Cluster Comput (2019) 22:S847-S858
https://doi.org/10.1007/s10586-017-1332-3

@ CrossMark

Semantic query graph based SPARQL generation from natural

language questions

Shengli Song'® - Wen Huang! - Yulong Sun!

Received: 7 September 2017 / Revised: 25 October 2017 / Accepted: 3 November 2017 / Published online: 14 November 2017

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Abstract In order to precisely represent natural language
questions (NLQs) in question answering system (QAS)
and provide a more naturally interactive mode, we require
SPARQL, a formalized query patterns, instead of search
expression to express the user’s semantic query intention.
However, how to generate and evaluate SPARQL query from
NLQ is a mostly open research question. In this paper, we
propose a framework that can help users translating NLQ into
well-formed queries for knowledge based systems. We define
anew graph structure, semantic query graph, and vocabulary
to match all kinds of complex and compound questions with-
out using domain ontology. Through query expansion and
semantic query graph generation, the framework resembles
subgraphs of the knowledge base and can be directly mapped
to a logical form. Extensive experiments over NLQ in real
RDF QASs verify the feasibility and efficiency of seman-
tic query graph and our proposed framework with average
F-measure of 0.825.

Keywords Query generation - Semantic query graph -
SPARQL - Natural language question

1 Introduction

Recently, knowledge bases have attracted lots of attentions
in both academia and industry. It is known that large-scale
knowledge base like Freebase and DBpedia has been come to
an important semantic database for supporting open domain
question answering systems (QASs). It becomes necessary to

B Shengli Song
xidiansls@163.com

Software Engineering Institute, Xidian University,
Xi’an, China

interface SPARQL engines since it is impossible for an end-
user to handle the complexity of the “schemata” of different
pieces of knowledge bases. Therefore, the user requires hav-
ing the capability of writing query sentences with a related
query language, such as constructing SPARQL in Linked
Data based QAS. In order to fill this gap, it is necessary to
formalize natural language questions (NLQs) as SPARQL for
capturing information in QAS directly. Also, we think that the
availability of voice recognition services which understand
natural speech and become more and more popular, espe-
cially on smartphones, implies that we have now to work on
the translations of NLQ into formal queries.

Different from modern information retrieval systems
which allow the user to locate documents that might contain
the associated information, the QAS tries to retrieve accu-
rate and concise answers. The wide variety of graph patterns
that can be matched through SPARQL queries reflects the
wide variety of the data that SPARQL is designed for the
data of the Semantic Web. SPARQL can be used efficiently
and effectively to extract the necessary information hidden in
non-uniform data stored in various formats and sources. But
the majority of QAS leaves it to the user to extract the useful
information from an ordered list, such as the input question
“What is the capital of China?” should get back response
“Beijing” instead of users exploring a list of relevant docu-
ments presented to find an accurate answer.

With the development of QAS, it enables users to access
the knowledge base by asking questions and getting back
a proper response in concise words. There are many state-
of-the-art methods to apply SPARQL to QAS. Through the
introduction of SPARQL, it can more accurately express
user’s query intention so as to improve the accuracy of QAS,
but SPARQL is so professional that it is hard to learn for most
users. So, it is very important that how to generate SPARQL
query automatically. Xser [13] is a semantic question sys-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-017-1332-3&domain=pdf
http://orcid.org/0000-0001-6879-0027

S848

Cluster Comput (2019) 22:S847-S858

tem that proposes a question structure and a template which
can generate SPARQL to query answer from KB. QAK:iS [2]
queries several multilingual versions of DBpedia at the same
time by filling the produced SPARQL query with the corre-
sponding language-dependent properties and classes. Thus,
QAK:GS can retrieve correct answers even in cases of miss-
ing information in the language-dependent knowledge base.
SWIP [16] is a hybrid QAS that generates a pivot query, a
structure between NLQ and the formal SPARQL target query.

However, the existing methods for translating NLQ into
SPARQL query can cause a bit drop-out especially in relation
mapping, which may influence the accuracy of query genera-
tion. Besides, these methods are almost for simple sentences
but do not consider compound sentences or complex sen-
tences.

In this paper, we propose a framework to generate
SPARQL via constructing semantic query graph (SQG)
based syntactic analysis and dependency parsing by consid-
ering the compound sentence and complex sentence. The
generated SPARQL statement is executed over RDF graphs.
Recently, there exists systems can complete this query such
as Jena [17], RDF-3X [7], g-store [5].

The contributions of this paper are summarized as follows:

(1) We propose SQG to express semantic information and
query intention that contained in complex and compound
NLQ. Therefore, we can use the SQG to implement
translations from all kinds of NLQ to SPARQL.

(2) Query expansion is used to promote completeness of the
generated query. It is achieved by expanding synonyms
or coordinative semantic entities of each original entity
in questions. This expansion could be applied both in
our proposed framework and existing ontology-based
methods.

(3) The proposed SPARQL generation framework is not
restricted by domain ontology, and it can be applied to
more extensive areas. Triples and semantic information
(entities and their relationships) are extracted directly
from NLQ by analyzing their syntactic structures and
expressed by SQG. SPARQL query could be generated
by traversing the graph.

(4) The experimental results show that the proposed frame-
work can successfully generate SPARQL queries in
several data sets with average F-measure of 0.825.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces some definitions of SQG. The new proposed
framework for translating NLQ into SPARQL is presented in
Sect. 3. In the next section, we describe our experiments and
results analysis in detail. We give some related works of state-
of-the-art research about SPARQL generation in Sect. 5,
which is followed in Sect. 6 by some conclusions and direc-
tions of future work.

@ Springer

2 Semantic query graph
2.1 SPARQL query structure

The definition of a formal semantics for SPARQL has played
a key role in the standardization process of this query lan-
guage. Although taken one by one the features of SPARQL
are intuitive and simple to describe and understand, it turns
out that the combination of them makes SPARQL into a com-
plex language. A formalization of a semantic SPARQL is
beneficial for several reasons, including to serve as a tool to
identify and derive relations among the databases or KBs.
These databases or KBs can stay hidden in the use case
in order to identify redundant and contradicting notions, to
drive and help the implementation of query engines, and to
study the complexity, expressiveness. The power of SPARQL
together with the flexibility of RDF can lead to lower devel-
opment costs passing merging results from multiple data
sources.

