Cluster Comput (2019) 22:S693-S706
https://doi.org/10.1007/s10586-017-1189-5

@ CrossMark

DSM: a dynamic scheduling method for concurrent workflows

in cloud environment

Shengjun Xue!2 . Yue Peng!? . Xiaolong Xu'3 . Jie Zhang? . Chao Shen!? .

Feng Ruan*

Received: 26 July 2017 / Revised: 8 September 2017 / Accepted: 11 September 2017 / Published online: 22 September 2017

© Springer Science+Business Media, LLC 2017

Abstract Cloud computing, emerged as a commercial ser-
vice model, has been widely concerned in both industry
and academia. Massive workflow applications could be
performed simultaneously on the cloud platforms, which
significantly benefits from the elasticity and convenience of
cloud computing. However, it is still a challenge to schedule
virtualized resources for the concurrent workflows in cloud
environment, with limited high-performance resources in a
timesaving and efficient manner. In view of this challenge,
a dynamic scheduling method for concurrent workflows,
named as DSM, in cloud environment is proposed to satisfy
the various resource requirements of the workflows. Techni-
cally, atime overhead model for the workflows and a resource

B><I Xiaolong Xu
xIxu@nuist.edu.cn

Shengjun Xue
sjxue @ 163.com

Yue Peng
joyous_yp@163.com

Jie Zhang
jzhangchina@126.com

Chao Shen
shen_chao@126.com

Feng Ruan
ruanfeng @hotmail.com

Jiangsu Engineering Center of Network Monitoring, Nanjing
University of Information Science and Technology, Nanjing
210044, China

School of Computer and Software, Nanjing University of
Information Science and Technology, Nanjing 210044, China

State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing 210023, China

School of Information and Control, Nanjing University of
Information Science and Technology, Nanjing 210044, China

utilization model for cloud datacenter are presented. Then a
relevant dynamic scheduling method is designed based on
critical path lookup, which aims at minimizing the makespan
of workflows, and maximizing the resource utilization of
the datacenter during the execution of the workflows. Exten-
sive experimental evaluations demonstrate the efficiency and
effectiveness of our proposed method.

Keywords Cloud computing - Workflow scheduling -
Makespan - Resource utilization

1 Introduction

Nowadays, cloud computing has been adopted as one of the
most efficient compute paradigms, to deal with the explo-
sive expansion of data. Cloud computing integrates abundant
heterogeneous resources while improving the adaptability
to commercialization [1]. In Cloud datacenters, physically
configurable and fragmented underlying resources (i.e., net-
works, servers, etc.) are generally virtualized to a logically
clustered virtual resource pool, which manages to realize
dynamic resource provision for an increasing number of users
[2,3]. Cloud computing provides convenient network ser-
vices, which allows users to rent on-demand resources for
their applications through Internet and charge in the pattern
of “pay as you go” [4]. Such resource provision and charge
manner contribute to reducing the operating costs of the IT
industry [5]. Currently, a variety of applications are submit-
ted to the cloud platforms for implementation, including the
workflow applications.

Cloud workflow scheduling is an essential part of cloud
computing technology, which directly affects the perfor-
mance of the entire workflow system [6]. In order to provide
the users good quality of cloud services, rapid execution

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-017-1189-5&domain=pdf

5694

Cluster Comput (2019) 22:S693-S706

time for the cloud applications is necessary to be taken into
consideration during workflow scheduling, which is often
reflected in the quality of service (QoS) [7]. Taking mini-
mal total execution time as the goal, task-level scheduling
in the cloud environment splits the workflow application
into several interrelated tasks. And these tasks need to be
assigned to the virtual machines (VMs), which requires pow-
erful methods and techniques to guarantee the time efficiency
for the execution of workflow applications [8]. The workflow
makespan is determined by the task dependency, as well as
the service performance provided by the cloud providers [9].
The scheduling strategy has a widely impact on the execution
time of the workflows, thus itis necessary to consider the goal
of minimizing the makespan for the concurrent workflows.

In addition to the makespan, the performance of the cloud
platforms is an indispensable part for quality measurement of
cloud datacenters. Generally, resource utilization is a popular
metrics for performance evaluation for cloud platforms [10].
Although cloud resources are unlimited, inefficient resource
usage would lead to the durative expansion of the cloud dat-
acenters and the significant increase of operating costs [11].
The efficient use of resources helps to prevent unnecessary
expansion of data centers and greatly reduces the waste of a
variety of physical resources. While satisfying the resource
requirements of substantial tasks, cloud providers expect to
take full advantage of active physical machines (PMs) for
resource response, which is beneficial to reducing the operat-
ing costs of datacenter. In the process of workflow execution,
high resource utilization also helps to reduce the total number
of PMs occupied and then reduce the waiting time of users.
Therefore, it is significant to conduct workflow scheduling
with the goal of maximize resource utilization.

However, to the best of our knowledge, there are few of
studies that succeed in obtaining good achievements in both
makespan and resource utilization. With these observations,
it is still a challenge to complete cloud workflow scheduling
in time-saving and efficient manners. To tackle this problem,
we focus on investigating a dynamic scheduling method for
concurrent workflows, named as DSM, in cloud environment.
Our contributions are three folds. Firstly, a time overhead
model for the workflows and a resource utilization model
for cloud datacenters are designed. Then a relevant dynamic
scheduling method for concurrent workflows is devised to
reduce the time overhead of workflows and maximize the
resource utilization of the cloud datacenter during the work-
flow execution process. Finally, we carry out comprehensive
experiments to verify the efficiency and effectiveness of our
proposed method.

The remainder of this paper is summarized as follows:
Related work is described in Sect. 2. Section 3 presents time
overhead and resource utilization analysis in cloud environ-
ment. The proposed dynamic workflow scheduling method
is described in detail in Sect. 4. Section 5 introduces the sim-

@ Springer

ulation experiment to test and verify proposed method. This
paper is summarized in Sect. 6 and an outlook on possible
future work is also given in this section.

2 Related work

After cloud computing integrated numerous heterogeneous
resources, resource scheduling strategies are applied to orga-
nize and schedule the resources, which have important
implications for making full use of resources. Meanwhile,
workflow scheduling strategies are applied to dispatch tasks
submitted to the cloud in the way of minimizing the total time
for task execution from the user perspective. Both of them
play important roles in cloud computing.

