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Abstract Keyword search in relational databases has been
widely studied in recent years because it does not require
users neither to master a certain structured query language
nor to know the complex underlying database schemas. There
would be a huge number of valid results for a keyword
query in a large database. However, only the top 10 or 20
most relevant matches for the keyword query—according
to some definition of “Relevance”—are generally of inter-
est. In this paper, we propose an efficient method which
can efficiently compute the top-k results for keyword queries
in a pipelined pattern, by incorporating the ranking mecha-
nisms into the query processing method. Four optimization
methods based on bounding the relevance scores of potential
results, reusing and sharing the intermediate result are pre-
sented to improve the efficiency of the proposed algorithms.
Compared to the existing top-k keyword search systems, the
proposed methods can significantly reduce the number of
computed query results with low relevance scores and the
times for accessing databases, which result in the high effi-
ciency in computing top-k keyword query results in relational
databases. Extensive experiments on two real data sets are
conducted to evaluate the effectiveness and efficiency of the
proposed approach.
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1 Introduction

With the proliferation of text data available in relational
databases, simple ways to exploring such information effec-
tively are of increasing importance. Keyword search in
relational databases, with which a user specifies his/her
information need by a set of keywords, is a popular informa-
tion retrieval method because the user needs to know neither
a complex query language nor the underlying database
schemas. Given a l-keyword query Q = {w1, w2, . . . , wl},
the task of keyword search in a relational database is to find
structural information constructed from tuples in the database
[1].

Example 1 Consider a sample publication database shown in
Fig. 1. Figure1a shows the three relations Papers, Authors,
andWrites. In the following,we use the initial of each relation
name (P, A, andW ) as its shorthand. There are two foreign
key references: W → A and W → P. Figure1b illustrates
the tuple connections based on the foreign key references.
For the keyword query “James P2P” consisting of two key-
words “James” and “P2P”, there are six tuples in the database
that contain at least one of the two keywords (underlined in
Fig. 1a). They can be regarded as the results of the query.
However, they can be joined with other tuples according to
the foreign key references to form more meaningful results,
several of which are shown in Fig. 1b. The arrows repre-
sent the foreign key references between the corresponding
pairs of tuples. Finding such results that are formed by the
tuples containing the keywords is the taskof a keyword search
in relational databases. As described later, results are often
ranked by relevance scores evaluated by a certain ranking
strategy. ��

There would be a huge number of valid results for a key-
word query in a large database. However, only the top 10 or
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Fig. 1 A sample database with a keyword query “James P2P”. a
Database (Matched keywords are underlined). b Examples of query
results

20 most relevant matches for the keyword query—according
to some definition of “Relevance”—are generally of interest
[2]. Therefore, instead of finding all the results that con-
taining the query keywords, proposing optimized methods
which can efficiently find the top-k results of the highest rel-
evance scores are the main focus of a lot of existing work in
this topic [2–4]. Although the proposed algorithms can avoid
exhaustive processing by introducing some top-k processing
methods such as pipelined algorithms (hence can stop early
before all the results are generated), they still suffer from a
huge number of join checking which cannot produce results,
and cannot effectively exploit the intermediate results of pre-
vious checking to facilitate the following computation.

In this paper, a novel algorithm is proposed to efficiently
compute the top-k results for keyword queries, which adopts
the following three principles to achieve the high efficiency.

(1) Bounding the relevance scores computing the upper
bound of the relevance scores of the results that contain-
ing a tuple t is one of the main optimization directions
of existing studies [2–4]. In this paper, we introduce a
method to compute a tighter upper bound for each tuple,
and the upper bound can be decreased in the query eval-
uating process; hence, more tuples can be filtered and
the process can be terminated in a more early stage.

(2) Reusing the query results database accessing cost dom-
inates the query evaluation cost for a keyword search.
Reusing the results of previous checking can dramati-

cally reduce the database accessing cost; however, this
method has not been fully exploited in existing stud-
ies. This paper adopts the two ideas of caching and
reusing the intermediate results, which can minimize
the database accessing times and then achieve high effi-
ciency.

(3) Sharing the computation cost although the results of
keyword query in relational databases can have many
patterns (see Fig. 1b), due to the query pattern enumer-
ation style, there are many common sub-expressions
between the query patterns of a keyword. Therefore,
there is a great chance to share the computation cost
among the query patterns in query evaluation. Based
on the methods proposed in [5–7], this paper proposed
a more experienced method to utilize this optimization
direction.

This paper is an extended version ofwork published in [8].
We extend our previous work bymore detailed description of
themethod, correctness proving of the algorithm, two crucial
optimization methods that can highly improve the efficiency
of the algorithm and abundant experiments to study the effi-
ciency of the proposed methods on two real data sets. We
summarize the key contributions of this paper as follows: (1)
by incorporating the ranking mechanisms into the query pro-
cessing method, an algorithm which can efficiently compute
the top-k results for keyword queries in a pipelined pattern is
presented. (2) Four optimization methods which can highly
improve the efficiency of the proposed algorithms are pre-
sented; and finally, (3) extensive experiments are conducted
to evaluate the proposed approach.

The rest of this paper is organized as follows. In Sect. 2
some basic concepts are introduced. Section3 discusses
related work. Section4 presents the details of the proposed
algorithm. And four optimization methods that can highly
improve the efficiency of the proposed algorithm are given
in Sect. 5. Section6 gives the experimental results. Finally,
in Sect. 7 we conclude this paper.

2 Preliminaries and main challenges

In this section, we introduce some important concepts for
top-k keyword querying evaluation in relational databases,
common in most of the existing keyword search systems [2,
4,6,7].

2.1 Relational database model

We consider the schema of a relational database as a directed
graph GS(V, E), called a schema graph, where V, the
set of nodes of GS, represents the set of relation schemas
{R1, R2, . . . , } and E, the set of edges of GS, represents the
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foreign key references between pairs of relation schemas.
Given two relation schemas, Ri and R j , 〈Ri , R j 〉 ∈ E if
the primary key of Ri is referenced by a foreign key defined
on R j . 〈Ri , R j 〉 can also be denoted as Ri ← R j , where
the arrow indicates the direction of the edge. For example,
the schema graph of the publication database in Fig. 1 is
Papers ← Writes → Authors. A relation on relation
schema Ri is an instance of Ri (a set of tuples) conforming
to it, denoted as r(Ri ). In the following,we do not distinguish
Ri from r(Ri ) if the context is obvious.

2.2 Joint-tuple-trees (JTTs)

The results of keyword queries in relational databases are a
set of connected trees of tuples, each ofwhich is called a joint-
tuple-tree (JTT for short). A JTT represents how thematched
tuples, which contain the specified keywords in their text
attributes, are interconnected through foreign key references.

Two adjacent tuples of a JTT, ti ∈ r(Ri ) and t j ∈ r(R j ),

are interconnected if they can be joined based on a foreign
key reference defined on relational schema Ri and R j in
GS (either Ri ← R j or Ri → R j ). The foreign key refer-
ences between tuples in a JTT can be denoted using arrows
or notation 	
 . For example, the second JTT in Fig. 1b can
be denoted as a1 ← w1 → p2 or a1 	
 w1 	
 p2. To be
a valid result of a keyword query Q, each leaf of a JTT is
required to contain at least one keyword of Q. But the non-
leaf tuples may not contain any keywords. In Fig. 1b, tuples
p1, p2, a1, a3 are matched tuples to the keyword query as
they contain the keywords. Hence, the four individual tuples
and a1 ← w1 → p2 are valid results to the query. In con-
trast, p1 ← w2 → a2 is not valid because a2 is not amatched
tuple. The number of tuples in a JTT T is called the size of
T, denoted by si ze(T ).

