatisfied mark
C is only 10.53%, which shows that load stability occupies
most of them in initial stage. After the task is loaded, the
weight of unsatisfied mark D has a key effect on the load
balancing. It is concluded that the load assessment, as the
premise of resource scheduling, is indispensable.

In the adjustment of RSA component, the curves of trends
for the weights of five domains in Xen hypervisor is shown in
Fig. 5. In Fig. 5, the weights in domains are ultimately in line
with resource demands of tasks running in them, because they
are adjusted according to the recorded loads. The weight of
domain0 barely changes. Theweight of domain1 presents the
trend of low fluctuation. The weight of domain2 presents the
trend of rising with a small margin. The weights of domain3
and domain4 present the trend of risingwith fluctuations. The
cyclical fluctuations of weights in domain1, domain3 and
domain4 are due to that the resource requirements of tasks
are periodical in general. For five domains, domain0 has the
maximum weight, and then, the domain1. Because domain0
provides the input, output and management service for other
domains. Domain1, as a main computing process coordinat-
ing other domains, has a higher weight of time slices.

Generally speaking, in RSS, the prototype can complete
the task within a lower period of time than Credit scheduler.
AlthoughCLMA,CLAAandRSAmake theCredit scheduler
more complicated, the fast convergence features also have
been embodied fully in our experiments. Furthermore, it is
concluded that our algorithms are very stable and robust. As
a result, we can implement a higher system performance and
a faster task executing in the context of computing center
under these components.

(2) CPU utilizations comparison
To observe the relation of CPU utilizations in Credit

scheduler as processing of tasks, we put them together in
Fig. 6, a cumulative graph. This type of graph can also avoid
overlapping curves. In addition to the CPU utilizations of
SLA1 ∼ SLA4, Fig. 6 also shows that of Xen kernel and
idle system. The widths of color bars represent the CPU uti-
lizations of them, respectively. The specific value for they
each is calculated by the ratio of their own working time to
the total CPU working time, and they are limited in a cer-
tain scope according to their weights. The bottom axis is
the progress of tasks, in which 0% represents the beginning
of tasks and 100% represents that they are completed. In
Fig. 6, The CPU utilization under SLA1 presents the trend of
load fluctuation. The CPU utilization under SLA2 presents
the trend of arithmetic increase. The CPU utilization under
SLA3 and SLA4 present the trend of arithmetic decrease.
The experiment shows that the average CPU utilizations are
20.00, 17.00, 17.00, 13.00, 18.90 and 14.10% respectively.

In RSS, the relationship of CPU utilizations as processing
of tasks is shown in Fig. 7. It is seen from Fig. 7 that the
idle expenditure is controlled within 5%. SLA1 presents the
trend of fluctuation. SLA2 presents the trend of accelerated
increase. SLA3 and SLA4 present the balancing fluctuation
with the increase of progress, but it is not changing over-
all. The CPU utilization of Xen kernel presents the trend of

123

Cluster Comput (2018) 21:1395–1410 1407

Fig. 6 The relationship of CPU
utilization and the progress in
Credit scheduler

Fig. 7 The relationship of CPU
utilization and the progress in
RSS

decrease. The experiment data shows that the average CPU
utilization are 25.00, 19.83, 21.90, 22.03, 7.43, and 3.81%
respectively.

FromFigs. 6 and 7, we can observe the relation of the CPU
utilizations and the progress of tasks in Credit scheduler and
RSS, combining with the specific experimental data, four
conclusions can be drawn:

(1) In RSS, the resource utilization occupied by tasks
keeps consistingwith load specification, and loaddistribution
belongs to normal distribution of SLA.Overall, the four aver-
age CPU utilizations (25.00, 19.83, 21.90, and 22.03%) are
closer to the load specification (25, 15, 22, and 25%). They
meet the requirements of load fluctuationwhile the upper and
lower deviations are within 4%, which is due to the dynam-
ically adjusted weights in RSS. And the average resource
utilization in Credit scheduler are 20.00, 17.00, 17.00, and
13.00%, so it did not achieve the requirement of load fluctu-
ation and did not belong to normal distribution. We conclude
that Credit scheduler cannot satisfy the personalized resource
requirement of tasks, but can RSS.