A SPARQL query consists of a set of triple patterns in
which each element, i.e., subject, predicate, object, can be
a variable. And SPARQL query has four types of queries:
SelectQuery, ContructQuery, DescribeQuery and AskQuery.
The four types of SPARQL query are defined by Definition
1-4.

Definition 1 (SelectQuery) The SELECT clause in a Select-
Query selects a group of variables, or all of them using as in
SQL: the wildcard *. In this type of queries, one can eliminate
duplicate solutions using DISTINCT.
SelectQuery= “SELECT” (“DISTINCT” | “REDUCED”)?
(Var+1 “*”)
“FROM” (DefaultGraphClause | NamedGraphClause) *
“WHERE”? OrderClause? LimitOffsetClauses?

Definition 2 (ContructQuery) In a ConstructQuery, the
CONSTRUCT form, and more specifically the Construct-
Template form, is used to constructs an RDF graph using
the obtained solutions. The formalization of ConstructQuery
is as follows:
ConstructQuery = “ CONSTRUCT” ConstructTemplate
“FROM” (DefaultGraphClause | NamedGraphClause) *
“WHERE”? OrderClause? LimitOffsetClauses?

Definition 3 (DescribeQuery) In a DescribeQuery, the
DESCRIBE form is not normative. And it is intended to
describe the specified variables or URIs or IRIs, i.e., it can
return all the triples in the KB involving in these resources.
The definition of DescribeQuery is as follows:
DescribeQuery = “DESCRIBE” (VarOrIRIref+ | “*”)
“FROM” (DefaultGraphClause | NamedGraphClause) *
“WHERE”? OrderClause? LimitOffsetClauses?

Definition 4 (AskQuery) In an AskQuery, the ASK form has
no parameters but the answer can be queried. It returns TRUE

Cluster Comput (2019) 22:S847-S858

S849

if the solution set is not empty, and FALSE otherwise. The
AskQuery is described as follows:
AskQuery = “ASK”
“FROM” (DefaultGraphClause | NamedGraphClause) *
“WHERE”?

The basic engine of the language is a pattern matching facil-
ity, which uses some graph pattern matching functionalities
(sets of triples can also be viewed as graphs). From a syn-
tactic point of view, the overall structure of SPARQL query
language includes three main blocks:

e SELECT clause, which specifies the final form in which
the results are returned to the user. SPARQL allows
several forms of returning the data: a table using
SELECT, a graph using DESCRIBE or CONSTRUCT, or
a TRUE/FALSE answer using ASK. Among them, ASK
whether there is at least one match of the query pattern in
the RDF graph data; CONSTRUCT an RDF graph by sub-
stituting the variables in those matches in a set of triple
templates; DESCRIBE the matches found by construct-
ing a relevant RDF graph.

e FROM clause, which specifies the sources to be queried.

e WHERE clause, which is composed of a graph pattern.
Informally speaking, this clause is given by a pattern that
corresponds to an RDF graph where some resources have
been replaced by variables. Not only that, more complex
expressions (patterns) are also allowed, which are formed
by using some algebraic operators. This pattern is used
as a filter of the values of the dataset to be returned.

2.2 Semantic query graph definition

In order to organize large amounts of semantic information
into one unified structure, we design a new representable
graph structure, SQG, for SPARQL query transformation and
generation. The SQG not only can express the semantic infor-
mation of NLQ but also can map to SPARQL query language.
The vertex and edge of SQG are defined according to the stan-
dard notions of RDF and SPARQL representation, i.e., triple,
RDF graph, basic graph pattern. The variable vertex “?x0”
can represent the variable in SELECT clause in SPARQL.
Each relation triple in SQG can map to the graph pattern in
WHERE clause. The specific explanation of SQG definition
is as in Definition 5.

Definition 5 (Semantic query graph) SQG can be denoted
as Q. Q% = (V, E), where V is a set of vertices that represent
the named entity, variable or relation term in NLQ. The entity
node is the named entity while variable node represents the
common noun which stands for the category. E refers to a
set of relational triples which is a set of relational phrases in
NLQ.

In more details, V can be divided into three types: answer
node, entity node and variable node. The three types of nodes
and the edge of relation triple are described as follow:

e answer node (7x0) is used to map entities retrieved by
the query statement.

e entity node is an existing entity in the knowledge base.

e variable node (7xi) implies some potential entities which
are linked to the answer variable or entities which link to
answer.

The relation triples of E are that relation edge connects
two nodes in SQG. In natural language, the relation is usually
a verb, and sometimes a noun or an adjective or a preposition.
Corresponding to SPARQL statements, the WHERE clause
of SPARQL query contains these semantic relation triple.

According to the three types of natural language sentences,
such as simple sentence, complex sentence and compound
sentence, NLQ can be deeply divided into three patterns [16]:
(1) It is simplest, and it required single variable and single
relation triple. i.e., “Who started pixar?”. (ii) This pattern
involves arithmetic operation (ranking or superlative). i.e.,
“Who did jackie robinson first play for?”. It will generate sin-
gle or multiple relation triples. (iii) The last pattern involves
preposition phrase and the triple generated as the second case.
i.e., “Who is the youngest player in the Premier League?”.
According to the structure of sentences, SQG can be repre-
sented as different patterns. In general situation, the NLQ is
composed of a variable node and a relational phrase whose
label is a verb. The more complex sentence is the sentence like
“What is the mother of the husband of Jane?”” which implies
more than one variable node. The compound sentence and
complex sentence may contain more than one relation which
is tagged as ontology in knowledge base instead of property.

Given a question “Who created Goofy?”, its SQG is as
shownin Fig. 1. It contains a variable node which is an answer
node, an entity node and a relation edge. The answer node
7x0 will be included in SELECT clause. After identifying
the URISs of entities and relations in SQG, it needs to traverse
each relation triple of SQG and generate SPARQL statements
in order. The SPARQL elements are listed in Table 1. It can
be found that relation triple (? x 0, creator, Goofy) can be
recognized and mapped to the triple pattern of RDF basic
query. So the WHERE clause of question is “?x0 dbp:creator
dbr:Goofy” thatis in combination with information of knowl-
edge base. In order to improve the accuracy of the answer, we
add the types information of the answer based on the types

?x0 — creator-» Goofy

Fig. 1 The semantic query graph of a simple natural language question
“Who created Goofy”

@ Springer

S850

Cluster Comput (2019) 22:S847-S858

Table 1 Semantic query graph formulation of “Who created Goofy?”

