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Abstract The complex signal represented by power load is
affected by many factors, so the signal components are very
complicated. So that, it is difficult to obtain satisfactory pre-
diction accuracy by using a single model for the complex
signal. In this case, wavelet decomposition is used to decom-
pose the power load into a series of sub signals. The low
frequency sub signal is remarkably periodic, and the high fre-
quency sub signals can prove to be chaotic signals. Then the
signals of different characteristics are predicted by different
models. For the low frequency sub signal, the support vector
machine (SVM) is adopted. In SVM model, air temperature
and week attributes are included in model inputs. Especially
the week attribute is represented by a 3-bit binary encoding,
which represents Monday to Sunday. For the chaotic high
frequency sub signals, the chaotic local prediction (CLP)
model is adopted. In CLP model, the embedding dimension
and time delay are key parameters, which determines the pre-
diction accuracy. In order to find the optimal parameters, a
segmentation validation algorithm is proposed in this paper.
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The algorithm segments the known power load according to
the time sequence. Then, based on the segmentation data,
the optimal parameters are chosen based on the prediction
accuracy.Comparedwith a singlemodel, the prediction accu-
racy of the proposed algorithm is improved obviously, which
proves the effectiveness.
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1 Introduction

The prediction of complex time series depends on the devel-
opment of nonlinear science andmachine learning, andmany
scholars have made valuable exploration in this field [1–4].
Power load is a typical complex time series, which is affected
by many factors, such as demand, climate, policy and pro-
duction condition. Accordingly, the power load data also has
complex signal components. The conclusions are as follows:
power load data is generated by low dimensional chaotic sys-
tem, and contains both periodic and chaotic components.Any
single predictionmodel is based on a specific hypothesis, and
has a better prediction effect on a particular type of data. For
example, the chaotic prediction algorithm is suitable for the
prediction of typical chaotic signals (Lorenz signals, Rossler
signals). As for the mixed signals represented by power load,
it is difficult for a single model to obtain satisfactory predic-
tion results.

In view of the complexity of components, the power load
should be decomposed into sub signals of different character-
istics by means of mathematical transform method first, then
the sub signals are predicted separately. Because of its good
time-frequency analysis characteristics, wavelet transform
has been used in this paper [5–7]. Using wavelet transform,
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we can get the sub signals of the power load. The low fre-
quency sub signal is remarkably periodic, which is affected
by temperature. The high frequency sub signals are very simi-
lar to typical chaotic signals, inwhich theLyapunov exponent
[8,9] is positive. Different prediction methods are adopted
respectively for different sub signals. The support vector
machines (SVM) [10,11] algorithm is adopted for the low
frequency sub signals with temperature considered. At the
same time, chaotic prediction algorithm [12–14] is applied
to other high frequency sub signals.

In SVM model, air temperature and week attributes are
included in model inputs. Especially the week attribute is
represented by a 3-bit binary encoding, which represents
Monday to Sunday. Meanwhile, there are a key problem in
chaotic local prediction (CLP) model, the accuracy of phase
space reconstruction. Because the parameter of phase space
reconstruction, embedding dimension and delay time, can
hardly be calculated accurately, which causes the main error
of the CLP model. Attempting to solve this problem, the
paper proposes a parameter optimization algorithm based on
segmentation validation. Based on the initial calculation of
phase space parameters, the algorithm can find the optimal
reconstruction parameters based on the known data, which
can effectively improve the quality of phase space recon-
struction and improve the prediction accuracy.

Through the actual example, the prediction result proves:
compared with the prediction using a single mathematical
model, for the complex signal represented by the power load,
the prediction accuracy based on the proposed algorithm
is improved obviously. At the same time, the algorithm is
also suitable for prediction of other complex signals, such
as traffic flow signals and ECG signals. For the prediction
of complex signals, granular computing [15–21] is also a
promising method. The theory can be used for reference to
chaos theory, so as to deepen the cognition of internal dynam-
ics characteristics of complex signals.

2 The wavelet decomposition of power load

2.1 Basic theory of wavelet transform

Wavelet transform is a powerful tool for signal analysis.
Wavelet is a wavewith finite energy, and is used as base func-
tion to analyze transient, unsteady or time-varying signals.
Wavelet transform analyzes signals by means of complex
expansion, which is similar to the Fourier transform. The
difference is that the signal is decomposed into a series
of local base functions called wavelets. Therefore, wavelet
transform is to expand the signal on a particular wavelet
base function. Wavelet transform is divided into two cate-
gories: continuous wavelet transform and discrete wavelet
transform.