(2) RSSmakes the resource utilization, which represented
by the deep purple color bar, very low and stable in Xen
kernel. In the experiment, the average value of Xen kernel’s
resource utilization in RSS is 7.43%, and themaximumvalue
is less than 10%, as shown in Fig. 7. With the increase of
task progress, it is lower due to that more stable tasks. How-
ever, the Credit scheduler enables high resource utilization in
Xen kernel. The average CPU utilization arrives to 18.90%.
In Fig. 6, it is obvious that the width of deep purple color
bar changes greatly, from the maximum resource utilization
38.40% to the minimum 2.00%. It means the resource uti-

lization in Xen kernel of Credit scheduler is very unstable.
We conclude that Credit scheduler cannot satisfy the high
resource utilization for tasks, but can RSS.

(3) RSS enables a lower idle resource expenditure, whose
average value is only 3.81% and the maximum value is
4.65%, but in Credit, the value arrives to 14.10%, and the
maximum value arrives to 25.00% with the great fluctuation.
Corresponding to it, the pink color bar in Fig. 6 ismuchwider
than that in Fig. 7 mostly. We conclude that RSS is higher in
resource utilization than Credit scheduler in experiments.

(4) RSS has strong sensitivity, and can compute the
resource utilization fromCPU,VCPUand process accurately
all the time. We can see that the resource utilization of RSS
represented by color bars in Fig. 7 are more stable and stay
within specified range (the deviation is within 4%), while
those of Credit scheduler in Fig. 6 are rather fluctuating. The
experiment data shows that the value of resource utilizations
under SLA1-SLA4 are consisting with load specification.
As a result, we conclude that the load assessment makes the
resource scheduling more accurate than that in Credit sched-
uler, which has satisfied the requirement of accurate resource
management.

(3) The completion time comparison
For the comparison of performance, the completion time

of Credit scheduler and RSS in is shown in Fig 8. In Fig. 8,
horizontal axis, the percent of task progress, is set as the
marks to track the state of tasks based on the scale of appli-
cation in development. Vertical axis, the completion time,
reflects trend of completion time changing with the increase
of progress.

123

1408 Cluster Comput (2018) 21:1395–1410

Fig. 8 The completion time
comparison in Credit and RSS

It is seen from Fig. 8 that, with the increase of progress,
either the Credit or the RSS keeps uniformly increasing in
terms of the completion time, butRSS is less time-consuming
than Credit either in total completion time or in each stages.
The completion time in RSS is at least 200 seconds less than
Credit scheduler in experiment. RSS can exchange the com-
pletion time with the resource by considering the features
of tasks and making a reasonable resource allocation. RSS
can decrease idle and kernel resource expenditure, so it is
better than Credit in performance to adapt to parallel com-
puting. We conclude that RSS provides the load monitoring
and assessment to perform an accurate resource scheduling,
so they can accelerate the executing of program with much
higher resource utilization in tasks.

6 Conclusions

We present the key technologies of CPU monitoring, load
assessment and resource adjustment for virtual machines
to solve the shortage of cloud computing systems in accu-
rate resource scheduling. Based on Xen hypervisor, we
improve Credit scheduler to present a resource scheduling
system (RSS),which is constituted of three core components:
CLMA, CLAA and RSA. Our study uses the system-call
and kernel driver in Xen hypervisor to exchange the data
between resource manager and guestOS. The hyper-call and
event channel have also provided an effective approach for
the data sharing between guestOS and Xen hypervisor. We
present 5 indexes to compute the CPU utilization in virtu-
alized platform. CLMA continuously monitors and records
the resource utilization. CLAA references the thought of pre-
control chart to propose the basic principle and assessment
rules for load assessment based on SLA. We add a property
of Credit to VCPU data structure in RSA to adjust the weight
values in domains dynamically to change the time slices of
VCPUs.