Note that although a JTT is not required to contain all
the keywords of a query (i.e., we adopt the OR-semantic),
the scoring method, which is introduced later, ensures that
the JTTs containing all the keywords would have higher
relevance scores than those containing only a portion of key-
words. The OR-semantic is adopted by all the top-k keyword
search studies [2,3]. In contrast, the AND-semantic requires
each query result to contain all the keywords of a query, and
is adopted by the studies aiming to find all the results for a
keyword query [5–7].

2.3 Candidate networks (CNs)

Given a keyword query Q, the query tuple set RQ
i is defined

as RQ
i = {t ∈ r(Ri )|t contains some keyword ofQ}. For

example, the two query tuple sets in Example1 are PQ =
{p1, p2, p5} and AQ = {a1, a3, a5}, respectively. The free
tuple set RF

i of a relation Ri with respect to Q is defined

Fig. 2 Examples of candidate networks

as the set of tuples that do not contain any keywords of Q.

In Example1, PF = {p3, p4, . . .}, AF = {a2, a4, . . .}. If a
relation Ri does not contain text attributes (e.g., relation W
in Fig. 1), Ri is used to denote RF

i for any keyword query.

We use RQorF
i to denote a tuple set, which may be either RQ

i
or RF

i .

Each JTT belongs to the result of a relational alge-
bra expression, which is called a candidate network (CN)
[2,3,10]. A CN is obtained by replacing each tuple in a
JTT with the corresponding tuple set that it belongs to.
Hence, a CN corresponds to a join expression on tuple
sets that produces JTTs as results, where each join clause
RQorF
i 	
 RQorF

j corresponds to an edge 〈Ri , R j 〉 in the
schema graph GS, where 	
 represents an equi-join between
relations. For example, the CNs that correspond to two
JTTs p2 and a1 ← w1 → p2 in Example1 are PQ and
PQ 	
 W 	
 AQ, respectively. In the following, we also
denote PQ 	
 W 	
 AQ as PQ ← W → AQ . As the
leaf nodes of JTTs must be matched tuples, the leaf nodes of
CNs must be query tuple sets. Due to the existence of m:n
relationships (for example, an article may be written by mul-
tiple authors), a CN may have multiple occurrences of the
same tuple set. The size of a CN C, denoted as size(C), is
the number of its tuple sets, that is, the sizes of the JTTs it
produces. Figure2 shows the CNs corresponding to the four
JTTs shown in Fig. 1b. A CN can be easily transformed into
an equivalent SQL statement and executed by an RDBMS.
For example, we can transform CN PQ ← W → AQ as:

SELECT * FROMWw, P p, A aWHERE w.pid = p.pid
AND w.aid = a.aid AND p.pid in (p1, p2, p5) and a.aid in
(a1, a3, a5).

When a keyword query Q = {w1, w2, . . . , wl} is speci-
fied, the non-empty query tuple set RQ

i for each relation Ri in
the target database is firstly computed using full-text indices.
Then all the non-empty query tuple sets and the database
schema are used to generate the set of valid CNs. The first
algorithm of CN generation is proposed in [5], whose basic
idea is to expand each partial CN by adding an RQ

i or RF
i at

each step (Ri is adjacent to one relation of the partial CN in
GS), beginning from the set of non-empty query tuple sets.
The set of CNs should be sound/complete and duplicate-free.
There is always a constraintCNmax ,which denotes the max-
imum size of CNs, to avoid generating complicated but less
meaningful CNs. Luo [11] proposed amore efficient CNgen-
erating algorithmwhich can avoid the isomorphism checking
of the enumerated CNs by defining a new canonical form for
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CNs and computing the depth first canonical form for CNs.
However, even a medium sized database schema graph and
a medium value of CNmax can result in a large number of
CNs [11]. Therefore, in the implementation of our system,
to achieve high efficiency, we generate a set of CNs in a
pre-processing step by assuming that all the relations have
non-empty query tuple sets like in [11].

Example 2 In Example1, there are two non-empty query
tuple sets PQ and AQ . Using them and the database schema
graph, if CNmax = 5, the generated CNs are: CN1 =
PQ, CN2 = AQ, CN3 = PQ ← W → AQ, CN4 =
PQ ← W → AQ ← W → PQ, CN5 = PQ ← W →
AF ← W → PQ, CN6 = AQ ← W → PQ ← W →
AQ, CN7 = AQ ← W → PF ← W → AQ .

2.4 Scoring method

The problem of top-k keyword search that we study in this
paper is to compute the top-k JTTs based on a certain scoring
function,whichwill be described below. In the literature, sev-
eralmethods have been proposed formeasuring the relevance
of keyword search results in relational databases [2,3,12–
15]. We adopt the scoring method employed in [2], which
is an ordinary ranking strategy in the information retrieval
area. The following function score(T, Q) is used to score
JTT T for query Q,which is based on the TF-IDF weighting
scheme:

score(T, Q) =
∑

t∈T tscore(t, Q)

si ze(T )
, (1)

where is a tuple contained in T . tscore(t, Q) is the tuple
score of t with regard to Q defined as follows:

tscore(t, Q) =
∑

w∈t ⋂ Q

1 + ln(1 + ln(t ft,w))

(1 − s) + s · dlt
avdl

· ln
(

N

d fw + 1

)

, (2)

where t ft,w is the term frequency of keyword w in tuple
t, d fw is the number of tuples in relation r(t) (the relation
corresponds to tuple t) that contain w. d fw is interpreted
as the document frequency of w. dlt represents the size of
tuple t, that is, the number of letters in t, and is interpreted
as the document length of t. N is the total number of tuples
in r(t), avdl is the average tuple size (average document
length) in r(t), and s (0 < s < 1) is a constant which is
usually set to 0.2.

Table1 shows the tuple scores of the six matched tuples
in Example1 we suppose all the matched tuples are shown
in Fig. 1, and the numbers of tuples of the two relations are
150 and 170, respectively. Therefore, the top-3 results are

Table 1 Statistics and tuple scores of tuples in PQ and AQ

Tuple sets PQ AQ

Statistics N d fP2P avdl N d fJames avdl

150 3 57.8 170 3 14.6

Tuple P1 P2 P5 a1 a3 a5

dl 88 28 83 10 22 23

tf 1 3 1 1 1 1

tscore 3.28 7.04 3.33 4.03 3.40 3.36

T1 = p2 (score = 7.04), T2 = a1 (score = 4.00) and
T3 = a1 ← w1 → p2 (score = (7.04 + 4.00)/3 = 3.68).

The score function in Eq. (1) has the property of tuple
monotonicity, defined as follows. For any two JTTs T =
t1 	
 t2 	
 . . . 	
 tl and T ′ = t ′1 	
 t ′2 	
 . . . 	
 t ′l generated
from the same CN C, if for any 1 < i < l, tscore(ti , Q) <

tscore(t ′i , Q), then we have score(T, Q) < score(T ′, Q).

As shown in the following discussion, this property is critical
to the existing top-k query evaluation algorithms.