Inorder to provide the users good quality of cloud services,
workflow scheduling methods for the cloud applications with
rapid execution time have aroused a great deal of discus-
sion [12]. There are a number of methods that have been
designed, where various metrics are taken into account to
measure the performance, such as load balancing, fairness
and so on. Hence, these measurement tags should be ana-
lyzed with a certain necessity while designing an intelligent
scheduling method, as described in [13-18].

In [13], the graph partitioning algorithm was used by
Ahmad et al. to minimize communication between interme-
diate nodes during workflow execution, but the problem of
workflow resource scheduling after partitioning was not set
about, so that it is not applicable to the multi-resource cloud
environment. For the sake of interminable time overhead and
poor utilization, Chen brought up a workflow scheduling
method on hybrid cuckoo search and decision tree which
minimizes data dependent between tasks and selects opti-
mal resources for tasks [14]. In [15], Liu et al. proposed a
workflow scheduling method based on batch processing strat-
egy to deal with the fierce competition of low-cost resources
between tasks in the cloud environment, which achieves a
good tradeoff between time and cost. Aiming at optimization
of the accuracy in business workflow with time constraint,
a reverse reduction optimization method based on deadline
was developed to obtain the balance of time and accuracy
within deadline in [16]. In [17], Doulamis et al. proposed
a resource selection policy using spectral clustering, which
maximizes the satisfaction of tasks’ time requirements and
resources’ utilization efficiency synchronously. Kong et al.
[18] proposed a dispersive belief propagation-based alloca-
tion method for multi-agent tasks to cope with constantly
time-varying agents and tasks in dynamic cloud environ-
ments.

In addition to time, resource utilization in cloud comput-
ing continues to be highly concerned by all circles of society.
In order to extricate cloud suppliers from poor resource uti-
lization and heavy equipment cost, it is significant to develop

Cluster Comput (2019) 22:S693-S706

S695

effective scheduling strategies with high resource utilization
[19]. In order to improve the resource utilization of data-
centers, scholars have conducted a variety of researches, as
described in [20-24]. Some studies take both of the two into
account as goals at the same time and strive to strike a bal-
ance.

A scheduling optimization algorithm based on task tol-
erance was proposed in [20], where resource utilization of
computing node is maximized by adjusting the value of
task tolerance put forward in the article. Cao et al. [21]
focused on a multi-step heuristic workflow scheduling algo-
rithm, which maximizes energy conservation and resource
utilization under the premise of guaranteeing service quality.
Considering the priority execution order of tasks in work-
flow, Jard et al. [22] proposed a scheduling algorithm based
on pre-calculus for instance-intensive workflow scheduling
problem. The algorithm provides idle resource for execution
according to the order of task priority from high to low before
scheduling. For improving the resource utilization to opti-
mize the system performance, and taking the constraints of
QoS into account, Wang et al. [23] built a system scheduling
model with two scheduling stages. Then an improved particle
swarm optimization algorithm and a load-aware scheduling
strategy were proposed based on the model to achieve the
balance between resource utilization and QoS. Rodriguez et
al. [24] researched scientific workflow scheduling in cloud,
with QoS and resource utilization are seen as main factors,
in addition, they also took factors such as performance, reli-
ability, capacity and cost into consideration.

3 Time overhead and resource utilization analysis
in cloud environment

After workflow applications are submitted to the network
and distributed to certain datacenters, workflow scheduling
strategies are applied to break workflows into tasks with
dependencies, and configure VMs to respond tasks according
to some restrictions and principles [25]. Afterwards, the data-
center dispatches resources to these VMs with corresponding
resource scheduling policies.

The purpose of this paper is to reduce the time overhead
of workflow, denoted as #;,;4;, While maximizing the aver-
age resource utilization of the datacenter, denoted as ARUR,
under the premise of satisfying the resource demand of tasks.

To facilitate the following discussion, the key symbols
used in the time overhead model and the resource utilization
model are listed in Table 1.

As aresult, the objective function of this paper is summa-
rized as:

min f;pq;, mMmax ARUR @))

Table 1 Description of symbols in the time overhead model and the
resource utilization model

Symbol Description

num The total number of tasks in the workflow set

tm,n The n-th task in the m-th workflow of the
workflow set

Stin.n The start time of task #,, ,,

Stwn The finish time of task ,, .,

Wy, The makespan of executing the workflow wf,,

ICaverage The average makespan of workflows set WF

avny The number of active VMs on PM s, at time ¢

rin The instantaneous resource utilization of PM s,
at time 7,

rury The average resource utilization of PM s,

In Sects. 3.1 and 3.2, computational procedure of #;,, and
ARUR are introduced in detail, respectively.

3.1 Time overhead model

Assume there are H PMs, denoted as S = {s;,|1 < h < H},
available for promoting task execution in the datacenter. In
practical applications, the physical resources are composed
of CPU, memory, storage capacity, bandwidth and etc. [26].
For the following discussion, here lists a restriction: the
physical resources on a PM are encapsulated into several
independent resource blocks of same configuration, i.e., a
VM [27]. There is no discrepancy in performance of the VMs
on different PMs, except the calculation speed. Same config-
ured PMs have exactly identic VMs. Therefore, for a PM
sp(1 < h < H), the number of resources it possessed is
denoted as vy, and its processing speed is denoted as ps;,.,
which is equally divided by all VMs deployed on it.

Besides, the workflow set is represented as WF =
wf,[1 < m < M}, where M represents the size of
WF. For a workflow wf, (1 < m < M), it is denoted as
Wl = {Tn, MAy,, wsty,}, where T,,, MA,,, wst,, indicate
the task set, the dependencies between tasks and the expected
start time of wf ,,,, respectively. The users submit the service
request in a random way, so the request start time of workflow
applications are subject to random distribution. In addition,
wst,, is predetermined while the workflow is submitted to
datacenter. As t,, , represents the n-th task of the workflow
wf ., the task set T, is denoted as T, = {t;.n|1 < n < Ny},
where N, is the number of tasks in wf,,. Therefore, the total
number of tasks in WF, indicated as num, can be calculated
as:

M Np
num = Z Ztm,n)

m=1n=1

@ Springer

S696

Cluster Comput (2019) 22:S693-S706

According to dependency set, which is denoted as MA,, =
{tm,i>tm,j|1 <1, < Ny}, the direct predecessor task set
and the direct successor task set of a task #,,, ,(1 < n < Ny,),
represented as Pre,, , and Suc,, , respectively, are obtained.
A node without a predecessor task is called a source task,
while a node without a successor task is called a sink task
[28]. In addition to the source and the sink, each task has at
least one predecessor task and a successor task.