We design a prototype for RSS. And then, a CFIE example
is taken to make the experiments to compare the effec-
tiveness and the performance with Credit scheduler. It is
concluded from these experiments that RSS can satisfy the
personalized resource requirement, because RSS can keep
the load distributions which coincide with the SLA. The sys-

tem has lower resource expenditure in system and higher
resource expenditure in tasks with the low idle resource, so
it implements the accurate resource management via strong
sensitivity. The resource monitoring and assessment have
increased the matching degree between application features
and architecture. It is also concluded that RSS can accelerate
the execution of applicationswith higher resource utilization.

The shortcoming of our study is that we take multiple vir-
tualmachines over a host, rather than a large number of hosts,
so we require making the experiments in a large cluster in
later work. Furthermore, because of the complex relation-
ships among parallel computing tasks in large–scale cloud
computing systems, we should consider the communication
and synchronization among tasks based on serial and paral-
lel relations, whichwould bemore complicated to implement
the accurate resource scheduling. These problems would be
discussed in future work.

References

1. Ian, F., Yong, Zh, Ioan, R., Shiyong, L.: Cloud Computing and
Grid Computing 360-degree compared. In: Grid Computing Envi-
ronments Workshop Gce, vol. 5, pp. 1–10 (2008)

2. Jin, H.: Virtualization technology for computing system. In: High
Performance Computing and Communications (2008). https://doi.
org/10.1109/HPCC.2008.167

3. Julia, C., Joseph, S.N.: New hardness results for congestion mini-
mization and machine scheduling. J. ACM 53(5), 707–721 (2006)

4. Dirgo, O., Alan, L.C., Scott, R.: Scheduling I/O in virtual
machine monitors. In: International Conference on Virtual Exe-
cution Environments, pp. 1–10 (2008). https://doi.org/10.1145/
1346256.1346258

5. McDermott, J., Kirby, J., Montrose, B., Johnson, T., Kang, M.:
Re-engineering Xen internals for higher-assurance security. Form.
Secur. Tech. Rep. 13(1), 17–24 (2008)

6. Gabor, K., Gabor, T., Peter, K., Zsolt, N.: An approach for vir-
tual appliance distribution for service deployment. Future Gener.
Comput. Syst. 27(3), 280–289 (2011)

7. Mark, S., David, S., Frederic, V., Henri, C.: Resource allocation
using virtual clusters. In: The 9th IEEE/ACM International Sym-
posium on Cluster Computing and the Grid, pp. 260–267 (2009).
https://doi.org/10.1109/CCGRID.2009.23

8. Ian, L., Derek, M., Richard, B., Timothy, R., Paul, B., David, E.,
Robin, F., Eoin, H.: The design and implementation of an operating
system to support distributedmulti-media applications. IEEE J. Sel.
Areas Commun. 14(7), 1280–1297 (1996)

123

https://doi.org/10.1109/HPCC.2008.167
https://doi.org/10.1109/HPCC.2008.167
https://doi.org/10.1145/1346256.1346258
https://doi.org/10.1145/1346256.1346258
https://doi.org/10.1109/CCGRID.2009.23

Cluster Comput (2018) 21:1395–1410 1409

9. Kenneth, J.D., David, R.C.: Borrowed-virtual-time (BVT) schedul-
ing: supporting latency-sensitive threads in a general-purpose
scheduler. ACM Sigops Oper. Syst. Rev. 34(2), 27–28 (1999)

10. Ludmila, C., Diwaker, G., Amin, V.: Comparison of the three CPU
Schedulers in Xen. Acm Sigmetrics Perform. Eval. Rev. 35(2), 42–
51 (2007)

