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Abstract Skyline queries are extensively used for solving
many problems such as product recommendation, because
skylines contain data to satisfy various user criteria. Cur-
rently, skyline queries for large databases are being inves-
tigated. In particular, the research using the existing index
techniques to MapReduce for large databases in a parallel
and distributed environment has been actively conducted. A
characteristic of skyline queries is that the data closer to the
origin dominate more data regions. In this paper, we propose
a novel index technique using adaptive two-level grids, called
TLG. It separates the data space into regions by considering
the characteristic of the skyline queries. We also propose an
efficient skyline query algorithm based on TLG. It computes
the skylines for each data region for reducing the number
of checking dominance relationship between data points in
different regions.

Keywords Skyline · Location-based system · MapReduce ·
Multi dimensional databases

1 Introduction

Skyline queries [1] are beneficial in many diverse areas of
applications including bio and medical areas [2,3], prod-
uct recommendation, restaurant recommender system [4],
review rate reflecting user feedback [5], and decision-making
problem areas [1,6].
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Investigations of skyline query processing on a single
machine were performed [1,7–9] using centralized index
structures such as B+-tree [10] and R∗-tree [11]. However,
these skyline query processing techniques are not suitable
for large databases owing to their scalability and computa-
tion complexity problems. For instance, there are more than
1 million transactions per hour at Wal-Mart stores [12], and
1 billion photos are uploaded by Facebook users in a day
[13]. The skyline queries are frequently used as primitive
operators for quickly processing these large databases to pro-
vide pricing decisions and develop marketing strategies. A
method to solve these problems is MapReduce [14], which
has recently attracted the attention of researchers. A variety
of fields of research [15,16] that needs for processing and
analyzing large database has used MapReduce technique.

MR-BNL andMR-SFS [17],which extend the existing sky-
line query techniques to MapReduce, have been proposed.
MR-BNL andMR-SFS algorithms partition dataset into sub-
datasets and compute local skylines on each sub-dataset.
Next, a single machine merges all local skylines and com-
putes global skylines. If there are numerous local skylines,
considerable running time will be required for processing
them using a single machine. On the other hand, our pro-
posed algorithm computes global skyline simultaneously on
multiple machines.

A technique for computing skylines in SpatialHadoop has
been proposed in [18]. To compute skylines, the technique
first performs filtering. As the global index of SpatialHadoop
has information about the region of a node, it can filter the
regions that do not have skylines beforehand. However, the
technique is only available in SpatialHadoop. On the other
hand, our proposed algorithm can be used in any framework
that supports MapReduce.

A novelMapReduce-based scheme SKY-MR has been pro-
posed in [19]. SKY-MR uses a quad-tree, called sky-quadtree,
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which is fabricated using randomly extracted data from the
input dataset. The sky-quadtree serves as a basis of prun-
ing non-skyline points on each map function and enhances
the workload balance of available machines. SKY-MR also
uses virtual max point and sky-filter point for reducing the
amount of filter points required for independently comput-
ing global skylines onmultiple machines. However, SKY-MR
should search the sky-quadtree for every input data. More-
over, it has a disadvantage, that is, MapReduce job can be
performed twice.

In this paper, we propose an effective one-phase MapRe-
duce algorithm for computing skylines. First, we propose a
novel index technique named TLG, which stands for two-
level grids. In particular, our algorithm effectively prunes
non-skyline points as it adaptively divides the data space.
Next, we show the memory efficiency of TLG. Finally, we
propose the effective skyline algorithm based on TLG. We
showed experimentally that our proposed algorithmperforms
better than the existing algorithm in a low-dimensional data
space. This paper performs the following contributions:

Novel pruning technique based on TLG We propose
TLG-based pruning technique for decreasing the skyline
computation overhead. Moreover, it does not require search-
ing the tree and can be used in various data distributions.

Computing skylines in each data region independently
To reduce the number of checking dominance relationship
between all pairs of points, we compute partial skylines in
each data region and merge them to obtain a complete sky-
line.

This paper is organized as follows. The proposed index
TLG and techniques are presented in Sect. 2. Section 3
explains the proposed algorithm utilizing the TLG index.
Section 4 reports the performance evaluation. Finally, the
conclusions are provided in Sect. 5.

2 Adaptive two-level grids

This section describes the TLG index. First, we explain the
grid block. Then, we extend the grid block to TLG.