2.1.1 Continuous wavelet transform and discrete wavelet
transform

g(t) is a mother wavelet function, and other wavelet basis
functions are obtained by stretching and translating the g(t)
as follows:

ga,b (t) = 1√
a
g

(
t − b

a

)
(1)

In formula (1), a and b are real number (a �= 0), they are
scale factor and position factor respectively.

s(t) is a square integrable function, and its continuous
wavelet transform is defined as follows:

Wg|s (a, b) = 1√
a

∫ ∞

−∞
s (t) g∗

(
t − b

a

)
dt

=
∫ ∞

−∞
s (t) g∗

a.b (t) dt (2)

In formula (2), g∗
a.b (t) is conjugate complex of ga.b (t).

Variables a, b, and t are continuous variables. In order
to implement the wavelet transform effectively on the com-
puter, a, b and t should take discrete values. In addition, for
reducing information redundancy, a and b do not need con-
tinuous value. A and B can be discretized in the following
manner:

a = a j
0 , a0 > 0, j ∈ Z (3)

b = kb0a
j
0 , b0 > 0, k ∈ Z (4)

Discrete wavelet basis function g j,k (t) is defined as:

g j,k (t) = 1√
a j
0

g

(
t − ka j

0b0

a j
0

)
dt, j, k ∈ Z (5)

The discrete wavelet transform is defined as follows:

Wg|s ( j, k) =
∫ ∞

−∞
s (t) ḡ j,k (t) dt (6)

2.1.2 Wavelet decomposition and reconstruction

In 1989,Mallat [22] unified the construction of wavelet func-
tion based on the idea of multi-resolution, and proposed
a decomposition and reconstruction algorithm for discrete
signals by means of wavelet transform, namely Mallat algo-
rithm. According to the Mallat algorithm, the non-stationary
discrete time series can be decomposed into high frequency
detail series d1, d2 . . . dJ , and a low frequency series aJ , and
J is the maximum decomposition layers. Let the initial time
series is S, and the decomposition process is shown in Fig. 1.
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Fig. 1 Process of wavelet decomposition

The above decomposition process can be expressed in for-
mula (7):

{
a j+1 = H

(
a j

)
d j+1 = G

(
a j

) j = 1, 2, . . . J (7)

Among them, H () and G () are low frequency and high fre-
quency decomposition functions, which are similar to the
function of low pass filter and high pass filter.

After the time series are decomposed, the decompo-
sition signal of each layer is halved before the relative
decomposition, so it is necessary to do the two-interpolation
reconstruction for the decomposed signal.

{
A j = (H∗) j a j

D j = (H∗) j−1 G∗d j
j = 1, 2, . . . J (8)

Among them, H* is a dual operator of H, and G* is a
dual operator of G. After the reconstruction of d1, d2 · · · dJ
and aJ , the reconstructed series D1, D2 · · · DJ and AJ is
obtained, whose length is the same as that of the original
time series, and:

S = D1 + D2 + · · · + DJ + AJ (9)

There are 2 problems inwavelet decompositionwhich should
be paid attention to:

1. The layer of decomposition can neither be too large nor
too small. If the layer is too large, more models should
be built to predict the components after decomposition,
each model will introduce a certain error, which will lead
to a larger prediction error; if the layer is too small, the
component with different frequency characteristics in the
original signal cannot be separated effectively.

2. Wavelet basis selection. Selecting different wavelet basis
will yield different decomposition components, which
will affect the final prediction results.

2.2 Example analysis

Power load from Shenzhen is used as an example in this
paper. Because of the developed economy and hot climate,
the air conditioning load inShenzhen is relatively high,which
causes the power load to fluctuatemore. The sampled interval
of the power load is 30 min, a total of 48 points in a day. The
typical day curve of the power load is shown below:

Fig. 2 The typical day power load curve

In the Fig. 2, the power load is minimum at 5–6 a.m.
Between7:30 and10 in themorning, the power load increases
rapidly. Then, at 11, 17 and 20, the power load reaches the
three peaks. In a day, the power load fluctuates up and down,
which makes the prediction more difficult.