11. Young,C.L.,Albert, Y.Z.: Rescheduling for reliable job completion
with the support of clouds. Future Gener. Comput. Syst. 26(8),
1192–1199 (2010)

12. Kinshuk, G., Dan, T., Yongqiang, H., Mendel, R.: Cellular disco:
resource management using virtual clusters on shared-memory
multiprocessors. AcmTrans. Comput. Syst. 18(3), 229–262 (2000)

13. Volkmar, U., Joshua, L., Espen, S., Uwe, D.: Towards scalable
multiprocessor virtualmachines. In: The 3rdConference onVirtual
Machine Research and Technology Symposium, vol. 3, pp. 1–14
(2004)

14. Mendel, R., Tal, G.: Virtual machine monitors: current technology
and future trends. Computer 38(5), 39–47 (2005)

15. Hiroshi, Y., Kenji, K.: Foxy Technique: tricking operating system
policies with a virtual machine monitor. In: The 3rd International
Conference on Virtual Execution Environments, pp. 55–64 (2007).
https://doi.org/10.1145/1254810.1254818

16. Jonas, P., Christian, S., Claudia, E.: Formal model for virtual
machine introspection. ACMWorkshop on Virtual Machine Secu-
rity, pp. 1–10 (2009). https://doi.org/10.1145/1655148.1655150

17. Fumio, M., Dong, S.K., Jong, S.P.: Towards optimal virtual
machine placement and rejuvenation scheduling in a virtualized
data center. In: IEEE International Conference on Software Reli-
ability Engineering Workshops, vol. 7(5), pp. 1–3 (2008). https://
doi.org/10.1109/ISSREW.2008.5355515

18. Dongsung, K., Hwanju, K., Myeongjae, J., Euiseong, S., Joon-
won, L.: Guest-aware priority-based virtual machine scheduling
for highly consolidated server. In: The 14th International Euro-Par
Conference on Parallel Processing, vol. 5168, pp. 285–294 (2008).
https://doi.org/10.1007/978-3-540-85451-7_31

19. Cota-Robles, E.C., Flautner, K.: Real-time scheduling of virtual
machines. U.S. (2008)

20. Lei, Sh, Deqing, Zh, Hai, J.: Xen Virtualization Technlogy.
Huazhong University of Science & Technology Press, Wuhan
(2009)

21. Zohar, L., Dimitri, G.G., Baruch, K.: Optimal booking of machines
in a virtual job-shop with stochastic processing times to minimize
total machine rental and job tardiness costs. Int. J. Prod. Econ.
111(2), 812–821 (2008)

22. Jinpeng, H., Qin, L., Chunming, H.: Research and design on
hypervisor based virtual computing environment. J. Softw. 18(8),
2016–2026 (2007)

23. Jian, W., Jianling, S., Xinyu, W., Xiaohu, Y., Shenkang, W., Junbo,
Ch.: Efficient scheduling algorithm for hard real-time tasks in
primary-backup based multiprocessor systems. J. Softw. 20(10),
2629–2637 (2009)

24. Weizhe, Zh, Zhihong, T., Hongli, Zh, Hui, H., Wenmao, L.: Multi-
cluster co-allocation scheduling algorithms in virtual computing
environment. J. Softw. 18(8), 2027–2037 (2007)

25. Sisu, X., Justin, W., Chengyang, L., Christopher G.: Rt-xen:
towards real-time hypervisor scheduling in Xen. In: International
Conference on Embedded Software, pp. 39–48 (2011). https://doi.
org/10.1145/2038642.2038651

26. Like, Zh., Song, W., Huahua, S., Hai, J., Xuanhua, Sh.: Virtual
machine scheduling for parallel soft real-time applications. In: The
20th IEEE International Symposium on Modelling, pp. 525–534
(2013). https://doi.org/10.1109/MASCOTS.2013.74