3 Related work

Keyword search in relational databases has attracted substan-
tial research effort in recent years, which can be categorized
into two approaches. The graph-based methods [16–29]
model and materialize the entire database as a directed graph
where the nodes are relational tuples and the directed edges
are foreign key references between tuples. Then for each
keyword query, they find a set of structures (either Steiner
trees [16], distinct rooted trees [18], r -radius Steiner graphs
[19], multi-center subgraphs [21] or r -clique [24]) from the
database graph. For the details, please refer to the survey
papers [1,30]. The schema-based approaches [2–5,8,10,31–
41] in this area utilize the database schema to generate SQL
queries. After receiving a keyword query, they first utilize
the database schema to generate a set of CNs, which can be
interpreted as select-project-join views and all have explicit
meanings. Then, these CNs are evaluated by sending the cor-
responding SQL statements to the RDBMS to find JTTs.
A data graph cannot exploit the semantics of the underly-
ing database schema directly. Another drawback of the data
graph model is that a graph of the tuples must be material-
ized and maintained; therefore, it may not be scalable when
maintaining a large size database [30]. This paper adopts the
schema-based framework for query processing, but material-
izes small fractions of the entire database graph in the process
of query processing.

There would be a huge number of valid results for a key-
word query in a large database. However, only the top 10 or
20 most relevant matches for the keyword query—according
to some definition of “Relevance”—are generally of inter-
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Fig. 3 Query processing in KDynamic

est [2]. DISCOVERII [2], SPARK [3,42] and SPARKII
[4,11] efficiently execute top-k queries by avoiding the cre-
ation of all the query results. DISCOVERII proposed the
global-pipelined (GP) algorithm. For a keyword query Q,

given a CN C, let the set of query tuple sets of C be
{RQ

1 , RQ
2 , . . . , RQ

m }. Tuples in each RQ
i are sorted in non-

increasing order of their scores computed by Eq. (2). For
each tuple RQ

i · t j , the upper bound score for all the JTTs

of C that contain RQ
i · t j , denoted as score, is computed.

Algorithm GP initially mark all tuples in each tuple set as
un-processed except for the top-most one. Then in each
iteration (one round), the un-processed tuple, assume it be
C0 · RQ

s · tp, maximizes the score is selected for pro-
cessing, which is done by testing all the combinations as
(t1, t2, . . . , ts−1, RQ

s · tp, ts+1, . . . , tm), where ti is a pro-

cessed tuple of C0 · RQ
i (1 < i < m, i �= s). If the kth

relevance score of the found results is larger than score val-
ues of all the un-processed tuples in all the CNs, GP stops and
outputs the k found results with the largest relevance scores.

One drawback of the GP algorithm is that when a tuple
C · RQ

s · tp is processed, it has to test all the combinations

as (t1, t2, . . . , ts−1, RQ
s · tp, ts+1, . . . , tm). This operation

is costly due to extremely large number of combinations
when the number of processed tuples becomes large [9].
SPARK proposed the skyline-sweeping and block-pipeline
(BP) algorithms, which highly reduce the number of tested
combinations. SPARKII proposed the tree-pipeline algo-
rithm, which can share the computational cost among CNs in
some extent, using the binary decompositions of them. How-
ever, SPARK and SPARKII still cannot avid testing a huge
number of combinations which cannot produce results.

KDynamic [7,32] formalizes each CN as a rooted tree,
whose root is defined to be the node r such that themaximum
path from r to all leaf nodes is minimized.1 Figure3a shows
the rooted tree of CN6. Each node Vi in the rooted trees is
associated with an output buffer, denoted by Vi ·OP, which
contains the tuples of Vi that can join at least one tuple in
the output buffer of its each child. Tuples in the output buffer
are called the output tuples of the node. Thus, each output

1 Note that the CN defined in KDynamic has some differences with
ours.

tuple of the root can form JTTs with the output tuples of its
descendants.

Tuples of CNs are processed in a two-phase approach in
the rooted tree. In the filter phase, as illustrated in Fig. 3a,
when a tuple t is processed at the node W 1, KDynamic uses
selections to check if (1) t can join at least an output tuple of
each child ofW 1; and (2) t can join at least an output tuple of
the ancestors of W 1. The tuples that cannot pass the checks
are pruned; otherwise, in the join phase (shown in Fig. 3b),
a joining process is initiated from each output tuple of the
root node that can join t, in a top-down manner, to find the
JTTs involving t.KDynamic achieves full tuple reduction by
pruning the tuples that cannot form JTTs, and thus the join
operations can always produce results.

In order to share the computation cost among CNs, all the
rooted trees are compressed into a L-lattice by collapsing
their common subtrees. Thus, the output tuples of a node
are shared by more than one nodes, among different CNs.
Figure3c shows the lattice of the seven CNs. We use V Q

i to
denote a node of query tuple set particularly. The dual edges
between two nodes, for instance, V Q

1 and V5, indicate that

V5 is a dual child of V Q
1 .

Evaluating theCNsusing the lattice can achieve full reduc-
tion because all the output tuples of the root nodes can form
JTTs. However, KDynamic cannot evaluate the CNs in a
pipelined way to support top-k result computing. The two
important ideas of the pipelined query evaluation methods
of DISCOVERII, SPARK and SPARKII are: (a) calculate
upper-bounds for the relevance score of the un-found results;
and (b) prune unnecessary calculations in finding the top-k
results. In the following, we incorporate the ranking mech-
anisms and the pipelined evaluation into the above query
processing method of KDynamic, and makes several opti-
mization methods to support efficient top-k keyword search
in relational databases.

4 Pipelined evaluation of lattice

In this section, we will show the method of evaluating the
lattice in a pipelined way to find the top-k results. Firstly, we
present the algorithmof evaluating the lattice. Then,weprove
the correctness of the algorithm. Lastly, we use the execution
process of the lattice of the seven CNs as an example.

4.1 The LP algorithm

In order to find the top-k results in a pipelined way, we first
sort tuples in each node V Q

i in non-increasing order of tscore.

We use V Q
i .cur to denote the index such that the tuples in V Q

i

before it are all processed; andwe use V Q
i .cur ← V Q

i .cur+
x to move V Q

i .cur to the next x position. Initially, for each
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node V Q
i in L, V Q

i .cur is set to the top tuple in V Q
i , i.e., the

tuples have the maximum tuple score. Note that, for a node
Vi that is of a free tuple set RF

i , we regard all its tuples as
processed tuples for all the times.

The key to evaluate queries in a pipelined way in DIS-
COVERII and SPARK is to compute an upper bound for the
relevance score of the un-found results. For a keyword query
Q, given a CN C, let the set of query tuple sets of C be
{RQ

1 , RQ
2 , . . . , RQ

m }. For each tuple RQ
i · t j , DISCOVERII

computes the upper bound score for all the JTTs of C that
contain RQ

i · t j as:

score
(
C · RQ

i · t j , Q
)

= t j · iscore + ∑
i ′ �=i C · RQ

t ′ · t1 · tscore
si ze(C)

, (3)

where C · RQ
i ′ · t1 indicates the top-most tuple of query tuple

set C · RQ
i ′ . Using this equation, for each node V Q

i , this
paper computes the maximum score of the found JTTs by
processing the un-processed tuples at V Q

i as:

score
(
V Q
i , Q

)

=

⎧
⎪⎨

⎪⎩

0, a child of V Q
i has emptyOP

max
C∈V Q

i ·CN
score(C · V Q

i · tcur , Q)

otherwise

⎫
⎪⎬

⎪⎭
, (4)

If a child of V Q
i has an empty output buffer, pro-

cessing any tuple at V Q
i cannot produce JTTs; hence

score(V Q
i , t j , Q) = 0 in such cases, which chokes the

tuple processing at V Q
i until all its child nodes have non-

empty output buffers. This property of score(V Q
i , Q) can

be seen as our version of the event-driven evaluation in
KDynamic, which is firstly proposed in S-KWS [6] and can
noticeably reduce the query processing cost. For instance, the
score value of the node V Q

8 shown in Fig. 3c is computed as
maxC∈{CN2,CN7}(score(C · AQ · a1, Q)) = 4.00.