To facilitate the following research, a task ¢, , (1 <n <
Np) is defined as: tyn = (Stw,ns lmns St > VAimns Pmon)s
where Sty us bnons fty > Vi and py, n represent the start
time, the amount of computation, the finish time, the number
of VMs needed for execution and the number of direct pre-
decessors of #,, », respectively, and p,, , = |Prey »|. As the
characteristic of workflows mentioned above, st,, , depends
on the implementation of all tasks in Pre,, ,. For task t,, ,, if
Pm.n = 0, 1.e., t, 5 18 the source task of wf,,, St = Wsty,,
otherwise st,, , equals to the latest finish time of tasks in
Pre,, ,,. Assume that there are k tasks in Pre,, ,, the start
time of t,, ,, i.e., st,;,, can be calculated as:

max ft;,t; € Prey, 3)

Sty =
T 0<i<k—1

Consequently, the finish time of #,, ,, i.e., ft,, ,, can be calcu-
lated as:

lm,n Um,n
Stmn = Stmn + # “)
psi/vn
which is translated as:
lm,n * Vh
Sty = Stmn + ——— &)
Um,n * PSh

where ps;, /vj, is the processing speed of a VM in the selected
PM sy, and (L, - i)/ (v - psy,) indicates the execution
time that s serves t, , under the circumstance that #,, , is
executed on s, all the time. However, ft,, ,, varies if the task
is rescheduled, so that, f7,, ,, should be obtained through cal-
culating the time re-scheduling occurs, remaining workload,
and the performance of the PM reselected [29].

The makespan of wf,,(1 < m < M), defined as twy,,
is determined by the tasks first performed and the task last
finished. Therefore, tw,, could be calculated as:
tw,,, =

max ft, , — 13}2\/ Stm.n (6)
= _=4i¥m

1<n<Nm

since the earliest start time of tasks in the workflow is limited
by the default start time of workflow, i.e., wst,,, thus, the
formula above is equivalent to:

twy, = max ft, , — wsty, @)
1<n<Np ’

@ Springer

The average makespan of workflows in WF, tcyerage, can be
expressed as:

M
ICqverage = Z twm/M (3

m=t

According to the content above, the total time overhead of
the workflow setWF, expressed as #;,;47, can be calculated
using the following formula:

max Sty — min wsty)

trotal = ,
1<n<Np,1<m<M 1<m<M

3.2 Resource utilization model

Every moment during execution, there may be new work-
flows scheduled or existing workflows completing, therefore,
the instantaneous resource utilization is time-varying, so is
the average resource utilization of a PM [30]. In order to
illustrate the instantaneous resource utilization, the number
of active VMs on s, at ¢ is denoted as avny ; and calculated
as:

aviy ¢ = Z Z (fm,n,h,t : U”m,n) (10)

1<m<M 1<n<Np,

where f, ».n.; = 1 while thetask #,, ,, is employing resources
on s, at time ¢, otherwise, f,; ».n.; = 0. As a result, the defi-
nition of instantaneous resource utilization is given here: for
any PM s, (1 < h < H), the instantaneous resource utiliza-
tion at time ¢, denoted as ruy, ;, equates to the percentage of
occupied VMs in the number of total resources in the PM.
Since avny, ; is known, ruy, ; can be calculated as:

rup; = avnn,,/vh (1D

As ruy,; is figured out in formula (11), the average resource
utilization of PM s, in the whole process of serving the users
can be obtained by ruy ;, and the active time of PM that
serving for the workflows, presented as T}, namely, for a PM
sp(l < h < H), the average resource utilization is defined
as rury, and can be calculated as:

Ty
rury :/ ruh,t/Th (12)
0

The average utilization of a single PM is inadequate to evalu-
ate the performance of entire datacenter while serving users,
so another new concept of average utilization of datacenter
is given here: the average resource utilization of PMs occu-
pied by the workflow set WF during the whole execution is
defined as ARUR, which can be calculated with the utiliza-
tion of all active PMs and the time span for implementation
of WF as follow:

Cluster Comput (2019) 22:S693-S706

S697

Step1: Critical Path Lookup. In this part, we choose dynamic programming algorithm as the way to
analyze the critical paths according to workflow structures, and then the priorities are assigned as
significant basis for tasks selecting resource.

Step2: Time and Utilization Aware Task Scheduling. When dealing with the waiting queue, the
method first considers the priorities of tasks to reduce makespan of each workflow, dispatches tasks
to PMs according to the real-time utilization of each PM.

Step3: Priority Driven Resource Preemption. New tasks with higher priority have the right to seize

the VMs on high performance PMs from lower-priority ones while looking for resources, if the

resources lower-priority tasks occupied is sufficient.

Fig. 1 Specifications of DSM method

PN [Tk
ARUR = 30 [/PN -t (13)
—JO

where PN is the number of PMs that the tasks in WF has been
scheduled on for execution.

4 A dynamic scheduling method for concurrent
workflows

Base on the analysis in Sect. 3, arelevant dynamic scheduling
method for concurrent workflows, named as DSM, in cloud
environment is proposed. The method is comprised of fol-
lowing parts, i.e., critical path lookup, task scheduling based
on time and utilization and resource preemption for critical
tasks, as shown in Fig. 1. And the global workflow schedul-
ing is proposed at the end of this section which consists of
the following parts.

4.1 Critical path lookup

Logically, a workflow is composed of thousands of tasks and
dependencies between tasks. There needs a lot of resources
and a reasonable and effective scheduling approach based
on the dependency between tasks to co-ordinate execution
of the tasks [31]. A task is assigned to execute after all its
predecessor tasks have been accomplished. In contrast, the
tasks, which belong to concurrent workflows, have no depen-
dencies with each other, can be assigned simultaneously.
According to the feature mentioned above, a workflow
is generally analyzed as a directed acyclic graph (DAG)
and scheduled in the form of tasks which have complex
dependencies with each other [32]. As an effective tool for
describing the process of an engineering or system, a DAG
consists of vertices and edges, and vertices are usually bound
by certain conditions, which is represented by the edges.
According to the constraints between workflow tasks, tasks
and dependencies in the workflow are transformed into ver-
tices and edges respectively. Generally speaking, workflows
in actual application may have multiple start nodes and multi-
ple end nodes, like the example shown in Fig. 2a. It is difficult
to analyze this structure in details, so we add virtual nodes
to turn the situation into cases like single source and single

T T
T, 3 Te T Te
VT, - ~~__VTy
T, O _ T 30
T, Ts T, T, Ts T,
(a) (b)

Fig. 2 An example of workflow DAG conversion. a Workflow with
multi sources and multi sinks. b Workflow transformed into single
source and single sink

sink which have no processing requirements in principle, as
shown in Fig. 2b. In this paper, due to workflow properties,
there is a default that the first task of each workflow is the
source task.