2.1 Two-level grids index

Before explaining TLG, we define a grid block and describe
the dominance power of the skyline queries. We then present
the partitioning technique based on an arithmetic sequence
and TLG. TLG, which considers the dominance power, can
be utilized for datasets of several distributions. TLG can be
applied to a multi-dimensional data space; however, we use
a two-dimensional data space for ease of exposition.

Consider a d-dimensional data space consisting of nd

regions where each dimension of the data space is divided
into n intervals. These n intervals are numbered 1 to n from

Fig. 1 Examples of grid blocks in 2D data space

left to right in each dimension.We name each region as a grid
block. Moreover, we use the row-major order for numbering
the grid blocks, as shown in Fig. 1a.

Definition 2.1 An i th grid block bi is represented by
〈bi1, bi2, . . ., bid〉 where bik is the interval number of bi cor-
responding to the kth dimension for all k ∈ [1, d].

Without loss of generality, we assume that the minimum
interval numbers are preferred for each dimension in this
paper. We formally define a dominance relationship between
grid blocks in Definition 2.2.

Definition 2.2 Given two grid blocks bi and b j , bi domi-
nates b j , denoted as bi ≺ b j , if and only if ∀k ∈ [1, d], bik <
b j
k . If b

i contains a point, bi is named a dominating grid block
and b j is named a dominated grid block.

A grid block b1, which has a point p1 in Fig. 1a, dom-
inates four grid blocks b5, b6, b8, and b9. By identifying
the dominating grid blocks, we can remove all the points in
the dominated grid blocks for skyline computation. There-
fore, we divide the data space into grid blocks. There are
many types of grid blocks including fixed-size grid blocks
and variable-size grid blocks. Figure 1a, b shows 32 fixed-
size grid blocks where the partition points of each dimension
are 2 and 4. Figure 1c, d shows 32 variable-size grid blocks.
We calculate the volume of grid block as follows:

Definition 2.3 Let (L(bik), U (bik)] be the range of the kth
dimension of a grid block bi . We define the volume V of bi

as follows:
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V (bi ) =
d∏

k=1

|U (bik) − L(bik)|

Considering the volumes of the grid blocks dominated by
bi , we define the dominance power of bi as follows:

Definition 2.4 Given a grid block bi , we denote bi .DGB as
a set of grid blocks that are dominated by bi . We define the
dominance power DP of bi as:

DP(bi ) =
∑

b j∈bi .DGB
V (b j )

For example, in Fig. 1b, grid blocks that are dominated of b1

are filled with diagonal patterns.DP(b1) is V (b5)+V (b6)+
V (b8) + V (b9) = 16. Figure 1c shows finely divided par-
tial data space near the origin. In Fig. 1c, we can observe
the domination of more grid blocks in a dataset that con-
tains a point near the origin such as p1 = 〈0.5, 1〉. However,
if we use the datasets that only contain p2 = 〈2.5, 3〉, the
grid in Fig. 1c will not contain dominated grid blocks. In
order to dominate many grid blocks even if we use a dataset
that does not contain a point near the origin, we suggest
a grid consisting of variable-size grid blocks based on an
arithmetic sequence to apply to diverse datasets, as shown in
Fig. 1d.

Definition 2.5 We divide the data space into variable-size
grid blocks by using the partition points of each dimension,
which increase the interval in the order of the arithmetic
sequence.

Let n be the number of grid blocks per dimension, c be the
common difference, and f be the first term of the arithmetic
sequence. We use the same value of c and f to reduce the
calculation cost. The equation of an arithmetic series n(2 f
+ (n − 1)c)/2 is simplified to nc(n + 1)/2.

Let us now assume that the range of a dimension is [0,30],
as shown in Fig. 2. In this example, if we divide the range by
five intervals, c becomes 2 owing to 5× c× (5+ 1)/2 = 30.
Each partition point on the range is calculated by the equation
of the arithmetic series. For instance, the first partition point
is 1×2×(1+1)/2 = 2, and the second partition point is 2×
2× (2+ 1)/2 = 6. Other partition points are also calculated
in the same manner. If we divide the range by four intervals,
c becomes 3 and the respective partition points are 3, 9, and
18 in the samemanner. As the range of each dimension in the

Fig. 2 Example of dividing dimension

d-dimensional data space is divided in the same manner, we
can easily find the grid block to which a point belongs using
the arithmetic series without an additional overhead such as
searching the tree.