LP algorithm (Algorithm1) outlines our pipelined algo-
rithm of evaluating lattice L to find the top-k results. Lines
1–3 are the initialization steps, which sort tuples in each
query tuple set and initialize each V Q

i .cur. Then in each
while iteration (lines 4–8), step un-processed tuples in the
node V Q which maximizes score(V Q

i , Q) are processed.
Processing tuples at a node is done by calling the procedure
Insert. Algorithm1 stops when max

V Q
i ∈Lscore(V

Q
i , Q) is

not larger than the relevance score of the top-kth found
result because no results with larger relevance scores can be
found in the further evaluation. The procedure Insert(Vi , S)

is firstly provided in KDynamic, which updates the output
buffers for Vi (line 12) and all its ancestors (lines 17–19),

and finds all the JTTs containing tuples of S
′ by calling

the procedure EvalPath (line 16), which is firstly provided
by KDynamic too. In KDynamic, the second parameter of
Insert and EvalPath is one tuple. As shown by the BP algo-
rithm of [3], processing tuples in batch can achieve high
efficiency due to the reduced numbers of database accesses.
Hence, tuples are processed in batch in Algorithm1: step
tuples are processed when Insert is called in line 7, and
EvalPath also handles a set of tuples. However, it is not
the larger step is, the higher efficiency of LP algorithm has.
Because a larger step can result in un-necessary tuple pro-
cessing in some lattice nodes. We will experimentally study
how to select a proper step value. The recursive procedure
Eval Path(Vi , S, path) constructs JTTs using the output
tuples of Vi ’s descendants that can join tuples in S. The stack
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Fig. 4 After finding the top-3 results (output tuples are shown in bold)

Fig. 5 A lattice after finding the top-k results

path is used to record the join sequence for reducing the join
cost (see line 25).

Example 3 Figure4 shows the lattice of the seven CNs
after finding the top-3 results, which shows V Q

i .cur and

score(V Q
i , Q) value of the four V Q

i nodes same as Fig. 5.

Suppose step = 1, then in the first round, tuple V Q
9 · p2 is

processed by calling I nsert (V Q
9 , {p2}).SinceV Q

9 is the root

of CN1, Eval Path(V Q
9 , {p2}) is called and JTT T1 = p2

is found. Then, for the two father nodes of V9, V6 and V7,
since tuples ω1 and ω7 can join p2, I nsert (V6, {ω1, ω7})
and I nsert (V7, {ω1, ω7}) are called. V6 ·OP is not updated
because V Q

8 ·OP = ∅; V7 ·OP is updated to {ω1, ω7}. And
then, for the two father nodes of V7, V

Q
3 and V4, V

Q
3 ·OP is

not updated since V Q
3 has no processed tuples, and V Q

4 ·OP

is set as {a2} because there is only one tuple a2 in AF

that can join ω1 and ω7. Since V4 is the root node of
CN5, Eval Path(V4, {a2}, path) is called but the found
JTT p2 ← ω7 → a2 ← ω7 → p2 is not a valid
result. After processing V Q

9 · p2, score(V
Q
3 , Q) = 3.61

and score(V Q
9 , Q) = score(CN1 · PQ · p5, Q) = 3.33.

In the second round, I nsert (V Q
8 , a1) is called, … Lastly,

Algorithm1 stops because top-k [3]. score is larger than all
the score(V Q

i , Q) values.

4.2 Proving correctness

Theorem 1 After the execution of Algorithm 1, the score
values of all the un-found results are not larger than the
relevance score of the (k)th result in the queue top-k.

Proof Relying on the tuple monotonicity property of Eq. (3),
in case all the V Q

i nodes in the lattice having non-zero

score(V Q
i , Q) values, it is clear that Theorem1 is correct.

However, if a node V Q
0 has a child node with empty output

buffer, its score(V Q
0 , Q) would be zero. Then, if we con-

tinue inserting tuples into its descendants, all its child nodes
can have outputted tuples, and score(V Q

0 , Q) is changed

to a non-zero value. Since V Q
0 is not evolved in previ-

ous evaluation, score(V Q
0 · RQ · t1, Q) can be larger than

top-k[k]·score.Then, tuples of V Q
0 are processed and results

that are of score > top-k[k] · score may be found, which
makes Theorem1 to be wrong. However, following exam-
ple reveals that even if the above happens, the found results
cannot be of score > top-k[k] · score. ��

Figure5 shows a lattice after running the LP algorithm.
The arrows in Fig. 5 denote the three V Q

i .cur, and the
three score values are shown next to the corresponding
arrows, respectively. Since the first two tuples of V Q

1 and

V Q
2 are processed, score(V Q

1 · t ′3, Q) ≤ top-k[k] · score
and score(V Q

2 · t ′′3 , Q) ≤ top-k[k]·score.And since V3 has
no output tuples, score(V Q

0 , Q) = 0. Now suppose insert-

ing tuple t ′3 into V Q
1 or inserting t ′′3 into V Q

2 can result in

some output tuples in V3, which can change score(V
Q
0 , Q)

to a non-zero value. Because no tuples have been processed
in V Q

0 , score(V Q
0 , Q) = score(V Q

0 · t1, Q) can be larger
than top-k[k] · score. And then t1 is processed and the pro-
duced results can be of score > top-k[k] · score. However,
the produced results must contain t ′3 or t ′′3 , which means

that their score values are bounded by score(V Q
1 · t ′3, Q)

or score(V Q
2 · t ′′3 , Q). Hence, even if score(V Q

0 , Q) = 0,
the score values of all the un-found results are not larger than
θ. Therefore, the theorem is proved.

5 Optimization methods

In this section, we introduce four optimization methods that
can highly improve the efficiency of LP algorithm. Sec-
tion 5.1 describes the method to avoid computing results of
small relevance scores; Sect. 5.2 introduces the method of
clustering CNs based on their potentials in producing top-
k results; Sect. 5.3 presents the approach of optimizing the
lattice construction; and Sect. 5.4 shows how to cache the
joined tuples for each tuple to reduce the database access
operations.

5.1 Tuple filtering

Equation (3) assumes that tuple RQ
i · t j can form JTT with

the first tuple of every query tuple set RQ
i ( �= RQ

i ) of C.

This assumption can produce a serious overestimation for the
real maximum relevance score of the JTTs that RQ

i · t j can
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form, due to the small possibility for the assumption being
correct. However, Eq. (3) is the best estimate that we can
produce efficiently without accessing the database [2]. As a
result, Algorithm1 may find some results that have very low
relevance scores, e.g., JTT a1 ← w4 → p4 ← w6 → a3 in
Fig. 4.