Under the above assumptions, this paper proposes a
workflow scheduling algorithm for workflows with sin-
gle source and single sink. Thus, as workflow wf,, =
{Tn, MA,,, wst, }(1 <m < M) is expressed by DAG, T, is
the node set and MA,, is the set of edges between nodes.

The source node in a DAG is first assigned for implemen-
tation, and the scheduling sequence of each task is strictly in
accordance with the structure, i.e., each task can be assigned
to the PM upon all of predecessor tasks are completed. If all
the tasks are processed with same resources, the path with
the largest amount of computation in all paths from source
to sink is called the critical path of the DAG, whose process-
ing time can be usually regarded as the execution time of the
workflow. It is impossible for the tasks on the critical path to
be executed concurrently, so the execution time of the crit-
ical path cannot be compressed. Therefore, the critical path
of each workflow has a great influence on the makespan of
a workflow. It is important to emphasize that tasks on non-
critical paths are also performed, while the task on the critical
path has the right to choose better resources.

In general, workflow can be regarded as a mixed struc-
ture where serial structure and parallel structure coexist. The
completion time of a serial workflow is equal to the sum of the
execution times of all tasks, while that of a parallel workflow
depends on the maximum execution time of all tasks [33]. For
the hybrid workflow, with scope expansion of task activities,
time cost can be effectively optimized by determining map-
ping relation between critical tasks and high-performance
resources [34].

In order to simplify the algorithm, this paper uses an
attribute of task, start time, to limit the execution order of
the workflow. It should be noted that in actual scheduling,
the start time of next task is influenced by many terms, espe-
cially the size of data transferred and bandwidth between
PMs executing dependent tasks. Applications are classified
as data-intensive, computationally intensive and IO-intensive
by type. This research mainly focuses on the processing time
of computing intensive applications in datacenters so that
DSM ignores the transmission time, considers that the start

@ Springer

S698

Cluster Comput (2019) 22:S693-S706

time of subsequent tasks equals to the end time of precursor
task.

Concurrent workflows refer to workflows that are mutual
independence. Massive applications can be submitted to the
cloud platform by diverse users at any moment which are
neither ordered nor relevant. Universally, existing workflow
scheduling algorithms are mostly aimed at single workflow
applications rather than concurrent workflows, so research
on concurrent workflows is essential.

Once a workflow arrives at the datacenter, the source node
and the sink node should be founded according to the depen-
dencies between tasks. Due to the hypothesis above, the
dynamic programing algorithm is used to find the critical
paths of the workflows. Combining the breadth-first idea, the
algorithm selects the key path of every node in turn accord-
ing to dependencies, constructing the critical path rapidly,
and finally assigns highest priority to the task on the criti-
cal path. As a result, this algorithm skips topology sorting,
reduces the difficulty of analysis, and cuts execution time.
After execution, the task #,, , sends a signal to all the tasks
in Sucy, , and changes their value of unprocessed predeces-
SOT 7Py, 441~ For every task in Sucyy, , the following dynamic
programming transfer equation is used to verify whether the
current path is the critical path from the source to the current
node t, .

maxloady, , = max {maxload,, n, maxloady i + ln.n}
terremn

(14)

maxloady, s; = Ly s (13)

where maxload,, ,, is the maximum workload from the source
node to t,, .

The critical path lookup algorithm based on dynamic pro-
gramming is shown as Algorithm 1. Firstly, all the tasks are
added to the queue Q (line 1). If Q is not empty, then there
exists a workflow to be processed. When processing a task
t, its successor set is traversed to fine the critical path (line
8-16).

4.2 Time and utilization aware task scheduling

After analyzing the critical paths, there is another question
should not be overlooked, that is, the makespan of the work-
flow is not necessarily reduced if the tasks on the critical path
get better resource.

For example, assume that there are only two kinds of
PMs, with processing speed are 2 and 1 MIPS respectively.
While dealing with the workflow shown as Fig. 3, the crit-
ical path Ty — T3 — T4 — T; can be easily obtained
by dynamic programming presented in Algorithm 1. Table 2
shows the calculation amount of each node in Fig. 3. Since
the tasks on critical path executed on the PMs with higher

@ Springer

Algorithm 1: Critical Path Lookup (wfm)

Input: The workflow wfn

Output: The set of critical tasks knm of Wi

1:Add all tasks in wfw to the queue O

2:Get Sucmn of tmn according to MAm // tmn is the source node of wfn
3:while 0# < do

for i=0 to tsnum do

5 if z is ready then //t is the i-th task

6 pl=t.PathLength

7: Get the successor set of ¢ as suc
8

9

A

for j=0 to suc.size() do
: Get the j-th task in suc as #
10: I= Intpl, cp= CP:

11: if t1.PathLength<l then

12: Add #1 and ¢p as CPy

13: else if ¢1.PathLength==I then
14: Add t1, cp and CPy as CPy
15: end if

16: end for

17: Remove ¢ from O

18: end if

19: end for

20:end while
21:Get the critical path of sink node as ¢ps
22:Set the priority of all nodes

Fig. 3 An example of workflow with 8 tasks (Tp ~ T7)

efficiency due to their higher priority, execution time of the
critical path is 8. However, the time cost of the second longest
path,Ty — T} — T5 — T7,is 11.5. Thus, it is not enough to
only consider the optimization of critical path. Unfortunately,
existing algorithms cannot efficiently calculate the second
longest path, and if the second longest path is obtained, then
itis bound to consider the third long path, then the algorithm
has no difference from exhaustion.

In order to avoid the above problem, a parameter a is
designed to limit the percentage of tasks with higher priority
in the workflow, that is, the parameter is used to optimize the
implementation of tasks on non-critical paths. Tasks selected
by a are given the second highest priority and have the right
to take efficient resources for execution without affecting the
implementation of critical tasks.

It is unquestionable that the order in which the tasks are
scheduled lies on the dependencies between tasks and can
be converted to the attribute st,, , of the task #,, , [35]. So
it should be elaborated that when matching resources for
the tasks, the datacenter only consider the task in the wait
queue and the running state of PMs, and workflow scheduling
is carried out according to the PM resource state. If a VM
handles one task at a time, resource blocks cannot be re-split
for multiple tasks.