SQG elements Mapping to SPARQL query
Answer node 7x0 SELECT ?x0
Entity node Goofy dbr:Goofy
Variable node ?x0 7x0 rdf:type rdo:Person
Relational triple (? x 0, creator, WHERE {? x 0 rdf:type
Goofy) rdo:Person ?x0 dbp:creator

dbr:Goofy}

of questions, such as Yes-No question, WH question, Tag
question, Choice question, Hypothetical question, Embed-
ded question and Leading question.

3 Transformation framework for SPAQRL
generation

Based on the definition of SQG, we propose a new transfor-
mation framework for translating NLQ to SPARQL query.
The overview framework is shown in Fig. 2. Precisely, NLQ
could be converted into SPARQL statement through four
main steps according to the framework: Query Dependency
Parsing, SQG Construction, Entity and Relation Identifi-
cation, and SPARQL Query Generation. In particular, an
NLQ is dealt with the process of query dependency pars-
ing to obtain its related dependency tree, which aims at
revealing the syntactic structure of question by analyz-
ing the relation between words. For example, the question
“In which films directed by Garry Marshall was Julia
Roberts starring?”. After dependency parsing, the result is

Dependency
Parsing Tree

Natural Lanuage
Questions

Stanford Parser

Answers

=92
DBpadia-..

SPARQL Query

as follow: nsubj(starring, Julia Roberts), prep in(starring,
film), prep in(film, Garry- Marshall), det(film, which), adv-
mod(film, directed). When getting the parsing result of the
question, we construct semantic query graph via an algo-
rithm in Sect. 3.2. SQG can represent some triples:(Julia
Roberts, starring, ?7x0),(?x0, type, film) (?x0, directed, Garry
Marshall). Finally, SQG is mapped to SPARQL query, which
has completed translating NLQ to SPARQL query.

3.1 Question dependency parsing

The fundament of query dependency parsing is that the syn-
tactic structure of NLQ is determined by a set of dependency
relations and by a topic phrase and some dependency phrases.
Query dependency parsing includes two main tasks. The
first task is to analyze the structure of NLQ by constructing
Dependency Parsing Tree (DPT), which can be completed
by NLP parsing tools, such as the Stanford Parser. The sec-
ond task is optimization process for DPT refinement so as to
generate SQG.

Definition 6 (Dependency parsing tree) Dependency pars-
ing tree can be denoted as DPT. DPT = (W,E,L), W =
W0, W1, ..., Wn, W is the set of words of the question,
Wi is a word of a sentence. E = (Wh, Wm,I) : 0 < h <
n,1 <m <n,l € L,(Wh, Wm,lI) indicates an edge from
a head word (parent node) Wh to a modifier word (child
node) Wm, [is the type of relationship between words. L
is a set of the semantic relations of words. WO is the head
work of the whole NLQ. Figure 2 depicts a dependence struc-
ture of question “Which singer from London is married to
David Beckham born in a city of London?”, in which, the

Dependency
Parsing Graph

SQG6G Construction

Semantic
Query Graph

E&R Identification

Resources
Lists

Optimization

Java API for WordNet
Searching

@

~

SPARQL Generation

Statement

Fig. 2 Overview of the transformation framework for SPARQL generation

@ Springer

Cluster Comput (2019) 22:S847-S858

S851

ROOT
WHNP sQ
PN — \VP
WHNP [VBZ
RS PR VBN/ \PP
WOT NN IN NP 1 —
e T
i i i NP VP
VRN — =
NNP NNP VBN PP
| | | NP PP
N\ P
DT NN IN NP
L NNP

Wi\ich siﬁger 1’irom Lon&on is married o David Beckham born in a cﬁ'y of London?

Fig. 3 The sample dependency parsing tree of the natural language
question “Which singer from London is married to David Beckham
born in a city of London?”

number represents the word position index in question. The
root node “married” is the head word of the whole NLQ.
The (“married”, “singer”, “nsubj”) represents that the word
“singer” modifies “married” and the type of relation nominal

subject (nsubj) (Fig. 3).

Optimizing operations should be applied to the DPT, and
we will get an optimized Dependency Parsing Graph (PDG).
The operations can be divided into three types. The first type
is that merging the multi-words or compound expressions
whose dependency is “n-n” (noun compound modifier, i.e.
man-made) or “compound”, such as the name of the person
(i.e. David Beckham). The second type is to remove depen-
dencies which are less semantic and are unlikely expressed
in the triple pattern of knowledge base, such as “aux” (i.e.
be, should), “determiner” (i.e. a, the), but if the dependent of
“determiner” is a question word (i.e. what, which), the “deter-
miner” should remain. The third type is joining dependencies
which stand for conjunctive or disjunctive statements. Based
on these three kinds of operations, the PDG of the example,
“Which singer from London is married to David Beckham
born in a city of London?”, is shown as in Fig. 4. “David”
and “Beckham” nodes are merged to one node “David Beck-
ham”. The dependency “auxpass” and the node “is” should
be removed from DPT.

3.2 Semantic query graph construction

The SQG is constructed according to the given the depen-
dency structure of NLQ statement. On the revision of
dependence, the influence of prepositions or passive on
subject and relation and the relationship between two associ-
ated entities are considered. So in this step, the dependency
“proposition” should be reserved.