Fortunately,whenAlgorithm1processing tuples in the lat-
tice, the practical join relationship of tuples can be found pro-
gressively,which can be used to reduce the score(V Q

i · t, Q)

value computed by Eq. (3) towards the real value gradually.
Therefore, we propose to add the following operation after
line 12 of Algorithm1:

Delete every tuple t that is of score
(
VQ
i · t, Q

)
≤

top-k[k] · score from S
′; where score(V Q

i · t, Q) also indi-
cates the maximum relevance score of JTTs formed by t, but
is computed using the practical join relationship of tuples in
the lattice:

score (Vi · t, Q) = max
C∈Vi ·CN

(
S1(t) + s2
si zeC

)

,

S1(t) = t · tscore +
∑

Vj

max
t ′ ∈Vj ·OP∧(t ′ 	
 t)

S1(t
′), (5)

where Vj is a child node of Vi . S1(t) indicates the maximum
relevance score of the tuple trees which are rooted on tuple t
and consist of the output tuples that can join t of the descen-
dants of V Q

i . And S2(t) is computed using Eq. (6):

S2 =
∑

RQ
j ′

C · RQ
j ′ · t1 · tscore, (6)

where RQ
j ′ is different from Vi and its descendants.

In the implementation, in order to compute S1(t) inEq. (5),
for each output tuple t of node Vi , we record the maximum
tuple score of the joined output tuple in each child node of
Vi . Then S1(t) is updated continually at the execution pro-
cess of Algorithm1. Not that S2 is the intersection part with
Eq. (3) and is computed using the tuple score of the first tuple
too. For an output tuple t of a leaf node Vi in the lattice, its
score(Vi · t, Q) equals to score(V Q

i · t, Q).But as the pro-
cedure Insert is called recursively from the bottom to the top
at the lattice, score(Vi · t, Q) will be keep getting close to
the real maximum relevance score of the JTTs formed by
t since the number of tuples for computing S2 is reducing.
Finally, when Vi is a root node, S2 falls to zero, and there
will be no more overestimation in score(Vi · t, Q). There-
fore, the JTTs of small relevance scores can be filtered out
as much as possible.

For computing score(V Q
i · t, Q) for a tuple t,we need to

find out all the tuples that t can join from the output tuples
of V Q

i ’s child nodes. By comparison, line 11 of Algorithm1
only need to checkwhether t can join at least one output tuple

Fig. 6 After finding the top-3 results,while filtering out results of small
relevance scores

of V Q
i ’s each child node, which can be done by the RDBMS.

However, when the number of output tuples is large, the
needed checking in line 11 will be more efficient if it is done
by the keyword search system.And in the fourth optimization
method described in this section, we also need to find out all
the tuples that t can join at the relations of V Q

i ’s child nodes.
As can be seen from the experimental results, using Eq. (5)
to delete tuples that are score(Vi · t, Q) ≤ top-k[k] · score
after line 12 can highly improving the efficiency of Algo-
rithm1.

Example 4 Figure6 shows the lattice after computing the
top-3 result, while adopting the optimization method
described in this section. Its main difference with Fig. 4 is
that the JTT a1 ← ω4 → p4 ← ω6 → a3 is not found. This
is because in the round six of Example3, the score of tuple
w1, w3 and w6 are all smaller than top-k[3] · score = 3.40;
hence, I nsert (V2, {p4} is not called, and then the JTT
a1 ← ω4 → p4 ← ω6 → a3 can avoid being computed.

5.2 Candidate network clustering

According to Eq. (1), relevance scores of JTTs of different
CNs have great differences. For example, relevance scores
of JTTs of CN5 and CN7 are smaller than that of JTTs of
CN3 due to their large sizes. And then the same tuple set
can have different numbers of processed tuples in different
CNs if they are evaluated separately. If the seven CNs are
evaluated separately, AQ of CN7 would have no processed
tuples. However, in the lattice, a node V Q

i can be shared by

multiple CNs. For instance, the node V Q
8 in Fig. 3c is shared

byCN2, CN3, CN6 andCN7.We use Vi ·CN to denote the
set of CNs that node Vi belongs to. Then, when processing a
tuple t at node V Q

8 , t is processed in all the CNs in V Q
8 ·CN ;

hence some results of CN7 can be computed, which would
have very small relevance scores and cannot contribute to the
top-k results.

The essence of the above problem is that CNs have differ-
ent potentials in producing the top-k results. Thus, the CNs
that have big differences in such potentials should not share
tuple sets. The optimal method is merely to share the tuple
sets which have the same set of processed tuples if CNs are
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Fig. 7 After finding the top-3 results if the seven CNs are clustered
into two clusters and JTTs of small relevance scores are filtered out

evaluated separately. However, we cannot get these sets with-
out evaluating them.As an alternative, we attempt to estimate
these sets according to two heuristic rules:

– If Max(C) =
∑

1≤i≤m C ·RQ
i ·t1·tscore

si ze(C)
(which indicates the

maximum score of JTTs that C can produce) is high, the
number of processed tuples of tuple sets of C is large.

– If two CNs have the same Max(C) values, tuple sets of
the CN with larger size have more processed tuples.

Therefore, we can use Max(C) · ln(si ze(C)) to measure
the potential of a CN in producing top-k results, where
ln(si ze(C) is used to normalize the effect of CN sizes.
Then, we can cluster the CNs using their Max(C) ·
ln(si ze(C)) values, and only the subtrees of CNs in the
same cluster can be collapsed when constructing the lat-
tice. For instance, Max(C) · ln(si ze(C)) of the seven CNs
are: 5.15, 2.93, 5.39, 6.84, 5.32, 5.70 and 3.03; hence
they can be clustered into two clusters: {CN2; CN7} and
{CN1; CN3; CN4; CN5; CN6}. Figure7 shows the lattice
after finding the top-3 results, while theCNs are clustered and
the optimization method described in Sect. 5.1 is adopted.
We can see that clustering the seven CNs further reduced the
number of computed JTTs compared to Fig. 6: merely the
top-3 results are found.

In the implementation, the CNs are clustered using the
K -means clustering algorithm [43], which needs an input
parameter to indicate the number of expected clusters. And
then an independent lattice is constructed for each cluster of
CNs. We use Kmean to indicate this parameter. The value
of Kmean represents the tradeoff between sharing the com-
putation cost among CNs and considering their different
potentials in producing top-k results. The CNs is not clus-
tered when Kmean = 1, then the computation cost is shared
at the maximum extent. When Kmean = MAX, all the CNs
are evaluated separately.

The time complexity of K-means is approximate to
O(#CN),where #CN is the number ofCNs. Since the number
of CNs cannot be very high (smaller than 1000), CN clus-
tering will not introduce perceptible additional cost to the
query evaluation process. As shown in the experimental sec-
tion, clustering the CNs can highly improve the efficiency in
computing the top-k results, and the optimal Kmean depends
on CNmax.

5.3 Optimization of lattice construction

For constructing the lattice, when modeling each CN as
a rooted tree, KDynamic selects the root node as the one
whose maximum path to all the leaf nodes is minimized
[32]. Although the above policy of selecting the root node
can result in the smallest maximum height of each rooted
tree (which isCNmax/2+1), the resulting lattice may not be
the optimal, because the popularity and the number of results
of subtrees are not considered. Here, the popularity of a sub-
tree is measured by the number of its occurrences in all the
CNs. Therefore, the resulting lattice can have the following
two problems:

(1) There would be a large number of nodes because the
subtrees of some rooted tree cannot be shared by many
CNs;

(2) The number of output tuples of some nodes is large; how-
ever, none or only a small portion of them can produce
JTTs.