Cluster Comput (2019) 22:S693-S706

S699

Table 2 Attributes of tasks
Task To T, T T3 n Ts Ts T7

Length 1 3 2 4 7 6 4 4

Since the completion of critical path lookup and priority
assignment, it is necessary to schedule the task to PMs for
implementation. Assigning tasks to active hosts which are
serving users is an important way to increase resource uti-
lization, for which it is necessary to monitor the resources
utilization of each PM. In order to achieve the goal of moni-
toring PM resource utilization, each PM is configured with an
allocation records table which consisted of multiple records
of the process of resource allocation from the PM point
of view. For any PM s;, a record in the allocation table
is defined as Allory; = (wid, t, pri;, st;, ot;, vn;), where
wid, t, pri;, st;, ot;, va; represents the workflow that the
tasks assigned belongs, the task allocated to the PM, the start
time of execution and the duration of possession, the amount
of resources the task occupied. Besides, the PM allocation
record table should be updated upon new tasks’ arrival and
existing tasks’ migration or accomplishment. With the allo-
cation table designed from the PM perspective, a distribution
history table is designed for each task to record the schedul-
ing process, i.e., which PMs are occupied at what time and
how long the task executed on the PM. For task ¢, the schedul-
ing record is defined as Schry, ; = (s, st, ot), where s, st, ot
represents the PM task ¢ are assigned, the start time of execu-
tion and the duration of possession, similar to the definition
above.

In particular, a heuristic algorithm called Best Fit Decreas-
ing (BFD) is selected as the tool to complete the research in
this paper, it first sorts items in descending order of size,
and then find out the smallest free partition which meets
the requirements of items successively, making the resource
fragmentation as small as possible after allocation. In task
scheduling problem, tasks and PMs are described as objects
of different size and boxes, so the task scheduling problem
can be transformed into a bin-packing problem and solved
with BFD.

Datacenter select the active PM whose amount of res-
ources is closest to the task and able to accommodate the task
while tasks with high priority have the right to occupy more
efficient resources. Whenever a new task collection waits to
be processed, the resource usage of PMs in the PM list is
analyzed before allocating. What is more, the distribution
records of PMs and distribution history records of tasks are
updated upon every operation.

Algorithm 2 specifies the process of time and utilization
aware task scheduling. First, all PMs in the list S are sorted in
ascending order of the remaining resources (line 2), and then
the task 7 is dispatched to the PM with the least amount of

Algorithm 2: Time and Utilization Aware Task Scheduling (z, S)

Input: The task 7, PM list S

Output: The distribution history record of tasks in 7P

1:Count idle resources of S at Idlenum

2:Sort S in ascending order according to the amount of idle resources

3:for p=0 to Ssize do

4: if sp. Idlenum>= vn; then // There is some PM that can handle the task #

5 Select sp as the selected PM for ¢

6 Calculate f7 of task #, and alter the attributes of
7: New an allocation record of ¢

8 Modify the allocation table of s,

9: flag=1

10: for i=0 to Suci do

11: Get i-th task in Suc; as t;

12: if all the predecessors of #; are ready then
13: add ¢ into UNP

14: end if

15: end for

16: Remove ¢ from UNP and TP

17: endif

18:end for

remaining resources that can hold the task (line 3—18). Once
the PM is determined, the task’s distribution records and the
status information of all tasks in the successor set of ¢ are
modified (line 10-15).

4.3 Priority driven resource preemption

The above section gives the task scheduling algorithm based
on BFD. However, Algorithm 2 does not take the fact that
datacenter PMs cannot be identical. Due to the superior per-
formance of efficient resources, tasks prefer to occupy the
efficient resources to escape from redundant waiting time.
Furthermore, tasks of high priority have the power to pre-
empt resources from low priority tasks. An example is given
as below. There is a workflow set with only two workflows
and they are identical shown as Fig. 4 and their attributes are
lists in Table 3. A high-performance PM p; and several gen-
eral PMs (p», p3, ...) are provided for execution of the set.
Each VM is known to host 4 VMs, meanwhile the processing
speed of the high-performance PM is 2 MIPS, and the speed
of others are 1 MIPS. Assume that the default start time of
wf is 0.0 and that of wf’, is 0.6, while all the tasks in the set
require 2 VMs to support them.

After submitted, the source task 7j and Vg are added into
the queue UNP, and Ty is scheduled on p; immediately, upon
its accomplishment, T, 7> and T3 are added into UNP with
their start time is 0.5. Since T3 is on the critical path, it is
scheduled on p1, while T is dispatched on p; on account of
its priority and 7> is dispatched on p,. When the time is 0.6,
Ty is dispatched to p; owing to its priority, it snatches the
resource from 75. If requirement of 73 is not met yet, it will
grab T of its resources and reschedule 77 according to BFD.
The other tasks are disposed according to the same theory.

When a task with highest priority is being scheduled, the
datacenter manager first checks the resource utilization of
better PMs, if the idle resource can meet the requirement of

@ Springer

S700

Cluster Comput (2019) 22:S693-S706

Fig. 4 An example of two
concurrent workflows. a wf. b

wf

Table 3 Attributes of tasks in wf; and wf,

Task To T To Tz Ty Ts Toe T7 T3 To Tio Ti1 Ti2

Length 1 3 2 4 7 6 4 4 1 3 2 5 2

Algorithm 3: Task Migration on Specific PM(#, st, pf)
Input: Task #, time st, selected PM s, Migration type identifier pf
Output: UNP

1: Get the amount of idle resource on s as idlenum

2:if p/=I then

3: Getall tasks whose priority is 0 as set zso sort so by vn
4 sum=idlenum, n=0

5 while sum< vn; do

6: Get the n-th task in so as fo

7

8

Remove) from s, update Allor and Schr, and add # into UNP
H nt+, sum=sum+ vnwo
9: end while
10: end if
11: if pf=2 then
12: sum=idlenum, n=0
13: Remove all tasks whose priority is 0 at sz and add them into UNP
14: Update Allor of s and Schr of tasks, and modify sum
15: Get tasks whose priority are 1 as set fs1, and sort tsiby v
16: while sum<goal do

17: Get the n-th task in s1as @1

18: Remove #1 from s at st and update Allor and Schr
29: UNP.add(1)

20: nt+, sum=sum+ vnn

21: end while

22: end if

the task, it is handled without snatch. Otherwise, the manager
considers seizing the resource other tasks occupied. Dur-
ing the process of resource preemption, lowest priority task
which is taking the least amount of resources are always first
migrated until the sum of resources is enough for the new
task. If it still fails to meet the new task’s requirements when
all the tasks with lowest priority are migrated, it is time for
middle-priority tasks to be migrated. Unless the sum of free
resources and resources possessed by lowest and middle pri-
ority tasks is insufficient, the new task is finally put on a new
general PM.