2.2.1 Wavelet decomposition of the power load

One-week power load signal is used as a sample. Firstly, the
signal is decomposed bywavelet, and then the characteristics
of each sub signal is analyzed. After the experimental com-
parison, the dmey wavelet base is chosen to decompose and
reconstruct the power load in 3 layers. The original signal
and the decomposed sub signals are shown in the following
Fig. 3.

Thefirst sub plot is the original power load signal and other
sub plots are low frequency sub signals, high frequency sub
signals 1, high-frequency sub signals 2 and high-frequency
sub signals 3. The sum of all the sub signals is the original
power load signal.

2.2.2 Analysis of the sub signals

1. The low Frequency Sub Signal
Shown in Fig. 3, the low frequency sub signal is obvi-
ously periodic, but its fluctuation range also changes. The
proportion of air conditioning load to total load is high,
so the temperature is much related to the fluctuation of
the low frequency sub signals. The low frequency sub
signal and the daily maximum temperature are shown in
Fig. 4: In Fig. 4, the curve corresponding to the left ver-
tical axis is the low frequency sub signal, and the fold
line corresponding to the right vertical axis is the highest
daily temperature. Shown in Fig. 4, the daily maximum
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Fig. 3 The original data and each sub data

Fig. 4 Low frequency sub signal and daily maximum temperature

temperature is highly correlated with the low frequency
sub signal, except for the last day. The reason for the low
data correlation on the last day is that the day is Sun-
day, and Sunday’s power load will be much smaller than
the workday. In view of the high correlation between the
low frequency sub signal and temperature, this paper uses
SVM model to describe the relationship between signal
fluctuation and air temperature. The specific algorithm
will be described in detail later.

2. Other High Frequency Sub Signals
Other high frequency sub signals are highly similar to
typical chaotic signals, such as Lorenz signal and Rossler
signal. The above high frequency sub signals and typical
chaotic signals are drawn as follows:

Shown in Figs. 5 and 6, at different horizontal scales, low
frequency sub signal 1, 2 and Rossler chaotic attractor, low
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Fig. 5 Rossler chaotic attractor, low frequency sub signal 1 and 2

frequency sub signal 3 and Lorenz chaotic attractor, are very
similar to each other. All of these signals show periodicity
and instability at the same time. In order to verify the chaotic
characteristics of high frequency sub signals, the largest Lya-
punov exponents of the above signals are calculated. The
basic feature of chaotic systems is the extreme sensitivity to
the initial values, and the Lyapunov exponent is a quanti-
tative description of this phenomenon, which characterizes
the average exponential rate of convergence or divergence
between adjacent orbits in a phase space. The existence of
dynamical chaos in the system can be intuitively judged if
the largest Lyapunov exponent is greater than zero. Calculat-
ing the largest Lyapunov exponent of these high frequency
sub signals, the calculating results are 0.64, 0.82 and 1.22,
which demonstrates that the high frequency sub signals are
chaotic. Based on the chaotic characteristics of these signals,
this paper uses CLP algorithm to predict them. The specific
content is described in detail later.

3 Power load prediction algorithm based on
wavelet decomposition

3.1 The main flow of the algorithm

Based on the wavelet decomposition, the power load is
decomposed into low-frequency sub signal (LF), high-
frequency sub signal 1 (HF1), high-frequency sub signal 2
(HF2), and high-frequency sub signal 3 (HF3). Combined
with the temperature factor (T), SVM model is used to pre-

dict LF; at the same time, CLP algorithm is used to predict
HF1, Hf2 and Hf3. The algorithm flow chart is as follows
(Fig. 7).

3.2 LF prediction based on SVM

3.2.1 Basic theory of SVM

SVM is a machine learning method, which is based on the
statistical learning theory and the principle of structural risk
minimization. For the limited sample set, SVM can find the
best compromise between model complexity and learning
ability to obtain the best generalization ability. The algorithm
is essentially a convex quadratic programming problem with
no local optimum, which can effectively solve the small sam-
ple and nonlinear regression problems. Through the inner
product kernel function, SVM can map a low dimensional
nonlinear regression problem into a high dimensional space,
and then become a linear regression problem, which reduces
the difficulty of solving complex regression problems.