The reasons for using the arithmetic sequence are to
reduce the calculation cost and avoid oversized grid blocks.
If we adopt other methods such as a geometric sequence,
we should use exponentiation on floating point to find a grid
block to which a point belongs, thereby greatly increasing
the calculation cost. For every input point, as we observe
for the grid block to which each point belongs, the per-
formance of our proposed algorithm will be considerably
degraded if the calculation cost is high. In the case of
oversized grid blocks, oversized grid blocks are hardly
dominated by other grid blocks, as shown in Fig. 1c. Conse-
quently, we use the arithmetic sequence for preventing these
problems.

However, whenwe consider a dataset that does not contain
a point near the origin, the number of dominated grid blocks
in the dataset is still few. We propose adaptive Two-Level
Grids named TLG. An example of TLG is shown in Fig. 3.
Figure 3a shows TLG. Figure 3b, c shows TLG1 and TLG2,
which are sub-indices of TLG, respectively.

Definition 2.6 The adaptive two-level grids, denoted as
TLG, consist of a grid block level grid TLG1 and a sub-grid
block level gridTLG2. The sub-grid block inTLG2 is the same
as the smallest grid block in TLG1. A grid block bi ∈ T LG1

is subdivided into sub-grid blocks if and only if it satisfies
the following criteria: (1) bi that belongs to a point (2) bi is
not dominated by other grid blocks. If bi is subdivided, we
name it as subdivided grid block.

2.2 Memory estimation

If we finely divide the data space into numerous grid blocks
to dominate as many grid blocks as possible, we should
check dominance relationship between numerous grid blocks
and compute skylines among the numerous dominating grid
blocks. Hence, the numerous grid blocks cause a higher com-
putation cost. Moreover, they are entirely loaded into main
memory to avoid disk I/O. As a result, the number of grid
blocks is limited.

Before exhibiting the memory efficiency of TLG, we first
describe the definitions and properties of TLG. Given a set
of grid block GBS ⊆ TLG1 and grid block bi ∈ GBS, as
a V (bi ) can be divided by the volume of a sub-grid block,
V (GBS) can be divided by the volume of the sub-grid block.
We represent V (GBS) as the number of sub-grid blocks in
GBS as follows:
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Fig. 3 Examples of TLG a
TLG, b grid block level, c
sub-grid block level

Definition 2.7 We define the number N of sub-grid blocks
in a set of grid blocks GBS as follows:

N (GBS) =
∑

bi∈GBS

d∏

k=1

bik

Example Given a set of grid blocks GBS = {b8, b9} in
Fig. 3a, N (GBS) is

∏2
k=1 b

8
k+

∏2
k=1 b

9
k = 2×3+3×3 = 15.

The following two properties of TLG present the relation-
ship between the grid blocks. If we can identify a grid block
that contains a point is already dominated, then we can also
identify that some of the other grid blocks are dominated or
empty.

Property 2.1 Given a grid block bi ∈ TLG1 containing a
point is not dominated, b j ∈ T LG1 that satisfies the follow-
ing criteria are empty states:

∀k ∈ [1, d], bik > b j
k .

Example In Fig. 3a, three grid blocks b1, b5, and b9 are
provided. As b5 containing a point p1 is not dominated, b1

is an empty state. Also b9 is dominated by b5.

Property 2.2 Two grid blocks bi and b j are provided. If bi

dominates b j , then N ({bi }) is invariantly less than N ({b j }).
Example As shown in Fig. 3a, two grid blocks b5 and

b9 are provided. N ({b5}) = 〈2, 2〉 is invariantly less than
N ({b9}) = 〈3, 3〉.

As shown in Fig. 3c, only some grid blocks can be sub-
divided. We show the property that describes the criteria to
subdivide a grid block.

Property 2.3 Let SGBS be a set of subdivided grid blocks
and DGBS be a set of dominated grid blocks. Provided every
grid block bu /∈ DGBS is included in SGBS, if and only if it
satisfies the following criteria:

(1) bu contains a point.
(2) ∃k ∈ [1, d], buk = n ∨ (∀l ∈ [1, d], bul = bdl ∨

bul = bdl − 1) where bd ∈ DGBS.

Example In Fig. 3a, as only b9 is dominated by other grid
blocks, SGBS = {b3, b5, b6, b7, b8}.

Let GBS ⊆ TLG1 be a set of grid blocks. Lemma 2.1
shows the maximum sum of the numbers of subdivided grid
blocks. Using Definition 2.6 and Property 2.1– 2.3, we prove
Lemma 2.1 as follows.