Algorithm 3 specifies the process of task migration on
specific PM according to the identifier which indicates how
preemption occurred and the form and scale of migration. If
the total amount of resources occupied by the tasks with low-
est priority meets the requirement of #;, the tasks are migrated
in ascending order of occupied VMs (line 3-9). Otherwise,
the resource requirement of #; is met by the migration of all
non-critical tasks (line 13-21).

Algorithm 4 illustrates the process of determining whether
to snatch resources and resources of which tasks are pre-

@ Springer

Ty

Algorithm 4: Preemption of high-performance resources (4, SH)
Input: Task #, sorted PM list SH
Output: The distribution history record of #
1: if pid= Null then
2: Sort SH in ascending order by se
// seis the sum of idle resources and resources occupied by tasks whose priority is 0

3 for k=0 to SHsize do

4 Update se

5: if pi=2 or 1 and se>= vn; then

6: Select the s, as the selected PM for #
7 pid=k, pf=1

8: Algorithm 3(t, st, pf)

9: end if

10: end for

11: end if

12: if pid=Null then
13: Sort SH in ascending order by sei

/Isei is the sum of idle resources and resources occupied by tasks whose priority is 0
14: for k=0 to SHsize do

15: Update sei

16: if pi=2 and sei>= vn; then

17: Select the s, as the selected PM for #
18: pid=k, pf=2

19: Algorithm 3(t, st, pf)

20: end if

21: end for

22: end if

empted in workflow scheduling. If the task #; is on the critical
path, it tries to preempt the resources of other tasks on non-
critical paths (line 5-9). If #; is not a critical task with a
large computation, it tries to preempt the resources of the
tasks with lowest priority (line 16-20). Algorithm 3 is used
to perform migration of tasks on selected PM based on the
determination (line 8 and line 19).

4.4 Global workflow scheduling

This section describes the global scheduling policy based on
critical path priority, BFD and resource preemption. When
workflow set arrives, critical paths of workflows are ana-
lyzed and priorities are set. Then, PMs with better match
degree with tasks are obtained according to the PM utiliza-
tion. Meanwhile, better PMs with higher speed will prioritize
higher-priority tasks.

After the workflow set WF is submitted to datacenter, the
subset TP with earliest start time in the waiting queue is
obtained by above algorithm and taken as the object of a
single processing, while the tasks in the waiting queue are
represented by UNP. Cloud datacenter manager first sorts the
tasks in UNP in ascending order of start time, and secondly
chooses all tasks with earliest start time into a partition 7P.

Cluster Comput (2019) 22:S693-S706

S701

Algorithm 5: Global workflow scheduling (WF)

Input: The workflow set WF, PM list §

Output: The scheduling records of tasks in WF

1: Get high-performance PMs as SH, and general PMs as SL

2: Find the critical paths of every workflow in WF and set the priorities by Algorithm 1
3: Add all the source points into UNP

4: While UNP# <& do

5: Get all tasks with earliest start time in UNP as TP, and start time as s¢
6: Sort TP according to priority and requirment

7: pf=0

8: For i=0 to TPsize do

9: pid=Null

10: Algorithm 2(#;, SH)

11: if pid=Null then

12: Algorithm 4(z;, SH)

13: end if

14. if pid= Null then

15: Algorithm 2(#;, SL)

16: end if

17: if pid=Null then

18: ‘Wake up new PM for # and add it to SL

19: end if

20: Remove t; from UNP

21: Update Allor of sp and Schr of #;

22: Set the start time of all successors and add them into UNP if they are ready
23: end for

24: end while

Then TP is split into three sub sets in descending order by
priority, TP" = {TPy, TP,, TP3},i.e. TPis divided into three
subsets of key path tasks, tasks picked by a, and other tasks.
According to BFD, the tasks in each slice are first sort in
descending order of required resources, so that the algorithm
can schedule tasks in 7P on the basis combination of prece-
dence and start time. Tasks with earlier start time are always
handled before later ones, while tasks with higher priority are
scheduled before others while they are occupied same start
time under the premise of same start time.

Algorithm 1 first find the critical path between the source
point and sink point of each workflow and identifies all
the tasks on the path by configuring highest priority, while
tasks with larger computation selected by the parameter a
are assigned the middle priority. In addition, all tasks ready
for execution are added into the queue UNP which is trans-
formed into a union of multiple task sets split by their start
time in chronological order. Then Algorithm 2 is applied to
process task scheduling of subset TP with the earliest start
time according to the priority given by Algorithm 1, i.e. the
PM where the remaining VM is closest to the demand and
greater than or equal to the demand is selected when assign-
ing each task, and tasks with high priority are first processed.
Besides, while choosing PMs, tasks have the right to seize
resources in the light of Algorithm 4 if the resources satisfy
the requirements for the task.

Algorithm 5 specifies the global scheduling method,
where Algorithm 1 is used to find the critical paths of work-
flows and define the priority (line 2), and Algorithm 2 is
firstly used to select resources in the high-performance PM
set and handle tasks on the basis of BFD strategy (line 10,
line 15). If the resources of high performance not quite meet
the needs, attempts are made to preempt the resource using
algorithm 4 (line 12).

S Experiments and analysis

In this section, extensive experimental evaluations are pro-
moted to demonstrate the performance of the proposed
dynamic scheduling method for concurrent workflows. The
experimental environment and parameter settings are elabo-
rated in detail in Sects. 5.1, and 5.2 gives the performance
evaluation and analysis based on experimental results.

5.1 Experiment environment and parameter setting

To estimate the merits of a workflow scheduling method,
measure of its performance should be built on some sample
workflows, which are generated using a random workflow
generator as the tool and has diverse properties [36], e.g.
workflow start time, the number of tasks, etc. There is no
doubt that an experiment on realistic workflows is more con-
vincing, whereas there is no such a broad library of resources
open to us [37]. For this reason, various workflows are cre-
ated as the sample to support the experiment. Each workflow
is initialized with start time, number of tasks and depen-
dencies between tasks while each task is initialized with
required amount of resources, amount of calculation and
other attributes.