The training of SVM can be reduced to solve a linear con-
strained a quadratic programming (QP) problem. At present,
the most typical training algorithm is sequential minimal
optimization (SMO) [23,24]. The algorithm decomposes
a large QP problem into a series of small scale QP sub-
problems. To avoid the use of numerical methods to optimize
the QP in the inner loop, the convergence speed of the algo-
rithm is increased by thousands of times compared with the
traditional method.
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Fig. 6 Lorenz chaotic attractor and low frequency sub signal 3

Fig. 7 The algorithm flow chart

3.2.2 Generation and pre-processing of training samples

LF is associated with temperature and week attributes, so
these factors should be taken into account when predicting.
Before prediction using SVM, the input and output of the
model must be defined. The SVM model is trained using a
rolling training method, that is, the LF value at the same time
of the first seven days is used to predict the LF value at the
same time of the next day.

The input sample consists of 3 feature vectors, which are:

1. L = [L1, L2, L3, L4, L5, L6, L7] , LF value for the cor-
responding time of 7 days prior to the forecast date;

2. T, the temperature of the forecast day;
3. W = [001, 010, 011, 100, 101, 110, 111], the feature

vector is a week attribute, represented by a 3 bit binary
encoding, which represents Monday to Sunday.

The output sample is the LF value for the corresponding time
of the forecast day.

In order to improve the quality of training, the input set
and output set should be normalized before training. The
normalized formulas corresponding to the load data and the
air temperature data are:

L̄i = Li − Lmin

1.5Lmax − Lmin
(10)

T̄i = Ti − Tmin

1.2Tmax − Tmin
(11)

Lmax , Lmin are the maximum and minimum values in the
power load data set, Tmax , Tmin are the maximum and mini-
mum values in the temperature data set.

After the prediction results are obtained, the correlation
coefficient is used to evaluate the accuracy of the prediction
results. The correlation coefficient r is defined as below:
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Fig. 8 Predicted and actual values of LF in May 1st

r =
∑n

i=1

[(
Pmi − P̄m

) · · · (Ppi − P̄p
)]

√∑n
i=1(Pmi − P̄m)2 · · · ∑n

i=1(Ppi − P̄p)2
(12)

In formula (12), Pmi is the actual value of a certain moment,
P̄m is the average of all actual value samples; Ppi is the pre-
dicted value of a certain moment, P̄p is the average of all
predicted value samples.

3.2.3 Example analysis

This paper uses the power load of Shenzhen city to verify the
above algorithm, predicts 48 data points in 1 May based on
30 days power load and corresponding air temperature data
in April. The prediction results are shown in the following
figure:

In Fig. 8, the solid line with an asterisk is the predicted
value, and the ordinary solid line is the actual value. It can
be seen that the predicted values are in good agreement with
the actual values. The correlation coefficient r between the
predicted and actual values is 0.9904. Because the prediction
step length is 48, the prediction accuracy is satisfactory.

3.3 HF prediction based on chaotic local prediction
(CLP)

3.3.1 Traditional chaotic local prediction algorithm

For a n-dimensional chaotic system, Y(t + 1) = F(Y(t)),
Y(t),Y(t + 1) ∈ Rn, Where t represents timing sequence,
F is a smooth continuous function. For this system, a
one-dimensional time series {x(t), t = 1, 2, . . .,N} can be

observed. Based on the phase space reconstruction theory,
the phase points sequence in the m-dimensional phase space
can be obtained:

X (t) = {x (t) , x (t + τ) , · · · , x (t + (m − 1) τ )}
t = 1, 2, . . . , L (13)

In formula (13), m is the embedding dimension, and τ is the
delay time, L = N − (m − 1)τ.

According to the Takens embedding theorem [25], when
τ is appropriate and m ≥ 2n + 1, the deterministic mapping
Fm exists:

X (t + 1) = Fm (X (t)) (14)

Formula (14) is the reconstruction system, which has the
same dynamic characteristics as the original system.

For the calculation ofm and τ, Gautama introduces the dif-
ferential entropy [26] in information theory into phase space
reconstruction. Differential entropy can effectively evalu-
ate the degree of disorder of time series under different
embedding conditions, and then determine the embedding
dimension and delay time at the same time.