Lemma 2.1 Let SGBSmax = {b j ∈ TLG1|∃k ∈ [1, d], b j
k =

n}. N(SGBS) is less than or equal to N(SGBSmax).

Proof To only subdivide the grid blocks of SGBSmax, all
points in a dataset are located into the grid blocks of SGBSmax
by Property 2.1. If a grid block bi /∈ SGBSmax is subdivided,
according to Definition 2.6, bi contains a point. It indicates
that bi dominates at least one grid block b j ∈ SGBSmax
by Property 2.3. N ({bi }) is invariantly less than N ({b j })
according to the Property 2.2. Thus, N (SGBSmax ∪ bi\b j ) is
invariantly less than N (SGBSmax). �


ExampleAssuming TLG as shown in Fig. 3a, SGBSmax =
{b3, b6, b7, b8, b9}. As b5 contains a point p1, b5 subdivides
anddominatesb9 (we indicate this by using diagonal pattern).
That is, 2× 2 sub-grid blocks are generated byDefinition 2.6,
and 3 × 3 sub-grid blocks are eliminated, thereby reducing
the sum of numbers of sub-grid blocks in the subdivided grid
blocks.

LetG1 be a grid consisting of fixed-size grid blocks. IfG1

consists of ((n(n + 1))/2)d fixed-size grid blocks, the vol-
umes of dominated grid blocks of G1 and TLG are the same.
We compare the memory requirements of two grids TLG and
G1. According to Lemma 2.1, N (SGBSmax) is Equation 1.
The number of grid blocks in TLG1 is invariantly nd , so that
the total number of grid blocks and sub-grid blocks in TLG
does not exceed the sum of Equation 1 and nd . As a result,
TLG contains less memory requirement than Equation 2. For
example, we assume that n is 10 on a two-dimensional data
space, and TLG requires a main memory for up to 1100 grid
blocks, but G1 requires main memory for 3025 grid blocks.
The dataset in this case, however, are extremely skewed.
Moreover, the actual amount of memory requirement may
be considerably smaller.

123



Cluster Comput (2017) 20:3605–3616 3609

(
n(n + 1)

2

)d

−
(
(n − 1)n

2

)d

(1)

(
(n − 1)n

2

)d

− nd (2)

3 Algorithm

This section presents the TLG-based skyline query process-
ing algorithm on MapReduce framework, called TLGSL.
Given a point set P, we compute the global skyline points
of P by running map, combiner, and reduce functions simul-
taneously. In TGLSL, we build TLG using the samples of P.
We broadcast TLG into all map functions. Next, we prune
non-skyline point on each map functions and compute local
skyline on each combiner functions independently. Finally,
we merge local skylines and compute global skylines on the
reduce function simultaneously. TLGSL is shown in Algo-
rithm 1.

Before explaining TGLSL, we first define filter points. In
order to reduce the number of checking dominance relation-
ship between all pairs of points in P, we locate P into the
grid blocks in TLG. Next, we compute the respective skyline
for each grid block. Meanwhile, we perform a filtering pro-
cess for each grid block. The filtering process eliminates the
points in bi by comparingwith the points in other grid blocks.
We name the points in bi as candidate points and the points in
other grid blocks as filter points. Without loss of generality,
we assume that minimum coordinates are preferred for each
dimension in this paper.

Definition 3.1 The filter points of bi are the unions of points
in other grid blocks that satisfy the following conditions:

(1) b j ∈ T LG1 contains points and is not dominated by
other grid blocks.

(2) i �= j
(3) ∀k ∈ [1, d] , b j

k ≤ bik

A filter point f p p is represented by 〈 f p p
1 , f p

p
2 , . . ., f p

p
d 〉

where f p p
k is the kth dimensional coordinate of f p p.

For example, p5 is the filter point of four grid blocks {b7,
b8, b10, b14}, as shown in Fig. 4.

Fig. 4 Example of skyline computation except surface

3.1 TLG construction

In this section, we describe the construction of building TLG.
We first obtain samples from P using the Reservoir sampling
technique [20]. Next, we divide data space into grid blocks
of TLG and all samples are inserted into TLG. Meanwhile,
we identify the dominating grid blocks for pruning all points
in the dominated grid blocks. TLG based on samples will be
sent to all map functions and will be used for pruning non-
skyline points in P on each map function. The setGroupKey
function is described in Sect. 3.2.