In this paper, time overhead model and resource utilization
are used to estimate the performance of DSM, which appraise
the makespan of the workflow set and the resource usage of
occupied PMs during the execution of entire workflow set.

In the simulation experiments, we establish a datacenter
in cloud environment which comprises of 2 kinds of PM with
different operation speed of CPU shown in Table 4. Driven by
Amazon EC2 instances of [38], a miniature Elastic Compute
Unit can be regarded as a virtual machine. Therefore, the
capacity of a PM is equivalent to the VMs that the resources
can be encapsulated [39], so the capacities of the 2 kind of
PM in the simulation platform are set to 8, i.e. there are 8
VMs in a PM that divides the CPU speed of the PM equally.
The processing speeds of the 2 kinds of PMs are 40 MIPS
and 24 MIPS respectively.

High-performance resources are always in short supply in
the cloud. As a matter of fact, the performance of the entire
algorithm varies with the number of predominant PMs avail-
able in the processing of applications [40]. So evaluations in
four different environments are carried out, which owns 50,
100, 150 and 200 PMs of higher processing speed, respec-

Table 4 Experimental context

Hardware CPU Speed (MIPS)
HP ProLiant ML110 G5 24
HP ProLiant BL460c G6 40

@ Springer

S702

Cluster Comput (2019) 22:S693-S706

Table 5 Parameter settings

Parameter Range

Size of workflow set {50,100,150,200,250,300,350,400}

Size of each workflow [5,20]
Numbers of VMs required [1,5]

by each Task
Calculation amount of each [0.1,5.0]

task (million instructions)

tively. Moreover, the number of general PMs employed is
variable according to the actual handling of applications.

Accordingly, the parameters and their ranges of the dataset
used in this paper are specified as Table 5. There are 8 differ-
ent scales of dataset, and a workflow is 1 3-tuple while a task
is a 5-tuple as defined in Sect. 3. A task generated can only
get its start time upon the finish of all its precursors and its
finish time depends on its calculation amount and the speed
of VMs it selected.

5.2 Performance evaluation and analysis

In this section, evaluations on workflow time overhead and
resource utilization of datacenter are implemented to evaluate
the performance of DSM in cloud environment according to
the results of simulation experimental.

Implemented on 8 datasets, DSM and other two algo-
rithms are compared to estimate their performance. One of
the two algorithms is a traditional algorithm—Greedy Algo-
rithm which uses BFD to select PMs for tasks under the
restriction conditions of optimum resource utilization. The
other algorithm refers to the scheduling method based on
hybrid improved Cuckoo search (/CS) algorithm and deci-
sion tree [14]. ICS minimizes data dependency by splitting
workflows and then uses the decision tree to choose resources
to meet QoS constraints of tasks. The three algorithms are
described briefly as follows:

5.2.1 Evaluation on number of employed PMs

Before resource utilization, the number of employed PMs
directly reflects the performance discrepancy between the
three algorithms while dealing with applications, where the
time overhead and resource utilization are first given expres-
sion. As a result, we investigate circumstance of occupying
PMs with the above three algorithms on datasets of different
scales. Figure 5 shows the observation results, where it can be
found that the proposed DSM occupies less PMs compared
with Greedy algorithm and ICS algorithm. The reason for
this result is that DSM selects PM for tasks in a utilization
aware way, and adjusts the scheduling results in real time
to close down the low load PMs during the scheduling pro-
cess. Therefore, DSM employed less PMs than the other two
algorithms.

Fig. 5 Comparison of Number X 102 X 102
of PMs Employed by Different W8 Z 6
Algorithms on 8 Datasets. a E 5 uDSM % 5 mDSM
Number of high-performance S 5 OGreedy g4 OGreedy
PMs =50, b number of z ICS %
high-performance PMs =100, ¢ 57%3 S 3 §ICS
number of high-performance = 5
PMs =150, d number of 52 5 2
high-performance PMs=200 g 1 l_§ ',% 1
s, il >
20< EN BN BN BN H <0 b
50 100 150 200 250 300 350 50 100 150 200 250 300 350 400
Number of Workflows Number of Workflows
(a) (b)
2 2
6 X10 6 X 10
upD,
s ||mDM £s
< o Greedy =
24 4
5 NICS 5
g3 £3
= m
s 2 52
5 5
E1 £1
z 0 z 0
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
Number of Workflows Number of Workflows
(c) (d)

@ Springer

Cluster Comput (2019) 22:S693-S706 S703
Fig. 6 Comparison of Time 13 11.5
Overhead with Different 11
Algorithms on 8§ Datasets. a 12
Number of high-performance @ 105
PMs =50, b number of ‘g 11 :8’ 10
high-performance PMs =100, ¢ © S
number of high-performance g 10 E 9.5
PMs =150, d number of = = 9
high-performance PMs =200 9 35
8 L 8
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
Number of Workflows Number of Workflows
(a) (b)
11.5 11.5
11 11
=105 =105
g 1 § 10
g 9.5 2 9.5
= 9 = 9
8.5 85
8

50 100 150 200 250 300 350 400
Number of Workflows

()

The number of employed PMs can only show the pre-
diction results of performance cursorily, for concrete exper-
iments are needed to get the utilization and time cost.

5.2.2 Evaluation on time cost

To evaluate performance more accurately, the time cost of
three algorithms processing different datasets under three
different conditions is achieved through experiments.

The 4 figures in Fig. 6 illuminate the results of simula-
tion applying the three algorithms to deal with 8 different
datasets in the case where the number of high speed PMs in
the datacenter is 50,100,150, 200 respectively.

By comparing the three graphs, we find that the per-
formance differences between the three algorithms can be
affected as the number of servers with high computational
speeds increases. For example, in Fig. 6d, there are 200 high
speed PMs available for execution in the datacenter, the time
costs of the three algorithms are almost the same while han-
dling the datasets owns 50,100, 150 and 200 workflows.
This is because better PMs are sufficient in dealing with a
small amount of workflow, and all the tasks in the dataset
get efficiently execution, so the performance differences of
the algorithms cannot be reflected. But when the scale of the
dataset is larger than high-speed PMs, DSM reduces the time
cost greatly, compared with the other two algorithms under
the same configuration. In combination with the 3 figures
in Fig. 6, a conclusion can be drawn that DSM has some

50 100 150 200 250 300 350 400
Number of Workflows

(@)

advantages in reducing execution time. The time advantage
of DSM benefits from the scheduling strategy that tasks on
the critical path are endowed with higher priority and always
occupies resources with high-speed resources. This strategy
greatly reduces the execution time of critical paths, as a result,
the makespan of the workflows are substantially decreased.