The detail of SQG construction algorithm is shown in
Algorithm 1. “addEntity” is a function that constructs the
entity node of SQG if the part of speech of Wi is “NNP”(i.e.
named entity) . “createVarible” is used to construct the vari-
able node. If the part of speech of Wi is “NN” or “NNS” (i.e.

common noun ‘“singer””) and the id is the number of vari-
ables, we define ?x0 to be the answer node which presents
the answer to SELECT statement. If Wi has an edge con-
necting the WH question (i.e. which, what) and it will also
be denoted as ?x0. “createEdge” has three arguments that
express the start node, the end node and the relation between
them. The SQG of question “Which singer from London is
married to David Beckham born in a city of London?” is
shown in Fig. 6. From the figure, we add an edge between
“David Beckham” and “?x0” which corresponds to “singer”.
The node of “born” is a verb so we add an edge between
“David Beckham” and “?x1” which corresponds to “city”.
Because “singer” and “London” have already existed in SQG,
we need to add an edge between “London” and “?x0” which
corresponds to “singer”, so as the nodes of “city” and “Lon-

’

don”.

Algorithm 1 Senmantic Query Graph Generation Algorithm

Input: DependencyParsingTree
Output: SenmanticQueryGraph
Set id is the nunber of variable node of SQG and id=0
for W; € W do
if W; is "NNP” then
addEntity(W;, V)
end if
if T, is "NN” or "NNS” then
createVarible(V, id) denoted as ?x;
addEntity(W;, V)
create Edge(?x;, W;, type’)
end if
if W is verb then
get the Wipsup; of < Wo, Wiy, 1 > if 1 is “subj” or
“nsubj” && W, is noun
get the Wiop; of < Wo, Wiy, 1 > if 1 is “obj” or
“proposition” && W, is noun
c7‘eateEdge(Iles ubj s I/Vm ob; I/VO)
end if
if Wy is "WHNP” then
get < Wy, Wiy, [> if [is ”subj” or nsubj”
if W,,, is "NNP” then
createEdge(?xo, Wi, name’)
end if
else
if W,,, is "NN” or”NNS” then
if W; is verb & #0 then
getthe I/Vhsubj and I/I/‘mobj of < ‘/I/vhsubj~, Wil >
< Wi, Wanong, >
create Edge(Whsub, Winobj, Wi)
end if
if < W), W,,, 1 >, W;,,W,, €V then
create Edge(Wh,, W, 1)
end if
end if
end if
end for

3.3 Entity and relation identification

When we get the SQG from the generation process, the
entity nodes and the relation edges in SQG need to be con-
nected with Linked Data in the knowledge base. The main
idea of our method is to resolve the entity nodes to the
resource recorded passing knowledge base and vocabulary.

@ Springer

S852

Cluster Comput (2019) 22:S847-S858

\

e
arried fo)
X m

J
T
nsubjpass prep_to,
singer David_Beckham
def/;r'ep_fr‘om vmod
,*é, A - ,
e . ¢ X
S which J London S born 7
—
prep_in
A 4
city
I
prep_of
\ 4
London

Fig. 4 The sample dependency parsing graph of the natural language
question “Which singer from London is married to David Beckham
born in a city of London?”

The vocabulary, which is extracted from special knowledge,
is to mainly record the mapping between attributes and rela-
tionships commonly used in the knowledge base and natural
language terms. The result is tagged as the resource, class,
ontology or category. And the entity nodes do not need to
pretreat before mapping because the form of representation
of entity nodes are almost the same as those of resources in
the knowledge base. i.e., the entity node “river” corresponds
to the resource “(http://dbpedia.org/ontology/River)” in the
knowledge base. However, the relation edges are not the case.
Itis more difficult to deal with than the entity nodes. The pred-
icate can be classified into three categories including verbal
predicate, adjectival predicate and predictive. The latter two
categories can be processed together.

Among knowledge base (i.e., DBpedia, Yago), the seman-
tic similarity of the object properties can be measured by
using a string similarity score [26]. The score is calculated
by the length of the greatest common subsequence over the
length of the word. For example, the predicate “written” is
searched for corresponding properties in a property list that
have the greatest common subsequence. The object property
dbont:writer is the most similar object property for the predi-
cate “written”. A list of all possible pairs of object properties
is constructed from knowledge base with similar meanings.
For each item, we have calculated the similarity score by
using WordNet. By doing so, we get a list of object proper-
ties with their similar meanings. For example, dbont:writer
has similar meaning with dbont:author.

If a predicate with POS tag value is noun or adjec-
tive, it searched for candidate data properties using the
score of string similarity. For the question “What is the
height of Michael Jordan?”, the resulting triple will be
(Michael Jordan, height, 7x). Using common subse-
quence of the predicate, “height” is mapped to dbont:height.
A list of adjectives is constructed for all data properties

@ Springer

defined by special knowledge base using Java API for Word-
Net Searching (JAWS). By doing so, we get a list of data
properties with their adjective meanings. For the question
“How tall is Michael Jordan?”, the resulting triple will be:
(Michael Jordan, tall, 7x). By using an adjective list
obtained, the predicate “tall” is mapped to dbont:height.

QAS needs patterns that denote relations between enti-
ties. There would be cases where the intended NLQ can be
phrased in numerous ways. For instance, a question about the
birthplace of Michael Jackson can be built as “Where was
Michael Jackson born in?” or “Where was Michael Jackson
born?”. However, in order to query data from DBpedia, we
will need the object property of “birthPlace”. For this rea-
son, we have to construct a “birthPlace” relationship with
“Michael Jackson” and “Gary, Indiana”, where he was born
in, for both questions. Here “born in” and “born” are phrases
in natural language, so it is necessary to map such phrases
into the same object property. Nakashole et al. [14] proposes
a method that constructs a large resource for word or phrases
patterns that denotes binary relations between entities, orga-
nizing patterns into a set of synonymous patterns similar
in spirit to WordNet. The patterns are semantically typed
and organized into a subsumption taxonomy called PATTY.
Extracting word or phrases patterns from a corpus follows
two steps: firstly, relational patterns from a corpus are com-
piled and then a semantically typed structure is imposed on
them. After extracting the word or phrases patterns from a
corpus, this work arranges the patterns in a semantic taxon-
omy. A prefix-tree for frequent patterns is used to determine
inclusion, mutual inclusion, or independence. The prefix-tree
stores support sets of patterns.

There are some common nouns standing for entity nodes,
soitshould be processed by using a different method [27-30].
When constructing SQG, we add a relation edge whose name
is “type” between a variable node and an entity node. For a
relation term #; in a relationship set 7', if #; contains rdf:type
predicate, and then the object of #; is regarded as entity class
of the knowledge base. For the question “Which book is
written by Orhan Pamuk?” the word “book” is mapped to
dbont:Book using label properties of all entity classes.