3.2 Local skyline computation

The map function of TLG is shown in Algorithm 2. The map
function is calledwith point id i as key and a point pi as value.
Next, the map function calls getGB function to obtain grid
block bgid . The function getGB returns the grid block bgid

to which pi belongs. If bgid is not pruned, it can dominate
the remaining unpruned grid blocks by bgid . If bgid is sub-
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divided, it calls the getSubGB function to observe sub-grid
block bgid .sbg towhich pi belongs. If bgid .sbg is not pruned,
it can dominate the remaining unpruned sub-grid blocks by
bgid .sbg . If bgid or bgid .sbg is pruned, themap function does
not output anything. Otherwise, it outputs<key, value>with
virtual id 0 as the key and point pi as the value.

The combiner function runs on the same machine as the
map function to decrease the network traffic between themap
function and the reduce function. As the combiner function
only contains the intermediate results of subset of P divided
by the splitter of MapReduce, it computes the local skyline
points to eliminate the non-skyline points as much as possi-
ble in advance. To dwindle down the number of comparisons
for checking dominance relationship between all pairs of
points, we compute the skyline points for each grid block
using the filtering process. We first introduce a filtering tech-
nique, named computation except surface, which uses a novel
buffer named “surface”.

Given the grid block bi and its filter point f p p, according
to Definition 3.1, ∃k ∈ [1, d], f p p

k < L(bik). Therefore, it is
not essential to compare all the candidate points in bi with
f p p at the kth dimension. We generate d+ 1 surfaces of
each grid block. The surfaces of the grid block contain the
following property.

Property 3.1 The surfaces of the grid blocks consist of a
combination of 1 to d - 1 dimensions. Let nsf be the number

of dimensions that composes the surface. The nsf number of
comparisons is omitted.

Property 3.1 shows that, as the number of dimension
increases, the number of surfaces increases exponentially.
Assuming a d-dimensional data space, the number of 1-
dimensional surface of a grid block is 2 × d. As half of
all surfaces are associated with its filter points, we use up
to the d number of 1-dimensional surface. Therefore, we
generate only d surfaces. The surfaces of a grid block are
built by an array structure. We maintain d+ 1 surfaces of a
grid block. From the 1st to the dth surface maintains filter
points that skip comparison at that dimension. (d+ 1)th sur-
face is used for temporary storage. For example, f p p where
∃k ∈ [1, d], f p p

k < L(bik) is stored into the kth surface of
bi .

As all grid blocks are visited by the row-major order from
the 1st to the dth dimension, the grid block visited later is
invariantly greater than the grid blocks visited at least one
dimension previously. This indicates that the visited grid
block does not affect the previously visited grid block. There-
fore, we search the entire grid blocks in TLG in a row-major
order. For instance, we visit in the order of b6, b7, b8, b10, and
b14 in Fig. 4. Note that the empty grid blocks are not visited.
{b11, b12, b15, b16} are dominated by b6 when we visited b6.

When we visit the grid block bi , we only send the local
skyline points of bi to every non-visited grid block bx that
reaches bi . If the grid block bm , which does not reach bi , is
affected by the points in bi , then bm received the points of bi

from the grid blocks that are in between bi and bm .
For instance, in Fig. 4, as p2 in b14 is dominated by both

of p5 in b6 andp1 in b10, b14 requires p1 or p5.When visiting
b6, we compute the skyline points and send the skyline point
p5 to b10. Next, when visiting b10, we eliminate the candidate
points by comparing with p5. We compute the skyline points
and determine the filter points to send to b14. Meanwhile, we
use the computation except surface technique for calculating
the filter points. As we do not consider the 2nd dimension, p1
is the filter point. We send p1 to b14. Finally, when visiting
b14, p2 is dominated by the received filter point p1.

The combiner function is shown inAlgorithm 3. The com-
biner function is called with virtual id 0 as key and point list
Pin as value. The combiner function locates all the points
in Pin into TLG. The combiner function searches the entire
grid blocks in a row-major order and finds the grid block bi

that holds the points.Meanwhile, some remaining grid blocks
can be dominated by bi . Next, for each surface, the combiner
function obtains the filter points filter from a surface of bi

and calls getSkylineExceptSurface function for eliminating
the points of bi by comparing with filter. Note that the get-
SkylineExceptSurface functions use the computation except
surface technique to skip comparison at the sfth dimension.
The combiner function calls the Skyline function to obtain
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Fig. 5 Example of grouping grid blocks

the local skyline points. The local skyline points are used as
the output of the combiner function with the surface id − 1.
It will be used as the candidate points of reduce function.