For discrete time series, the differential entropy can be
estimated using the Kozachenko–Leonenko (K–L) method:

H (x,m, τ) =
∑N

j=1
ln [Nρ ( j)] + ln2 + CE (15)

In formula (15): N is the data length, CE is Euler constant,
ρ ( j) is the Euclidean distance between phase point j and its
nearest neighbor.
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Since the upper formula is not robust to the embedding
dimension, it is necessary to standardize the H(xi,m, τ) via
the surrogate data xs,i of x. The surrogate data xs,i of x is
generated by iterative amplitude matched Fourier transform,
H(xi,m, τ) is the differential entropy of the no.i surrogate
data of original data. After using surrogate data, the distribu-
tion characteristics of the signals are not affected. Use for-
mula (15) can compute the original sequencesH(xi,m, τ)and
surrogate data H(xsi,m, τ), thus the differential entropy rate
can be expressed as:

I (m, τ) = H (x,m, τ)

H
(
xs,i ,m, τ

)
i

(16)

In formula (16), 〈•〉i means the average value of i times cal-
culation. After adding the penalty factor to the embedding
dimension, the differential entropy rate is:

Rent (m, τ) = I (m, τ)

(
1 + mlnN

N

)
(17)

The smaller the differential entropy rate is, the more orderly
the chaotic attractor in the phase space is, the better the
dynamic characteristics of the systemcan be reflected. There-
fore, the m and τ when the differential entropy rate is
minimum are the calculation value of embedding dimension
and the delay time.

After the reconstruction of phase space, takes X(L) as
the reference phase point, and calculates the Euclidean dis-
tance between other phase points and X(L). According to the
Euclidean distance values, q phase points are chosen as the
reference neighborhood X(Li), i = 1, 2, . . ., q. According to
the correlation between the points in the reference neighbor-
hood and X(L), computes weights for each phase point in
the neighborhood. The Euclidean distance of each point in
the neighborhood to X(L) is di, i = 1, 2, . . ., q, dmin is the
minimum. Then the weight of the point i in the neighborhood
is:

Pi = exp [− (Cori/Cormin)]∑q
i=1 exp [− (Cori/Cormin)]

(18)

For the phase points in the reference neighborhood, the
evolution in the phase space is described by a first order
function. Taking into account the weight of each phase point,
the least squares method is used to minimize the formula
(18), and the suitable first order parameters a and b can be
obtained:

min
∑q

i=1
Pi [X (Li + h) − aR − bX (Li )]2 (19)

R = [1, 1, . . ., 1]T, h is the prediction step.
The first order parameters, a and b, are substituted into the

formula (20):

Ẍ(L + h) = aR + bX (L) (20)

The last element Ẍ(L + h)m in Ẍ(L + h) is the h-step pre-
diction value of the original time series.

3.3.2 Segmentation verification of traditional chaotic local
algorithm

The main problem of traditional CLP algorithm is the calcu-
lation of the parameters for phase space reconstruction. For
a real time series, the calculated embedding dimension and
time delay are usually not optimal, so the method of segmen-
tation verification can be used to find the optimal parameters
according to the calculated values. The idea of segmentation
verification comes from cross validation [27,28]. Cross val-
idation is an efficient method for parameter optimization in
pattern recognition. The data set DS is divided into k mutu-
ally exclusive subsets:

DS = DS1 ∪ DS2 · · · ∪ DSk, DSi ∩ DSj = ∅ (i �= j)

(21)

The union of k− 1 subsets is regard as a training set, and the
remaining subset is regard as a test set. In this way, K times
training and testing can be carried out, and finally the average
of K times test classification results can be obtained. The
model parameters with the highest classification accuracy
are the optimal parameters, which can be used to classify the
unknown data.

The time series prediction problem is different from the
classification problem. The data sequence in the time series
cannot be arbitrarily disrupted. So the order of the data sets
cannot be exchanged when the model parameters are identi-
fied. For this problem, the known data set DS can be divided
into n subsets:

DS = DS1 ∪ DS2 · · · ∪ DSn, DSi ∩ DSj = ∅ (i �= j)

(22)

D1. . .Dm−1 can be used as the training set, and Dm as the test
set, k<n; Then D2. . .Dm can be used as the training set, and
Dm+1 as the test set. And so on, so that n − m times train-
ing and testing can be carried out, and finally the average of
n −m times test results are obtained. The model parameters
with the highest prediction accuracy are the optimal param-
eters, which can be used to predict the unknown data. In the
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Table 1 The parameters and
optimization range of phase
space reconstruction

Embedding dimension Optimization range Delay time Optimization range

HF1 4 [2–8] 5 [1–10]

HF2 6 [2–12] 3 [1–7]

HF3 5 [2–10] 2 [1–5]

Table 2 The best reconstruction parameters

Best embedding dimension Best delay time

HF1 3 1

HF2 4 4

HF3 6 2

process of time series prediction, new data will be added,
and the training set and test set will be updated according
to the timing of the data. Based on this method, the optimal
model parameters can be adaptively identified according to
the known data, and the prediction accuracy can be guaran-
teed.