27. Jin, H., Gao, W., Wu, S., Xuanhua, Sh, Xiaoxin, W., Fan, Zh: Opti-
mizing the live migration of virtual machine by CPU scheduling.
J. Netw. Comput. Appl. 34, 1088–1096 (2011)

28. Xiangtong, Q., Jonathan, F.B., Gang, Y.: Disruption management
for machine scheduling: the case of SPT schedules. Int. J. Prod.
Econ. 103(1), 166–184 (2006)

29. Rui, W., Dara, M.K., Naganajan, K.: A distributed control frame-
work for performance management of virtualized computing
environments. In: The 7th International Conference on Autonomic
Computing, pp. 89–98 (2010). https://doi.org/10.1145/1809049.
1809066

30. Dara, K., Jeffrey, O.K., James, E.H., Naganajan, K., Guofeng,
J.: Power and performance management of virtualized computing
environments via lookahead control. Int. Conf. Automonic Com-
put. 12(1), 3–12 (2008). https://doi.org/10.1109/ICAC.2008.31

31. Rajiv, R., Rodrigo, N.C., Rajkumar B.: Virtual machine provision-
ing based on analytical performance and QoS in cloud computing
environments. In: International Conference on Parallel Processing,
pp. 295–304 (2011). https://doi.org/10.1109/ICPP.2011.17

32. Jim, S., Ravi,N.:VirtualMachines:Versatile Platforms for Systems
and Processes. Morgan Kaufmann Publishers Inc., San Francisco
(2007)

33. Jin, H., Li, D., Song, W., Like, Zh: Automatic power-aware recon-
figuration of processor resource in virtualized clusters. J. Comput.
Res. Dev. 48(7), 1123–1133 (2011)

34. Timothy,W., Prashant, S., Arun,V.,Mazin,Y.: Black-box and gray-
box strategies for virtual machine migration. In: The 4th USENIX
Conference on Networked Systems Design & Implementation, pp.
229–242 (2007). https://doi.org/10.1109/ICAC.2006.1662416

35. Hwanju, K., Hyeontaek, L., Jinkyu, J., Heeseung, J., Joonwon, L.:
Task-aware virtual machine scheduling for I/O performance. In:
International Conference on Virtual Execution Environments, pp.
101–110 (2009). https://doi.org/10.1145/1508293.1508308

36. Sriram, G., Arjun, R.N., Amitayu, D., Bhuvan, U., Anand, S.: Xen
and co.: communication-aware CPU scheduling for consolidated
Xen-based hosting platforms. In: The 3rd International Conference
on Virtual Execution Environments, pp. 126–136 (2007). https://
doi.org/10.1145/1254810.1254828

37. David, C.: The Definitive Guide to the Xen Hypervisor. Pearson
Education Inc., Upper Saddle River (2008)

38. Pan, J.N.: A study of multivariate pre-control charts. Int. J. Prod.
Econ. 105(1), 160–170 (2007)

39. Ramadgel, P.J., Wonham, W.M.: Supervisory control of discrete
event processes. In: FeedbackControl of Linear andNonlinear Sys-
tems, pp. 202–214 (1982). https://doi.org/10.1007/BFb0006830

40. Stanescu, A.M., Dumitrache, I., Curaj, A., Caramihai, S.I., Chircor,
M.: Supervisory control and data acquisition for virtual enterprise.
Int. J. Prod. Res. 40(15), 3545–3559 (2002)

41. Lai, K.C., Smiley, W.C., Fred, S.: A new measure of process capa-
bility index Cpm . J. Qual. Technol. 20(3), 162–175 (1988)

42. Maria, T.C., Aysun, S., Jose, M.S.: A new approach for measure-
ment of the efficiency of Cpm and Cpmk control charts. Int. J. Qual.
Res. 7(4), 605–622 (2013)