To check dominance relationship between the points in
different grid blocks, we send a novel filter pointmv_filter of
bi to the surface of bx , which is not dominated and reaches
bi . bx has also not been visited yet. Themv_filter is obtained
by using the getSkylineExceptSurface function. This function
takes the union of the local skyline points and all the filter
points of bi and returns the filter points that are calculated by
skipping the comparison at the sfth dimension.

For every grid block bi , if the reduce function is called
with bi and its candidate points, then every reduce function
requires all the filter points of bi byDefinition 3.1. It indicates
that the same filter points can be duplicated. For instance, in
Fig. 5, assume p1–p8 are points and the grid blocks filled
by diagonal pattern are pruned by samples. According to
Definition 3.1, a point p5 is sent to five grid blocks b6, b7,
b8, b10, and b14. That is, p5 duplicates five times. As the
number of filter points increases, the network cost increases,
which is a prime factor in degrading the overall performance.

To decrease the number of duplication of the filter points,
we separate the entire grid blocks into groups. After con-
structing TLG, we use the samples for pruning the grid
blocks that do not contain skyline points. Next, we separate
the unpruned grid blocks into arbitrary gk groups by using
the angular partitioning approach [21]. Let the virtual center

point vcp =
〈
U (bi1)−L(bi1)

2 ,
U (bi2)−L(bi2)

2 , . . .,
U (bid )−L(bid )

2

〉
. For

every grid block bi , if the vcp of bi belongs to a group, then
assign bi to the group.

The reason to use samples for grouping is due to the work-
load balancing of the reduce function. As there is less chance
to be many real points in the grid blocks that do not have
samples, workload balancing in the reduce function can be
enhanced by reducing the influence of these grid blocks. We

set the group key of the grid blocks on Algorithm 1 via the
setGroupKey function.

For example, when the number of groups is 3(gk = 3),
as there are no points in b1, b2, b3, b4, b5, b9, and b13 in
Fig. 5, the remaining grid blocks (indicated by short dotted
lines) are divided by 3 (indicated by long dotted lines). Then,
the grid blocks are allocated based only on the long dotted
line. Therefore, b5, b9, b10, b13, b14, and b15 correspond to
group1, b

1, b6, b11, and b16 correspond to group2. Note that
the grid blocks that do not contain samples are also divided.

We visit the entire grid blocks in a row-major order and
find the grid block bi containing points. When visiting bi ,
all the local skyline points of bi are sent to other groups as
filter points. To indicate that they are a filter point, we set the
surface id of the filter point to d+ 1.

3.3 Global skyline computation

The reduce function is shown in Algorithm 4. The reduce
function is called with group key gk as key and a point list
Pin as value.Pin consists of filter points and candidate points.
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Fig. 6 Example of TLGSL algorithm

If surface id sf of each point pp ∈ Pin is−1, point is inserted
into bgid as candidate points. Otherwise, the point is inserted
into bgid . surface[surf] as filter points. Next, we visit the
entire grid blocks in the row-major order and find the grid
block bi containing filter points. The filter points are trans-
mitted to the grid blocks that reach bi . The rest of the lines are
similar to the combiner function. Therefore, we only men-
tion the difference between them. Sending filter points to
the reduce function is excluded. We visit bi containing filter
points even if it does not contain candidate points.

Example Let M1, M2, and M3 be the map function, C1,
C2, and C3 be the combiner function, and R1, R2, and R3 be
the reduce function, as shown in Fig. 6.

First, MapReduce randomly selects the samples from P

using the reservoir sampling and builds TLG using the sam-
ples. The grid blocks filled with color are pruned by samples.
Every grid blocks are divided by the angular partitioning
approach. MapReduce broadcasts TLG into all the map func-
tions.

M1, M2, and M3 accept points represented by square, tri-
angle, and circle, respectively. M1 is independently called
with each square point. M1 obtains the grid block bi and
bi . sbg by calling getGB and getSubGB to which the square
point belongs, and then checks whether bi and bi . sbg are
pruned. If they are pruned, we omit the square point. There-
fore, the points in the grid blocks and sub-grid blocks filled
with color are eliminated. We perform this operation for all
mappers in the samemanner.Moreover, if grid blocks or sub-
grid blocks is dominated by each input point, we dominate
them.

If the point of each map function is not eliminated, it is
sent to the combiner function. C1 computes the local skyline
points for each grid block. At this point, we visit all the grid
blocks in the row-major order and compute the local skyline
points using the filtering process with the computation except
surface technique. C1 sends the local skyline points to the
grid block in the same group. The transmitted points become
the candidate points in the reduce function.