For the prediction of chaotic time series, calculate the
embedding dimension m and the delay time τ at first, then
select the corresponding threshold tm and tτ. In the range of
[m − tm m + tm] and [τ − tτ τ + tτ], select the optimal
parameters using the above method, can guarantee the qual-
ity of the reconstructed phase space, so as to improve the
accuracy of chaotic prediction algorithm.

3.3.3 Example analysis

The above algorithm is used to predict the high frequency
sub signals HF1, HF2 and HF3. First of all, the differen-
tial entropy algorithm is used to calculate the embedding
dimension and delay time of HF1, HF2 and HF3. The result
of calculation and the range of parameter optimization are
shown in Table 1.

Aiming at the above 3 signals, the segmentation validation
method is used to find the best phase space reconstruction
parameters in the optimization range. After calculation, the
best reconstruction parameters corresponding to the 3 groups
of signals are shown in Table 2.

Using the 3 sets of parameters to predict HF1, HF2 and
HF3 based on CLP algorithm, the prediction results are
shown in Figs. 9, 10 and 11.

In these figures, the solid line with an asterisk is the pre-
dicted value, and the ordinary solid line is the actual value.
The correlation coefficient r between the predicted and actual
values of the above three signals are 0.9990, 0.9401 and
0.8720. From the above prediction results, it can be seen
that the higher the signal frequency, the greater the difficulty

Fig. 9 Predicted and actual values of HF1 in May 1st
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Fig. 10 Predicted and actual values of HF2 in May 1st

Fig. 11 Predicted and actual values of HF3 in May 1st

of prediction, and the prediction accuracy is also reduced.
But the overall prediction accuracy is satisfactory.

4 Superposition of prediction results

In Sect. 3, the sub signals of power load are predicted respec-
tively. In this section, the prediction results of each of the sub
signals are superimposed together. Sum up the prediction
results of LF, HF1, HF2, HF3, and get the total prediction

results. In order to verify the effectiveness of the proposed
algorithm, a single CLP model is used to predict the power
load at the same time. All these prediction values are shown
in Fig. 12.

In Fig. 12, the black solid line represents the actual power
load, the star line represents the prediction value of the algo-
rithm in this paper, and the diamond dotted line represents
the prediction value of a single chaotic model. Shown in
Fig. 12, the prediction value of the algorithm in this paper
is obviously more consistent with the actual value. In order
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Fig. 12 Predicted and actual power load in May 1st

Table 3 The prediction
accuracy

Correlation coefficient Average relative error (%)

The proposed algorithm 0.9932 2.00

The single chaotic algorithm 0.9811 3.87

to quantify the prediction accuracy, the prediction accuracy
measurements of the two sets of predicted values are shown
in Table 3.

According to the data in Table 3, the prediction accuracy
of this algorithm is improved obviously, which verifies the
effectiveness.

5 Conclusion

In this paper, the dmey wavelet is used to decompose the
power load into 3 layers, and the original power load signal
is decomposed into low frequency sub signal (LF), high fre-
quency sub signal1 (HF1), high frequency sub signal2 (HF2),
high frequency sub signal3 (HF3). It is found that LF has
obvious periodicity and is affected by the temperature and the
properties of the week. And HF1, HF2 and HF3 are proved
to be typical chaotic signals.

According to the different characteristics of LF and HF,
different predictionmethods are adopted. SVMis used to pre-
dict the LF, and temperature and week attributes are used as
influence factors in the prediction. For HF, an improved CLP
algorithm is adopted. In traditional local prediction algo-
rithm, the parameters of phase space reconstruction cannot
be accurately calculated. The accuracy of phase space recon-

struction limits the final prediction accuracy. In this paper,
a method of parameter optimization based on segmentation
verification is proposed, which can find the best parameters
of phase space reconstruction.

The above algorithm is applied to the prediction of power
load in Shenzhen, China, and the prediction results show its
effectiveness.
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