DISCOVER [5] has shown that the popularity and the
number of results of the common sub-expressions should
be considered when sharing them between the CNs. Hence,
these two factors must be considered in the construction of
the lattice. However, constructing the optimal lattice that has
the least computation cost in finding the top-k result for a
keyword query is very hard. Let the number of tuple sets in
a CN C be CNmax , then C can have maximal CNmax differ-
ent rooted tree forms (each tuple set can be a tree root and
determines a distinct rooted tree). Then the number of all
the combinations is #CNCNmax , of which all should be con-
sidered in constructing the optimal lattice. Recall that #CN
grows exponentially while CNmax increases [4,5]; hence,
even for a smallCNmax , the time cost for computing the opti-
mal lattice cannot be accepted.2 Similar to DISCOVER, this
paper proposes a greedy algorithm, as shown in Algorithm2,
to compute the near-optimal lattice by choosing the rooted
sub-tree that has the maximum profit to be shared between
CNs in each iteration, until all the CNs are constructed to
rooted trees.3 The method of computing profit for a sub-tree
is described later.

Figure8 shows all the possible rooted sub-trees of CN5

at the beginning of Algorithm2. The right-most three trees
in Fig. 8 are the three possible rooted trees that CN5 can be
modeled as. Note that the other two rooted trees of CN5 are
identical to two of them. After a sub-tree sTree of a CN C
has been shared with other CNs, then the rooted trees that
are conflict with sTree will not be considered in the follow-

2 It has been proven to be a NP-complete problem in DISCOVER.
3 It worth noting that every CN is started as an un-rooted tree, or a free
tree.
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Fig. 8 All the rooted sub-trees ofCN5 at the beginning of Algorithm2

ing iterations. For example, if W ← PQ (rooted at W ) has
been shared with other CNs, then in the following iteration
of Algorithm2, the second right-most rooted tree in Fig. 8
should not be considered because W ← PQ cannot be a
sub-tree of it.

The method of computing the profit of rooted sub-trees is
similar with that of DISCOVER:

prof i t (sT ree) = f reqa

logb(si ze)
, (7)

where f req is the time that sub-tree sT ree appears in all the
CNs, si ze is the estimated number of results of sT ree, a and
b are two constants that represent a trade-off between the two
factors. We have experimented with multiple combinations
of values for a and b and found that the optimal solution
is closer approximated for {a, b} = {0, 1} for most of the
situations.

In the worst case, all the CNs cannot share any sub-
trees, then we have to consider all the rooted sub-trees
of each CN in line 2 of Algorithm2. For a CN of size
CNmax , it can be modeled as CNmax different rooted tree,
each of which has at most CNmax sub-trees. But after a
sub-tree sTree is selected, in the next iteration of CNmax ,

there are at most (CNmax − 1)2 need to be considered in
line 2. Therefore, the upper bound of time complexity of

Algorithm2 is O
(
#CN · ∑CNmax

i=1 i2
)

= O(#CN · CN 3
max ).

Since #CN grows exponentially while CNmax increases,
O(#CN · CN 3

max ) ≈ O(#CN ). Therefore, the optimization
of lattice construction will not introduce perceptible addi-
tional cost to the query evaluation process too. And it can

highly improve the efficiency in computing the top-k results
in the experimental study.

5.4 Caching joined tuples

In Algorithm 1, procedure I nsert may be called multiple
times upon multiple nodes for the same tuple. And the pro-
cedure Eval Path may also be called multiple times for the
same tuple in procedure Insert. The core of these two proce-
dures are the select operations. For example, line 11 selects
the tuples that can join tuples of S from the output buffer of
each child node of Vi . Although such select operations can
be done efficiently by the RDBMS using indexes, the cost is
high due to the large number of database accesses. For exam-
ple, in our experiments, for a tuple t, the maximal number of
database accesses can be up to several hundred.

In this paper, the selections in I nsert and Eval Path are
done efficiently by caching the joined tuples for each tuple.
Algorithm 3 shows our procedure to find the tuples in S that
can join at least one output tuple of node Vi , which is called
in line 11 of procedure Insert. For each tuple t in S, if the
joining tuples of relation Ri are not cached, they are queried
from the database and are stored into t in line 3. The proce-
dures of doing the selections in line 18 of Insert, and line 27 of
Eval Path are also designed in this pattern, which are omit-
ted due to the space limitation. Since the two procedures are
called recursively, for each tuple t, a tree rooted at t and con-
sist of all the tuples that can join t is created temporarily,
which can be seen as the cached localization information of
t and is denoted as T . Since T of different tuples can share
the same tuples, fractions of the database graph are created.

Assumeprocedure I nsert is called three times atV Q
3 , V Q

9

and V Q
10 for a tuple a0, which would incur at most seven

selections denoted by arrows in the left part of Fig. 9. For
instance, the arrow from V Q

3 to V8 selects the output tuples
of V8 that can join a0. There are three selections denoted by
dashed arrows because theywould not be done if the results of
the three selections: from V Q

9 to V5, from V Q
10 to V6 and from

V Q
10 to V7, are empty. If both the two selections, from V Q

9 to
V5 and from V5 to V1, have non-empty results, Eval Path is

123



Cluster Comput (2019) 22:S731-S747 S741

Fig. 9 Selections done in Insert and EvalPath and the cached joined
tuples for a tuple a0 of AQ

called and would incur the two selections denoted by dotted
arrows in Fig. 9. The right part of Fig. 9 shows the created
T for the tuple w0, where tuples in the dashed rectangle are
queried in the dashed arrows and tuples in the dotted rectangle
are queried in Eval Path.

Obviously, there is an obvious tradeoff between caching
large amount of data and frequent evaluation of small joins.
In the following, we will analyze the upper bound of the
cached data theoretically. And then in the experimental sec-
tion, we will study the practical effect on a real data set.
T is created on-the-fly, i.e., along the execution of proce-
dures I nsert and Eval Path, and its depth is determined
by the recursion depths of them. Therefore, T is not com-
plete in Fig. 9. The maximum recursion depth of procedure

I nsert is
⌈
CNmax

2

⌉
[32]. And the recursion depth of pro-

cedure Eval Path is
⌊
CNmax

2

⌋
. Hence, the height of T is

bounded by CNmax. If we use M1 and M2 to indicate the
maximum number of adjacent relations that each relation Ri

can have and the maximum number of tuples that a tuple of
Ri can join in its adjacent relations, respectively. Note that
M1 and M2 are often rather small compared to the number of
CNs. Then in the worst case, there are tuples of Ml

1 relations
in level l (the level of the root is 0) of T ; and for each relation,
there are Ml

2 tuples. Hence, the total number of tuples in T
is:

O

⎛

⎝
CNmax−1∑

l=1

Ml
1 · Ml

2

⎞

⎠ = O
(
(M1 · M2)

CNmax
)

. (8)

In a relational database, can have a large value. For exam-
ple, in a bibliographic database, a conference or a journal
tuple can be referenced by a large number of paper tuples.
Hence, Eq. (8) can have a huge result, which makes the effi-
ciency of the method of caching worse than KDynamic’s
method of frequent evaluation of small joins. Fortunately,
T is quite incomplete for the following two reasons. First,
merely finding the top-k results cannot make a large number
of JTTs to be found; hence, the recursion depths of Insert
and EvalPath are rather small for most of the tuples, other-
wise the joining process would be activated and lots of JTTs
could be found. Second, the possibility of the joined tuples
of a tuple t that can be found in the processed tuples of RQ

i

can be approximated as M2 · I DF · α, where I DF denotes
d fw
N (the ratio of the number of matched tuples to the number
of total tuples in Ri ), and α is the percentage of processed
tuples in RQ

i . I DF is small for most keywords in a relational
database (� 0.1), and α is small for most lattice nodes and
its average value is about 0.1 in our experiments. Hence, the
processing of the filter phase stops at a lattice node RQ

i in
most cases. Therefore, in fact, our method does not need to
cache large amounts of data in T .