The C1 computes the filter points among the local skyline
points and send them to all the other groups. In Fig. 6, the
filter points on the left and lower surfaces of R2 are filter
points received from the combiner C1 and C3, respectively.
Performing the same in the remaining combiner functions,
the filter points and candidate points are sent to R1–R3 as
input.

The filter points and candidate points are input to the
reduce function. The filter points obtained by the surfaces
of grid block are used for eliminating the non-skyline points.
In Fig. 6, the lines starting at the filter points represent the fil-
tering process. Finally, we compute the global skyline points
among the remaining points. All reducer functions such as
R1, R2, and R3 are independently called with group key and
MapReduce merges the global skyline points of each reduce
function and returns them.

4 Performance evaluation

In this section, we empirically evaluated the performance
of the proposed algorithm using the parameters shown in
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Table 1 Parameter

Parameter Description Range

s The number of samples 400

D The number of dimensions 2–5

|P| The number of points 2 × 106−107

n The number of grid blocks per dimension 5–12

gk The number of groups 3

Fig. 7 Effect of the number of grid blocks per dimension for the
datasets with independent data distribution a unpruned data, b runtime

Table 1. To perform all experiments, a total of nine Mac
machines were used for configuring a cluster. The cluster
consisted of one master and eight slaves nodes of Intel(R)
Core(TM) i5-2500S CPU 2.70GHz processor with 16GB
(Giga bytes)mainmemory.We compared our proposed algo-
rithm TLGSL with SKYMR [19]. We used javac 1.8 for
compiling all the implemented algorithms. The framework
used was Hadoop 2.4.1 on Mac OS X Sierra 10.12.3. We
generated two synthetic datasets that are commonly used for
evaluating the performance of skyline algorithms [1]. The
respective datasets with independent and anti-correlated data
distributions were randomly generated.

Fig. 8 Effect of the number of grid blocks per dimension for the dataset
with the anti-correlated data distribution a unpruned data, b runtime

4.1 Effect of the number of grid blocks per dimension

We first evaluated the effect of TLGSL by varying n (i.e., the
number of grid blocks per dimension).We used 400 samples.
Let d be the number of dimensions. We ran our experiments
on 2–4 dimensional datasets of size 107 by increasing n from
4 to 12.

Figure 7 shows the effects of n for 2–4 dimensional
datasets ind_2d, ind_3d, and ind_4d that are the datasets with
the independent data distribution. The number of unpruned
data was decreasing with increasing n in Fig. 7a, because
further dividing the data space increased the pruning power.
However, the runtime did not always decrease, even if the
pruning power increased. This is because the number of grid
blocks increased with increasing n. For large number of grid
blocks, the cost of checking dominance relationship between
the grid blocks and the cost of traversing the unpruned grid
blocks become considerably high. It adversely affected the
overall performance. In Fig. 7b, the values of n with the low-
est runtimes were 10 for 2D, 8 for 3D, and 6 for 4D. Since
TLG1 requires nd grid blocks, the number of grid blocks
became larger with increasing dimensionality, which in turn
increases computational costs.

123



3614 Cluster Comput (2017) 20:3605–3616

Fig. 9 Effect of cardinality for a two-dimensional dataset a unpruned
data, b runtime

Figure 8 shows the experimental results for 2–4 dimen-
sional datasets anti_2d, anti_3d, and anti_4d, which are the
datasets with the anti-correlated data distribution. The results
of Fig. 8 were similar to those of the experiment in Fig. 7.

4.2 Effect of data cardinality

In this section, we evaluated the effect of data cardinality on
MapReduce skyline algorithms. 400 samples were extracted
and tested for both algorithms. Other parameters of SKYMR
used the values they used in the experiment [19]. That is, the
split threshold was 20, the number of machines was 50, the
buffer sizewas 500,000, and themaximumdepth of the quad-
treewas 50.Letn be the number of grid blocks per dimension.
We set n as 10 for a two-dimensional dataset and 8 for a
three-dimensional dataset. The respective SKYMR_ind and
TLGSL_ind are experimental results of SKYMR and TLGSL
for dataset with independent data distribution. Likewise, The
Respective SKYMR_anti and TLGSL_anti are experimental
results of SKYMR and TLGSL for dataset with anti-correlated
data distribution.