We map the relation edges to predicates and map the
entity nodes to resources. It can get some candidate resource
lists and predicate lists according to the former two steps.
The next step is to recognize the correct relationship chain
in candidate lists. In the sample query as shown in Fig. 4,
“Which singer from London is married to David Beckham
born in a city of London?” First, the entity node “David
Beckham” is mapped to some URIs representing the David
Beckham in DBpedia. The list includes “http://dbpedia.org/
resource/DavidBeckham” and “http://dbpedia.org/resource/
Category:DavidBeckham”. The two entity nodes with com-
mon nouns are “London” and “singer”. “London” is mapped
to some URIs which are “http://dbpedia.org/Class/London”

http://dbpedia.org/ontology/River
http://dbpedia.org/resource/DavidBeckham
http://dbpedia.org/resource/DavidBeckham
http://dbpedia.org/resource/Category:DavidBeckham
http://dbpedia.org/resource/Category:DavidBeckham
http://dbpedia.org/Class/London

Cluster Comput (2019) 22:S847-S858

S853

Fig. 5 Triple patterns of the
resource “David Beckham”

/R dbr:David_Beckham \‘

R dbr:David_Beckham /‘

P foaf:name

P dbo:birthPlace

David_Beckham

‘:’; dbr:London \

and “http://dbpedia.org/resource/Category:London”. The
representation of “singer” is “http://dbpedia.org//London”
and “http://dbpedia.org/resource/Category:London”. When
completing the mapping of resource and property, we need
to denote the relationship between entities based on the result
of the previous step.

3.4 SPARQL query generation

The new query presentation model, which has been built
during the SQG construction step, is used to generate
the SPARQL query statement. Given an SQG, we can
translate it into SPARQL via traversing the whole graph.
Each edge of SQG can be represented as one SPARQL
condition statement. When we construct SQG and iden-
tify entity and relation based on the underlying knowl-
edge base, we can traverse relation triple and generate
(subject, relation, object) triple in order. The variable
node stands for a variable in SPARQL and entity node can be
seen as resource or attribute value. The directed edge presents
the relationship between the node and will be used to gener-
ate predicate of SPARQL query. In this step, each SQG will
be translated to SPARQL query based on the definition of
SQG and SPARQL query language in Sect. 2.

The SPARQL query generation process should consider
two different factors: (1) The generated SPARQL form which
takes into account the expected type of the result form (e.g.,
ASK or SELECT); (2) The presence of aggregation opera-
tors and the variable associated with the question topic. In
most cases, the generated SPARQL form is SELECT. If an
aggregation operator is expected, it requires the GROUP BY
clause which will be processed during the other process, that
is the generation of WHERE clause. This part consists of the
generation of strings for representing each relation triples
for SQG and the filters if the predicates are negated terms.
When aggregation operators are used, it is also necessary
to recursively generate filters and sub-queries for comput-
ing the subsets of expressions before their aggregation. The
result according to the intention of the user always has a
single column.

An example is shown in Fig. 5. According to the
sample SQG, the relation triples can be obtained (i.e.,
(?x0, rdf:type, singer), (?x0, birthplace, London), (singer,

{P) dbo:carrerstation (P foaf:name

(\Ri\,}dbr:David_Beckham_l David Robert Joseph Beckham

P “dbo:team

dbr: Tottenham_Hotspur F.C

marriedTo, David_Beckham), (David_Beckham, birthplace,
?x1), (London,cities_in_London, ?x1)). The resulting form,
which can be determined based on the type of question, is
SELECT. For WHERE clause, each triple can correspond
with each query statements. So, we can generate the SPARQL
statement of the sample question as shown in Fig. 6.

In Fig. 6, we merge the relational triples obtained from
Fig. 5. Every triple can generate a graph including two nodes
and one edge. We use “(David_Beckham, birthplace, 7x1)” as
an example. There are two nodes named “David_Beckham”
and “7x1”, and the edge named “birthplace”. The generated
graph is as shown in the upper portion of Fig. 6. The graph
can be transformed to the SPARQL query shown in the lower
portion of Fig. 6 easily.

4 Experimentation
4.1 Question datasets

For the evaluation of our framework, we use four different
datasets. The first three datasets are QALD [24], WebQues-
tions [1] and Free917 [3]. The QALD dataset consists of
149 questions annotated with the corresponding SPARQL
query and answers over Linked Data. The WebQuestions
dataset contains 5,810 question-answer pairs, collected using
the Google suggest API and crowdsourcing. The Free917
dataset contains 917 questions annotated with logical forms
grounded to Freebase. The fourth dataset is a new NLQ
collections named “WebNLQ” which we collected via dif-
ferent kinds of questions and answers from web pages. The
WebNLQ dataset comprises 215 questions, and most of them
are complex and compound questions. We also make use
of DBpedia and Freebase knowledge base for the query.
The former contains 10 million entities, 1.8 billion rela-
tions between entities and several billions of triples covering
sorts of the topics (i.e., people, geography, films, book, etc.).
In Freebase, the subjects are called topics and the data
is stored about depended on their type defined as predi-
cates.

As shown in Table 2, we analyze the complexity of
NLQ and classify them into three types according to NLQ
structure: simple sentence (simplest, arithmetic, preposition),

@ Springer

http://dbpedia.org/resource/Category:London
http://dbpedia.org//London
http://dbpedia.org/resource/Category:London

S854

Cluster Comput (2019) 22:S847-S858

Fig. 6 The semantic query

graph and generated SPARQL David_Beckham —born_in—» ?2x1
query of the natural language 1
question “Which singer from married_to from type
London is married to David v - ™
Beckham born in a city of ?x0 London C“’y
London?”
from type
~A
London singer

SELECT ?x0 WHERE

{
?x0 rdf:type dbo:singer
?x0 dbp:birthPlace db:London
?x0 dbp:marriedTo dbr:David_Beckham
dbr:David_Beckham dbp:birthPlace ?x1
dbr:London Cities_in_ London ?x1
}
Table 2 The classification of QALD
Type of question Example Number
Simple sentence Simplest: Who produces TV? 43
Arithmeticz: Who was the first to climb Mount Everest? 17
Preposition: How many languages are spoken in Colombia? 72
Complex sentence (almost attributive clause) What states are border states which the Mississippi runs through? 10
Compound sentence What jobs desire a degree but don’t use C++? 7

compound sentence and complex sentence. Then the ques-
tions can be classified into four types according to the type
of answer: definition, affirmation, list, yes/no according to
the logic and the type of answer. In addition to processing
the question using question classification, more information
about the expected answer of question can be derived (i.e.,
human is corresponding to the who question, date or time is
corresponding to the when question, etc.).