43. Ledolter, J., Swersey, A.: An evaluation of pre-control. J. Qual.
Technol. 29(2), 163–171 (1997)

44. Pearn, W.L., Chien-Wei, W.: Production quality and yield assur-
ance for processes with multiple independent characteristics. Eur.
J. Oper. Res. 173(2), 637–647 (2006)

45. George, D., Coste, E.C., Luminita, R., Sebastian, M.R.: The role of
virtual networks in virtual enterprise. J.Mech. Eng. 52(7), 526–531
(2006)

46. Mohamed, S.C.,Habib,C.,Belaı,A.:Quality control systemdesign
through the goal programming model and the satisfaction func-
tions. Eur. J. Oper. Res. 186(3), 1084–1093 (2008)

123

https://doi.org/10.1145/1254810.1254818
https://doi.org/10.1145/1655148.1655150
https://doi.org/10.1109/ISSREW.2008.5355515
https://doi.org/10.1109/ISSREW.2008.5355515
https://doi.org/10.1007/978-3-540-85451-7_31
https://doi.org/10.1145/2038642.2038651
https://doi.org/10.1145/2038642.2038651
https://doi.org/10.1109/MASCOTS.2013.74
https://doi.org/10.1145/1809049.1809066
https://doi.org/10.1145/1809049.1809066
https://doi.org/10.1109/ICAC.2008.31
https://doi.org/10.1109/ICPP.2011.17
https://doi.org/10.1109/ICAC.2006.1662416
https://doi.org/10.1145/1508293.1508308
https://doi.org/10.1145/1254810.1254828
https://doi.org/10.1145/1254810.1254828
https://doi.org/10.1007/BFb0006830

1410 Cluster Comput (2018) 21:1395–1410

Ying Li Ph.D. Candidate. She
received bachelor degree in 2009
and the master degree in School
of Automation and Information
Engineering of Xi’an University
of Technology in 2012. Now
she is engaged in the researches
of virtual technology and cloud
computing.

Jing Zhang Professor, Doctoral
supervisor. He received the doc-
tor degree in Department of Sys-
tems Engineering of Xi’an Jiao-
Tong University in 1994. He
has worked in Department of
Computer of Xi’an University of
Technology since 1977, and now
he is a professor and the Ph.D.
supervisor of School of Com-
puter Science and Engineering,
Xi’an University of Technology.
He has published 60 papers and
hosted 20 research projects in
recently 10 years. Recently he

concentrates on the researches of distributed system, virtualization, big
data and cloud computing.

XiaoJun Chen Doctor, Senior
Engineer. He received bachelor
degree in 2004, themaster degree
in 2009, and received the doc-
tor degree in 2012 at School
of computer of Xi’an University
of Technology. Now he engages
on the automation of electric
power systems and information
technology in Shaanxi Regional
Electric Power Group Co. LTD,
Recently he concentrates on vir-
tual technology and cloud com-
puting.

JunHuai Li Professor. He rec-
eived the bachelor degree in elec-
trical automation from Shaanxi
Institute of Mechanical Engi-
neering in 1992, the master
degree in computer application
technology from Xi’an Univer-
sity of Technology in 1999,
and the doctor degree in com-
puter software and theory from
Northwest University in 2002.
He is currently a professor with
School of Computer Science and
Engineering, Xi’an University of
Technology. His research inter-
ests include Internet of things
technology and network comput-
ing.

JuLan Ding Physician. She rec-
eived bachelor degree at Depart-
ment of medicine of Xi’an
JiaoTong University in 1977.
Recently she concentrates on the
researches of bioinformatics and
big data.

123

	An accurate resource scheduling system for virtual machines based on CPU load monitoring and assessment
	Abstract
	1 Introduction
	2 Related work
	3 The architecture design
	4 The key technologies design
	4.1 CPU monitoring based on virtual machines
	4.2 CPU assessment based on load stability and capability
	4.3 Resource adjustment based on CPU assessment

	5 System evaluations
	6 Conclusions
	References