For a tuple t, we use π to denote the number of lattice
nodes for which the procedure Insert and EvalPath are called
for t. In the best case, we only need to query the database at
the first time of calling I nsert or Eval Path, and then the
cached tuples in T can be reused. Since the majority of the
database access cost is in executing Insert or EvalPath, in the
best case, the total time cost of handling t can be reduced to
1
π
, compared to KDynamic.

In the implementation, the lattice nodes of the same RQor F
i

shares the same tuple sets, but differs in the cur value and
the output buffer. For caching the join relationships, each
tuple is created one time at the memory and hash indexes are
created for quickly locating of tuples.And then for each tuple,
it stores the pointers of the joined tuples in other relations.
Therefore, T trees rooted at different tuples can share the
joining relationships to the maximum extent. As shown in
the experimental results, caching the joined tuples can highly
improve the efficiency both in computing the top-k results.

6 Experimental study

6.1 Datasets

We conducted extensive experiments to test the efficiency
of our method. We used the DBLP dataset4 and the IMDB
dataset.5 DBLP is a continuously growing international bib-
liography database which mainly focus on the computer
science. IMDB is an online database of information related
to films, television programs, and video games. These two
databases are used in many studies on keyword queries over
relational databases, such as [2,3].

The two downloadedXMLfiles are decomposed into rela-
tions according to the two schemas shown in Figs. 10 and
11, respectively. The two arrows from PaperCite to Papers
denote the foreign-key-references from paperID to paperID
and citedPaperID to paperID, respectively. MySQL (v5.6)
is used as the RDBMS with the default “Dedicated MySQL
Server Machine” configuration. All the relations use the
MyISAM storage engine. Indexes are built on all primary

4 http://dblp.mpi-inf.mpg.de/dblp-mirror/index.php/.
5 http://www.imdb.com.
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Fig. 10 The DBLP schema (PK stands for primary key, FK for foreign
key)

Table 2 Tuple numbers in DBLP

Papers PaperCite Write Authors

764,403 38,675 1,678,379 641,368

Proceeding ProcEditers ProcEditer

6926 12,310 16,351

Table 3 Tuple numbers in IMDB

Actors Actresses Directors Movie

983,135 993,398 189,652 189,639

Movielinks Person ProdComp ProdComps

497,913 357,379 471,275 90,478

Fig. 11 The IMDB schema (PK stands for primary key, FK for foreign
key)

key and foreign key attributes, and full-text indexes are built
for all text attributes. The tuple numbers of the relations in
the two databases are listed in Tables 2 and 3. And the total
sizes of the two databases, including the indexes, are 368 and
436MB, respectively. All the algorithms are implemented in
C++. We conducted all the experiments on a PC with a 3.0
GHz CPU and 16 GB memory, running Windows 7.

6.2 Parameters

We use the following five parameters in the experiments: (1)
k: the top-k value; (2) l: the number of keywords in a query;

Table 4 Parameters (DBLP)

Names Values

k 100, 200, 250, 300

I 2, 3, 4, 5

IDF 0.003, 0.007, 0.013, 0.025

CNmax 4, 5, 6, 7

Kmean 1, 3, 5, 10, 20, 30, 40, MAX

step 1, 50, 100, 200, 300, 400, 800

Table 5 Parameters (IMDB)

Names Values

k 200, 300, 400

I 2, 3, 4, 5

CNmax 4, 6, 7

Kmean 1, 5, 20, 30, 40, MAX

step 1, 50, 100, 200, 300, 400, 800

(3) I DF : the d fw
N value of Eq. (3); (4) CNmax: the max-

imum size of the generated CNs; (5) Kmean: the number
of clusters of CNs; and (6) step: the number of tuples being
processed one time inAlgorithm 1.When k grows, the cost of
computing the top-k results increases since we need to find
more results. Different values of CNmax can dramatically
affect the time of computing top-k results since the number
of CNs can grow exponentially whenCNmax increases. And
the number of related tuples increases when I DF and l get-
ting bigger. Therefore, the above four parameters can highly
indicate the scalability of a top-k keyword search system, and
are widely adopted at previous studies [6,7].

The parameters with their default values (in bold) are
shown in Tables 4 and 5. Due to the same sets of CNs when
CNmax are 5 and 6, the CNmax values in IMDB experiments
do not contain 5. Because the keywords in IMDB are not
distributed regularly as in DBLP, we cannot choose a set of
I DF values. The numbers of the generated CNs for the dif-
ferent CNmax values are 18, 54, 134 and 336 for the DBLP
database; and are 8, 64, 558 for the IMDB database. The key-
words selected are listed in Tables 6 and 7 with their I DF
values, where the keywords in bold fonts are keywords pop-
ular in author or person names.

We run the Algorithm 1 on different values of each param-
eter while keeping the other five parameters in their default
values. Ten top-k queries are selected for each combinations
of parameters. To avoid generating a small number of CNs
for each query, one author name keyword of each I DF value
always be selected for each query. In the experiments, two
main metrics are considered: the average time cost (T ime)
and number of computed JTTs (#R).
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Table 6 Keywords and their IDF values (DBLP)

Keywords IDF

ATM, collaboration, cluster, Java, navigation,
ontology, privacy, QoS, scalable, Spatial Charles,
Eric

0.004

Embedded, fuzzy, genetic, Intenet, machine, mining,
semantic, sensor, video, XML, James, Zhang

0.007

Adaptive, architecture, database, evaluation, mobile,
oriented, optimization, process, security,
simulation, wireless, John, Wang

0.013

Algorithm, design, distributed, information,
learning, networks, performance, software, time,
web, David, Michael

0.025

Table 7 Keywords and their IDF values (DBLP)

Keywords IDF

Black, blue, cinema, company, corporation,
entertainment, girl, gmbh, group, international,
life, little, love, media, pictures, production, story,
studio, television, video, world, David, George,
James, John, Michael, Paul, Peter, Richard

Default

When k grows, the cost of computing the initial top-k
results increases since we need to find more results, and the
cost of maintaining the top-k results also increases because
the lattice nodes havemore outputted tuples sincemore tuples
are processed.

6.3 Main results

In this section,wewill describe themain experimental results
of the two databases, respectively.