4.2 Experimental setup

We first parse the question into words using Stanford Parser,
and next find the synonyms terms for each word using Word-
Net. And we extract related terms for the query statement
from knowledge base using DBpedia Spotlight. Synonyms
terms and related terms are combined using permutation in
WordNet, and we can compute semantic similarity by Word-
Net. For example “What is the name of football clubs in
EEFA?”, we use Stanford CoreNLP to syntactic analysis.
The result is DPT structure about the POS tag of each word.
We also use WordNet to analysis the synonyms form and find
the synonyms terms form of noun phrases. So the expanded

@ Springer

query of sample question is “what is the name of the foot-
ball:soccer clubs in EEFA?”

We use SQG construction algorithm to construct the SQG
for each sentence. There exist differences between natu-
ral language and knowledge in representation. In order to
improve the accuracy of generated SPARQL statements, we
build the vocabulary to record the commonly used predicate
list of in DBpedia in to improve the accelerate linking speed.
This vocabulary can be used to map the natural language to
knowledge. Besides in this work, we use PATTY to extract
relationship patterns.

Asbuilding WHERE clause blocks, we retrieve all relation
triples from the SQG with the target entity as subject or object
by issuing the queries t ?p ?0 and ?s ?p t. Some of these triples
need to be filtered out because they would spoil the query
answer immediately. We filter out all triples which have non-
stopword tokens in common with the target entity. For each
semantic relation, three or more than three triple patterns are
created. Using the SPARQL query generation procedures in
Sect. 3.4, the SQG can be converted into SPARQL query
statements.

Cluster Comput (2019) 22:S847-S858

S855

4.3 Evaluation and analysis

We evaluate our experiment results with estimating answers
return from generated SPARQL query. For the generated
SPARQL results, we compute three metrics including pre-
cision (P), recall (R), and F-measure (F). The precision for
each dataset is the number of true positive (SPARQL gen-
erated correctly) divided by the total number of positive
(SPARQL generated) in the dataset. The recall for each
dataset is the number of true positive divided by the total
number of true (SPARQL should generated correctly) in the
dataset. F-Measure for each dataset can be calculated by
2 x precision x recall/(precision +recall). For QALD eval-
uation, we sort out the answer in QALD and manually create
gold standards.

As shown in Tables 3, 4, and 5, the results of translating
NLQ into SPARQL query obtained from different methods
on different datasets. The methods include our proposed
framework named “SQGTrans” and other various state-of-
the-art translation methods, such as AskHow @QALD, Que-
rioDalLI@QALD, Xser@QALD, ONLI@ WebQuestions and
QuerioDalLI@ WebQuestions,

From the results of our proposed transformation frame-
work “SQGTrans” in three open datasets, which are QALD,
WebQuestions and Free917, the accuracy is higher than that
of the other methods. The F1 value on the QALD benchmark
of SQGTrans is 0.83, which is 15% higher than the state-
of-the-art method Xser, the value of which is 0.72. The F1

Table 3 Results on the QALD benchmark

Recall Precision F-measure
AskHow 0.63 0.60 0.61
QuerioDaLI 0.69 0.64 0.61
Xser 0.71 0.72 0.72
SQGTrans 0.79 0.87 0.83
The number of bold is the maximum value in each column
Table 4 Results on WebQuestions and Free917
Recall Precision F-measure
WebQuestions ~ ONLI 0.85 0.80 0.83
SQGTrans 0.84 0.82 0.83
Free917 QuerioDALI 0.72 0.72 0.72
SQGTrans 0.75 0.82 0.78
The number of bold is the maximum value in each column
Table 5 Results on WebNLQ
Recall Precision F-measure
SQGTrans 0.80 0.94 0.86

The number of bold is the maximum value in each column

value on the dataset WebQuestions is 0.83, which is the same
as the state-of-the-art method ONLI. SQGTrans also obtains
a higher F1 value on dataset Free917 than the state-of-the-
art method QuerioDALI, and the values are 0.78 and 0.72
respectively.

Through a further study on the experimental results, there
are 9.8% questions failed to generate SPARQL query, and
6.7% questions classified out of scope for DBpedia. There
are more than 80% questions can be correctly translated and
return correct answers.

The SQGTrans framework we proposed first conclude the
relation of words via question classification and syntactic
analysis, and then generate SQG according to the semantic
information of NLQ. It traverses the whole SQG by starting
from the variable node “?x0” instead of mapping to SPARQL
template. We can accurately generate equivalent SQG of
simple sentences. The result of translation from NLQ into
SPARQL is divided into three types: incorrect query, cor-
rect query with a right answer, correct query with wrong
answer. The failure analysis of the experiment results are as
follows:

(1) SQG construction: Some questions are not processed
successfully due to incorrect dependency analysis and
incorrectly named entity recognition.

(2) Entity and relation mapping: In QALD dataset, there are
17 questions which could not map to DBpedia. Because
some resources are in the form of noun while these
words are adjective form, such as representation in ques-
tion is “Germany cities” but there is not “Germany” in
the knowledge base. These kinds of questions can’t be
translated to SPARQL query. And also in some cases,
it could not resolve the relation to the correct DBpe-
dia property. Besides, the result of relation mapping has
much more connections with PATTY. PATTY taxonomy
is restricted to a number of relational patterns because
these corpora include a certain number of textual pat-
terns that denote a relation between entity pairs. It does
not make use of a universal corpus that can include nearly
all available facts about entities or phrases combining
entity pairs. PATTY includes some noisy data that is not
related to the actual pattern; conversely, it harnesses pat-
terns that have an opposite meaning against the actual
pattern.