Figure 9 shows the effect of data cardinality for the
two-dimensional dataset. Figure 9a shows the number of
unpruned data, when all the map functions are completed.
Moreover, Fig. 9b shows the total runtime including sam-

Fig. 10 Effect of cardinality for a three-dimensional dataset a
unpruned date, b runtime

pling, building TLG, and broadcasting TLG in milliseconds.
TLGSL effectively prunes non-skyline points. In MapRe-
duce, the intermediate data as a result of the map functions
are stored into amachine onwhich themap function runs and
are transmitted to the reduce function through the network.
Therefore, it is advantageous to eliminate as much data as
possible on the map and combiner functions, so that the total
execution time was shorter in Fig. 9b.

Figure 10 shows the same experiment performed for the
three-dimensional dataset. Figure 10a, b shows results similar
to the above experiment. However, as the number of dimen-
sion increases, the number of pruned data sharply decreases
for the dataset with the anti-correlated data distribution. We
have conducted similar experiments andwill discuss an effect
of dimensionality in Sect. 4.3.

4.3 Effect of dimensionality

Finally, we evaluated the effect of dimensionality d on
MapReduce skyline algorithms. We ran experiments with
d from 2 to 5. We set n as 10 for 2D, 8 for 3D, 6 for 4D,
and 5 for 5D. We fixed the cardinality at 107. The results are
shown in Fig. 11.
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Fig. 11 Effect of dimensionality a unpruned data, b runtime

As TLGSL effectively pruned non-skyline points rather
than SKYMR for the dataset with independent data distribu-
tion, it had a steady performance up to five-dimensions, as
shown in Fig. 11b. On the other hand, we could see that the
number of pruned points sharply decreases as the number of
dimensions increases on the anti-correlated distribution, as
shown in Fig. 11a. This is because the volume of the data
space exponentially increases with increase in dimensional-
ity. If we divide the data space by the number of grid blocks
used in the lower dimensionality, not only the volume of
each grid block increases considerably but also the number
of pruned grid blocks can be reduced considerably.

On the other side, if we finely divide the entire data space
by the volume we used on the lower dimensionality such as
2–4 dimensions, it requires a considerable number of grid
blocks. However, it is not desirable to be divided into more
than the certain number of grid blocks owing to the physical
memory limit and other computation overhead, as discussed
earlier. Finally, the data space should be divided into grid
blocks, but the number of grid blocks should not exceed a
certain number. Hence, the number of pruned grid blocks is
reduced.

In this manner, as the anti-correlated distribution has no
point close to the origin, the dominance relationship between

grid blocks did not occur most of the time. As a result, we
can understand that our algorithms cannot effectively prune
non-skyline points when the data space is not finely divided.

Above discussed problems lead to performance degrada-
tion for the dataset with the anti-correlated data distribution,
as shown in Fig. 11b. Subsequently, we should compute sky-
line points among a large amount of unpruned points through
searching the entire grid blocks in a row-major order. There-
fore, the performance of TLG was deteriorated when the
dimensionality was greater than 5 for the dataset with the
anti-correlated data distribution.

On the other hand, the SKYMR algorithm partitions data
space into balanced nodes that reflect the data distribution
using quad-tree. As 400 samples are used, the data space is
not divided into numerous nodes. Therefore, unlike TLG,
the cost to check dominance relationship between nodes
is low. Through the above experiment, although the pro-
posed algorithm exhibited poor performance for the dataset
of anti-correlated data distribution, it showed prominent per-
formance for the dataset of independent data distribution.Our
proposed algorithm also exhibited prominent performance at
the low-dimensional dataset, for which it is not essential to
divide the entire data space finely.

5 Conclusion

We proposed a TLG-based skyline query algorithm with
MapReduce, calledTLGSL.TLG is fabricated using variable-
size grid blocks that increase its interval in the order of
arithmetic sequence in each dimension and fixed-size grid
blocks. The TLG achieved the same pruning power as a
grid consisting of a fixed-size grid block while using less
main memory, because TLG utilized the dominance power
of the skyline. Moreover, we can rapidly find the grid block
to which the points belong for pruning non-skyline points.
The skyline points are expeditiously computed for each grid
block using the filtering process with skyline computation
except surface technique. In order to decreases network costs,
we applied the existing angular partitioning approach-based
grouping technique. Finally,weobtained the conclusion from
the performance evaluation. Our proposed algorithm shows
prominent performance on a low-dimensional data space,
wherein it is not essential to divide the data space finely.
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