6.3.1 DBLP dataset

First, we want to study the effectiveness of the four optimiza-
tionmethods proposed inSect. 5. Figure 12 shows the varying
of the average times of computing the top-k results when
changing parameter Kmean, on different CNmax values,
where Kmean = MAX means that all the CNs are evaluated
separately. Results of four different algorithms are shown in
Fig. 12, where LP denotes the Algorithm 1, LP-F denotes
Algorithm 1 with the tuple filtering method, LP-C denotes
Algorithm 1 with the caching joined tuples method, and LP-
FO0,1 denotes Algorithm 1 with the tuple filtering method
and the optimization of lattice construction method, where
O0, 1 indicate {a, b} = {0, 1} at Eq. (7). Since the results of
the K -means clustering may be affected by the starting con-
dition [43], for each Kmean value, we run each algorithm
five times on different starting condition for each keyword
query and report the average result. We have experimented
with multiple combinations of values for a and b and found
that {a, b} = {0, 1} can always result in the optimal perfor-
mance,whichmeans that the popularity of the rooted subtrees
should be omitted. It worth noting that we do not report the
performance of Algorithm 1 lonely with the optimization of

Fig. 12 The effectiveness of
the four optimization methods in
DBLP. a CNmax = 4, b
CNmax = 5, c CNmax = 6, d
CNmax = 7
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Fig. 13 The effects of
step, k, I DF and l on the two
measures in DBLP. a Varying
step, b Varying k, c Varying
IDF, d Varying l

lattice construction method because the curve would be very
close to LP-C and then makes the figures hard to read.

We can find the remarkable efficiency improvements of
Algorithm 1 caused by methods of tuple filtering and opti-
mization of lattice construction in Fig. 12, especially when
Kmean has small values. Figure 12 also shows that CN clus-
tering can significantly improve the efficiency of computing
top-k results, which justifies the two heuristic rules proposed
in Sect. 5.2. The efficiencies of the four algorithms com-
pared in Fig. 12 are affected differently by the variance of
Kmean. For the LP algorithm, the time needed to compute
top-k results is the least when Kmean = MAX. But for the
other three algorithms, the times experience a rise after the
first decline when Kmean changing from 1 to MAX, which
can always reach the lowest point near Kmean = 30. There-
fore, Kmean is set to 30 at the following experiments at the
DBLP dataset. Such an optimal Kmean value is depending
on the schema of the dataset, which will be 40 at the IMDB
database. As a conclusion, the two methods of tuple filter-
ing and CN clustering can mostly increase the efficiency of
Algorithm 1 in computing top-k results.

Next, we want to learn the effects of the parameters and
the scalability of the proposed methods. Figure 13 shows
how the two measures change of LP algorithm plus the
four optimization methods while varying step, I DF, k and
l, where the values of #R are all plotted on the right Y -
axis and the unit is 1000. Figure 13a shows that the two
measures all decline rapidly when step is growing from 1
to 200. Decreasing of T ime is due to the highly reduced
number of database accesses, which proves the importance
of processing tuples in batches (or blocks as proposed in

Fig. 14 LP++ versus KDynamic and SPARK in DBLP

SPARK [3]). Because score(V Q
i , Q) is computed using the

first un-processed tuple, larger values of step can result in
more un-necessary tuple processing at node V Q

i . Hence, as
can be seen from Fig. 13a, #R increases while step grows,
and the time cost increases while step grows from 200 to
400. In practice, we recommend k < step < 2k. The curves
of T ime and #R at Fig. 13b–d do not have fast-rising while
increasing k, I DF and l, which imply the good scalabil-
ity of the proposed method. More importantly, the curves of
#R at Fig. 13c, d changes from rising to falling while I DF
increasing from 0.013 to 0.025, and l increasing from 3 to 5.
This is because when I DF and l have large values, single
tupleswould have high probabilities to containmore than one
keywords, hence large relevance scores. Therefore, there are
more JTTs that have high relevance scores, which results in
larger θ and small values of the two measures.

Figure 14 compares the time cost of computing the top-k
results of Algorithm 1 with the four proposed optimization
methods, denoted by “LP++”, with that of the BP algorithm
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Fig. 15 The effectiveness of
the four optimization methods in
IMDB. a CNmax = 6, b
CNmax = 7

Fig. 16 The effects of step, k, l
and CNmax on the two measures
in IMDB. a Varying step, b
varying k, c varying l, d varying
CNmax

of SPARK (which is the state-of-art top-k keyword search
algorithm [9]) and KDynamic, respectively, while varying
CNmax. Figure 14 shows that, compared to SPARK, algo-
rithms LP++ and KDynamic are more efficient in finding the
top-k results, because evaluating the CNs using the lattice
can achieve complete reduction since all the output tuples of
the root nodes can form JTTs [32]. The time costs of KDy-
namic in Fig. 14 are all obtained when Kmean = 30.Hence,
the difference between our approach and KDynamic reflects
the effects of the other three optimization methods. More
importantly, the improvement increases as CNmax grows.

6.3.2 IMDB dataset

Figure 15 shows the varying of the average times of com-
puting the top-k results when changing parameter Kmean,

where the four algorithms are some as the experiments at the
DBLP dataset. Because the number of CNs generated is very
small, Fig. 15 does not report the data when CNmax = 4.

We can see the same effectiveness of the four optimiza-
tion methods in Fig. 15 as in Fig. 12, and the two methods
of tuple filtering and CN clustering also prove the largest
improvements to the efficiency of LP algorithm. The only
difference is that the lowest points of the curves are reached
near Kmean = 40.

Figure 16 shows the effects of parameters of step, k, l
and CNmax to the two measures of the proposed method,
and compares with the BP algorithm of SPARK and KDy-
namic at Fig. 16d. Figure 16a reveals that the optimal value of
step in IMDB is 300. The value of T ime decreases quickly
while step increasing from 1 to 300, and then growing slow-
ing while step increasing from 300. The value of #R keeps
growing biggerwhile step increasing.However, in theDBLP
experiments, as shown in Fig. 13a, #R shows irregular fluc-
tuations after step is bigger than the optimal value 200. This
is because the foreign key reference relationships are more
extensively in theDBLPdatabase than in the IMDBdatabase.
As a result, the number of JTTs are much bigger in the DBLP
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database, which can be shown by the different ranges of #R
values inFigs. 13 and16.Therefore,whenusing abigger step
value, it is more probably to find JTTs with large relevance
scores in DBLP, which would increase top-k[k] ·scoremore
quickly. In comparison, due to the small number of JTTs
in the IMDB database, different values of step cannot affect
the changing process of top-k[k] ·score.Hence, more tuples
of small score(V Q

i · t, Q) values will be processed as step
growing, which will result in more JTTs.

FromFig. 16b, c we can observe the similar changes of the
two measures when varying k and l, respectively. And from
the comparisons of the algorithms in Fig. 16d, we can see the
well effectiveness of the proposed optimization methods and
the good scalability of the proposed algorithm. In summary,
compared to the existing proposed algorithms, the efficiency
of computing the top-k keyword search results has been
improved by an order of magnitude in this paper. And the
average time needed for a top-k keyword search are smaller
than 10 s in our experiments. Therefore, the proposed meth-
ods in this papermake the top-k search in relational databases
to be more practicable.

7 Conclusion

In this paper, we studied the problem of answer continuous
top-k keyword query in relational databases. We proposed
to store the state of the CN evaluation process, which can
be used to restart the query evaluation after the insertion of
new tuples. An algorithmwas presented tomaintain the top-k
answer list on the insertion of new tuples. Our method can
efficiently maintain a top-k answers list for a query without
re-computation the keyword query, which can be used to
settle the problem of answering continual keyword searches
in a database that is updated frequently.
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