(3) DPT optimization: WordNet is frequently used but it suf-
fers from two main problems : there is a lack of proper
nouns which we tackle by using the Linked Data includ-
ing DBpedia which contains mainly instances. A large
number of ambiguous terms leads to a disambiguation
problem. However, this does not manifest itself in the
relatively small models of the benchmarks.

@ Springer

S856

Cluster Comput (2019) 22:S847-S858

5 Related works

The SPARQL generation framework is very related to seman-
tic QAS. In the following, we present existing QAS, which is
launched on Linked Data so far. Xser is based on the obser-
vation, and it contains two independent steps. First, Xser
determines the NLQ structure solely based on a phrase level
dependency graph. The next stage is using the target knowl-
edge base to instantiate the predefined template. However,
when moving to another domain based on a different knowl-
edge base, it only affects parts of the approach so that the
conversion effort is lessened. QAKiS queries several multi-
lingual versions of DBpedia at the same time by filling the
produced SPARQL query with the corresponding language-
dependent properties and classes. Thus, QAKiS can retrieve
correct answers even in cases of missing information in
the language-dependent knowledge base. SWIP generates a
pivot query, a hybrid structure between the natural language
question and the formal SPARQL target query. Generating
the pivot queries consists of three main steps: (1) named
entity identification; (2) query concept identification; (3) sub-
query generation based on the rules of query construction. To
formalize the pivot queries, the query is mapped to linguistic
patterns, which are created by hand from domain experts. If
there are multiple applicable linguistic patterns for a pivot
query, the user chooses between them. And there are some
state-of-art methods of translating NLQ into SPARQL. The
three kinds of approaches which are in different aspects are
introduced as follows.

5.1 Ontology-based translation

Lehmann et al. [9], Paredes-Valverde et al. [15], Sander et
al. [18] and Tatu et al. [23] firstly convert user input question
into query tree which represents the gap between natural lan-
guage and SPARQL. And then they combine domain specific
knowledge into ontologies, lexicons, and rules for creation
of SPARQL query. Song et al. [20,21] mainly translate NLQ
to logic intermediate language via a feature-based grammar
with semantic and propose an auto-suggest mechanism steers
NLQ which are generated answers from the knowledge base.
Matteis et al. [12] describes Treo, a natural language query
mechanism for Linked Data. Treo firstly determines the key
entities presentation of question which is the input of query
parsing, and create a logic form, partially ordered depen-
dency structure after parsing. Treo provides an approach
which combines PODS and spreading activation search for
handling semantic match between NLQ and Linked Data.

5.2 SPARQL generation using template

Horridge et al. [8] and Shekarpour et al. [19] propose a
frame- work SINA that extracts input question into key-

@ Springer

words and map keywords to a set of entity identifiers to cope
with the resource disambiguation. After that, it defines query
graph pattern as SPARQL template according to the standard
notions of the RDF and SPARQL specification. Lopez et al.
[10], Marginean [11], Pradel et al. [16] and Zheng et al. [26]
define the SPARQL interpretation process consists named
entities, dependency parse, construct a new query accord-
ing to dependency parse tree and map the new query into
predefined query patterns.

5.3 Semantic parsing based translation

Ferré [6], Tatu et al. [22], Xu et al. [25] and Dubey et al.
[4] summarize a phrasal semantic parsing based SPARQL
generation method. Firstly, they detect phrases segmented
from question via defining four types of words (i.e., variable,
category, entity, and relation). And then, it parses question
to analysis relations between words. Finally, it combines the
result of phrases detecting and dependency parsing to build
a model directed acyclic graph and translate it to SPARQL
query via underlying knowledge.

6 Conclusions

In the QAS based on Linked Data, it is a crucial task that the
NLQ should be parsed to SPARQL statements automatically.
In this paper, we proposed a transformation framework for
generating formal SPARQL query from NLQ, especially a
method for constructing SQG that can greatly improve the
conversion efficiency and accuracy. Until now, the method
is the excellent one, in contrast to the state-of-the-art meth-
ods in unsupervised filed. The new framework also considers
the dependency parsing optimization, recovery the sentence
structure and coreference resolution to complete the seman-
tic information of NLQ. Currently, our method uses Stanford
Parser to get the optimizing DPT and construct SQG. And
secondly, in the stage of mapping resource, candidate terms
sometimes are improper, and we should provide an online
selection method of the candidate words as the future work,
which can greatly reduce the mapping time, and improve the
overall performance.

References

1. Berant,J.,Chou, A., Frostig, R., etal.: Semantic parsing on freebase
from question-answer pairs. EMNLP 2(5), 6 (2013)

2. Cabrio, E., Cojan, J., Gandon, F, et al.: Querying multilingual
DBpedia with QAK:IS. In: Extended Semantic Web Conference.
Springer, Berlin, pp. 194-198 (2013)

3. Cai, Q. Yates, A.: Large-scale semantic parsing via schema match-
ing and lexicon extension. ACL 1, 423433 (2003)

Cluster Comput (2019) 22:S847-S858

S857

4.

10.

11.

12.

13.

14.

15.

16.

20.

21.

22.

Dubey, M., Dasgupta, S., Sharma, A., et al.: Asknow: a framework
for natural language query formalization in SPARQL. In: Interna-
tional Semantic Web Conference, pp. 300-316. Springer, Cham
(2016)

Faleiro, J.M., Abadi, D.J.: FIT: A Distributed Database Perfor-
mance Tradeoff. IEEE Data Eng. Bull. 38(1), 10-17 (2015)
Ferré, S.: Sparklis: an expressive query builder for SPARQL end-
points with guidance in natural language. Semant. Web 8(3),
405-418 (2017)

Hasan, A., Hammoud, M., Nouri, R., et al.. DREAM in action: a
distributed and adaptive RDF system on the cloud. In: Proceed-
ings of the 25th International Conference Companion on World
Wide Web. International World Wide Web Conferences Steering
Committee, pp. 191-194 (2016)

Horridge, M., Musen, M.: Snap-SPARQL: a java framework for
working with SPARQL and OWL. In: International Experiences
and Directions Workshop on OWL, pp. 154-165. Springer, Cham
(2015)

Lehmann, J., Biihmann, L.: Autosparql: let users query your knowl-
edge base. Semanti. Web Res. Appl. 6379 (2011)

Lopez, V., Tommasi, P., Kotoulas, S., et al.: Queriodali: question
answering over dynamic and linked knowledge graphs. In: Inter-
national Semantic Web Conference, pp. 363—382. Springer, Berlin
(2016)

Marginean, A.: Question answering over biomedical linked data
with grammatical framework. Semant. Web 8(4), 565-580 (2017)
Matteis, L., Hogan, A., Navigli, R.: Keyword-based navigation and
search over the linked data web.In: LDOW@ WWW (2015)
Mazzeo, G.M., Zaniolo, C.: Answering controlled natural language
questions on RDF knowledge bases. In: EDBT, pp. 608-611 (2016)
Nakashole, N., Weikum, G., Suchanek, F.: PATTY: a taxonomy
of relational patterns with semantic types. In: Proceedings of the
2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, pp.
1135-1145 . Association for Computational Linguistics (2012)
Paredes-Valverde, M.A., Rodriguez-Garcia, M.A., Ruiz-Martinez,
A., et al.: ONLI: an ontology-based system for querying DBpedia
using natural language paradigm. Expert Syst. Appl. 42(12), 5163—
5176 (2015)

Pradel, C., , Haemmerlé, O., Hernandez, N.: Natural language
query interpretation into sparql using patterns. In: Proceedings of
the Fourth International Conference on Consuming Linked Data,
vol. 1034, pp. 13-24. CEUR-WS.org (2013)

Qiang, L.: Painting semantic retrieval algorithm research based on
ontology. In: Proceedings of the 2015 8th International Conference
on Intelligent Computation Technology and Automation (ICICTA),
pp. 621-624. IEEE (2015)

. Sander, M., Waltinger, U., Roshchin, M., Runkler, T.: Ontology-

based translation of natural language queries to SPARQL. In:
Proceedings of the Natural Language Access to Big Data. AAAI
2014 Fall Symposium. Citeseer (2014)

Shekarpour, S., Marx, E., Ngonga Ngomo, A.-C., Soren, A.:
Semantic Interpretation Of User Queries For Question Answering
On Interlinked Data. Elsevier-Web Semantics (2015)

Song, D., Schilder, F., Smiley, C., et al.: Natural language question
answering and analytics for diverse and interlinked datasets. In:
HLT-NAACL, pp. 101-105 (2015)

Song, D., Schilder, F., Smiley, C., et al.: TR discover: a natural
language interface for querying and analyzing interlinked datasets.
In: International Semantic Web Conference, pp. 21-37. Springer,
Cham (2015)

Tatu, M., Balakrishna, M., Werner, S., et al.: Automatic extrac-
tion of actionable knowledge. In: Proceedings of the 2016 IEEE
Tenth International Conference on Semantic Computing (ICSC),
pp. 396-399. IEEE (2016)

23.

24.

25.

26.

217.

28.

29.

30.

Tatu, M., Balakrishna, M., Werner, S., et al.: A semantic question
answering framework for large data sets. Open J. Semant. Web
(OJSW) 3(1), 16-31 (2016)

Unger, C., Forascu, C., Lopez, V., et al.: Question answering over
linked data (QALD-4). Working Notes for CLEF 2014 Conference
(2014)

Xu, K., Zhang, S., Feng, Y., et al.: Answering natural language
questions via phrasal semantic parsing. In: Natural Language Pro-
cessing and Chinese Computing, pp. 333-344. Springer, Berlin
(2014)

Zheng, W., Zou, L., Lian, X., et al.: How to build templates for RDF
question/answering: an uncertain graph similarity join approach.
In: Proceedings of the 2015 ACM SIGMOD International Confer-
ence on Management of Data, pp. 1809-1824. ACM (2015)
Zhou, Q., Luo, J.: The study on evaluation method of urban network
security in the big data era. Intell. Autom. Soft Comput. (2017).
https://doi.org/10.1080/10798587.2016.1267444

Zhou, Q.: Multi-layer affective computing model based on emo-
tional psychology. Electron. Commer. Res. (2017). https://doi.org/
10.1007/s10660-017-9265-8

Zhou, Q.: Research on heterogeneous data integration model of
group enterprise based on cluster computing. Clust. Comput. 19,
1275-1282 (2016). https://doi.org/10.1007/s10586-016-0580-y
Zhou, Q., Luo, J.: The service quality evaluation of ecologic econ-
omy systems using simulation computing. Comput. Syst. Sci. Eng.
31(6), 453-460 (2016)

Shengli Song is currently an
associate professor with Xidian
University, China. He received
his Ph.D. degree in Computer
Science and Technology from
Xidian University, Xi’an, China,
in 2011. His current research
interests include semantic com-
puting, text analytics and natural

3 b e
\ / language processing.

Wen Huang is currently a mas-
ter student majoring in Soft-
ware Engineering in Xidian Uni-
versity. Her research interest is
semantic data retrieval.

@ Springer

https://doi.org/10.1080/10798587.2016.1267444
https://doi.org/10.1007/s10660-017-9265-8
https://doi.org/10.1007/s10660-017-9265-8
https://doi.org/10.1007/s10586-016-0580-y

S858

Cluster Comput (2019) 22:S847-S858

@ Springer

Yulong Sun is currently a mas-
ter student majoring in Soft-
ware Engineering in Xidian Uni-
versity. His research interest is
mobile data management.

	Semantic query graph based SPARQL generation from natural language questions
	Abstract
	1 Introduction
	2 Semantic query graph
	2.1 SPARQL query structure
	2.2 Semantic query graph definition

	3 Transformation framework for SPAQRL generation
	3.1 Question dependency parsing
	3.2 Semantic query graph construction
	3.3 Entity and relation identification
	3.4 SPARQL query generation

	4 Experimentation
	4.1 Question datasets
	4.2 Experimental setup
	4.3 Evaluation and analysis

	5 Related works
	5.1 Ontology-based translation
	5.2 SPARQL generation using template
	5.3 Semantic parsing based translation

	6 Conclusions
	References