5.2.3 Evaluation on resource utilization

In addition to time cost, resource utilization is another
important indicator presented to evaluate the performance
of algorithm in this paper. The average resource utilization
of PMs employed in the three algorithms while processing
different datasets under four different conditions is shown as
Fig. 7.

The four figures in Fig. 7 illuminate the results of simula-
tion applying the four algorithms to deal with 8 different
datasets. From the results of performance evaluation on
resource utilization, it can be clearly seen from the figure
that DSM for workflow scheduling has the leading advan-
tage in terms of resource utilization relative to the other two
algorithms under same configuration.

However, since high-speed resources become more num-
erous, the difference between DSM and Greedy algorithm
and /CS algorithm getting obviously smaller. This is because
the high-speed VMs are sufficient, and the resources data-
center selected for applications are mostly the same in the

@ Springer

S704

Cluster Comput (2019) 22:S693-S706

Fig. 7 Comparison of 0.92 0.92
Resource utilization with
Different Algorithms on 8 8 09 £0.90
Datasets. a Number of E g
high-performance PMs =50, b 50.88 =0.88
number of high-performance 3 E
PMs =100, ¢ number of £0.86 £0.86
high-performance PMs =150, d % 2
number of high-performance 2084 ~0.84
PMs =200
0.82 0.82
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
Number of workflows Number of Workflows
(a) (b)
0.92 0.92
g 09 5 09
g 5
=0.88 = 0588
=] =
Eo:6 8036
2 ——DSM e
2084 | e Greedy © 0.84
i s ICS
0.82 0.82
50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
Number of PMs Number of Workflows
© (d

task scheduling process, and the superiority of the algorithm
gradually disappears.

By comparing the results of the simulation experiment
thoroughly, it can be found that, DSM proposed in this paper
has certain superiority and practical significance compared
with two other algorithms—Greedy algorithm and ICS algo-
rithm. Because DSM chooses PMs with the most suitable
capacity for the tasks every time and the tasks are concen-
trated on active PMs as much as possible while the task set
is processed, accordingly, the PM selected by the algorithm
is used efficiently. The experimental results show that the
DSM algorithm proposed in this paper has some practical
significance in practice.

6 Conclusion and future work

In this paper, a dynamic scheduling method for concur-
rent workflows, named as DSM, has been proposed based
on critical path lookup, time and resource utilization aware
task scheduling and priority driven resource preemption.
To elaborate, a time overhead model has been put for-
ward for workflow applications while a resource utilization
model for cloud datacenters has been raised. Furthermore,
a dynamic scheduling method for concurrent workflows has
been proposed, which minimizes the makespan of workflow
through critical path lookup, and maximizes the utilization
through time and utilization aware task scheduling and prior-

@ Springer

ity driven resource preemption. At last, extensive simulation
experiments have been implemented and the results have
demonstrated the efficiency and effectiveness of our pro-
posed method.

Based on the research advanced in this paper, we intend
to extend DSM and adapt it to actual cloud environment in
the future. The transmission time overhead of workflow is
a necessary factor in real cloud environment. In addition,
according to the different amounts of different resources con-
figured, PMs can be divided into different types. Hence the
algorithm needs adjustment to select the appropriate type of
PM for tasks according to their characteristics. Transmission
time and the PM types will be considered in future research
to optimize use of resources and improve users’ experience.
And we will test obtained theoretical results in the actual
cloud platform to verify the effectiveness and superiority of
the algorithm.

Acknowledgements This research is supported by the National Sci-
ence Foundation of China under Grant Nos. 61702277, 61672276,
61402167 and 61672290. Besides, this work is also supported by The
Startup Foundation for Introducing Talent of NUIST, the open project
from State Key Laboratory for Novel Software Technology, Nanjing
University under grant no. KFKT2017B04, the Priority Academic Pro-
gram Development of Jiangsu Higher Education Institutions (PAPD)
fund, Jiangsu Collaborative Innovation Center on Atmospheric Environ-
ment and Equipment Technology (CICAEET), the project “Six Talent
Peaks Project in Jiangsu Province” under grant no. XYDXXJS-040, and
Innovation Platform Open Foundation of Hunan Provincial Education
Department (No. 17K033).

Cluster Comput (2019) 22:S693-S706

S705

References

10.

11.

12.

13.

14.

15.

16.

17.

19.

Netjinda, N., Sirinaovakul, B., Achalakul, T.: Cost optimal schedul-
ing in IaaS for dependent workload with particle swarm optimiza-
tion. J. Supercomput. 68(3), 1579-1603 (2014)

Rao, J., Zhou, X.: Towards fair and efficient SMP virtual machine
scheduling. In: ACM Sigplan Symposium on Principles and Prac-
tice of Parallel Programming. vol. 49(8), pp. 273-286 (2014)
Wang, P, Huang, Y., Li, K., Guo, Y.: Load balancing degree first
algorithm on phase space for cloud computing cluster. J. Comput.
Res. Dev. 51(5), 1095-1107 (2014)

Armbrust, M., Fox, A., Griffith, R., et al.: Above the Clouds: A
Berkeley View of Cloud Computing. Eecs Department University
of California Berkeley, vol. 53(4), pp. 50-58 (2009)

Zhang, S., Qian, Z., Wu, J., Lu, S., Epstein, L.: Virtual network
embedding with opportunistic resource sharing. IEEE Trans. Par-
allel Distrib. Syst. 25(3), 816-827 (2014)

Li, W., Zhang, Q., Wu, J,, Li, J., Hao, H.: Trust-driven and
QoS demand clustering analysis based cloud workflow schedul-
ing strategies. Clust. Comput. 17(3), 1-18 (2014)

Dou, W., Xu, X., Meng, S., Zhang, X., Hu, C., Yu, S., Yang, J.: An
energy-aware virtual machine scheduling method for service QoS
enhancement in clouds over big data. Concurr. Comput. Pract. Exp.
29(14), 1-20 (2017)

Shen, H., Li, X.: Algorithm for the cloud service workflow schedul-
ing with setup time and deadline constraints. J. Commun. 36(6),
183-192 (2015)

Guo, H., Chen, Z., Yu, Y., Wang, Y., Chen, X.: A communication
aware DAG workflow cost optimization model and algorithm. J.
Comput. Res. Dev. 52(6), 1400-1408 (2015)

Chen, W., Lee, Y.C., Fekete, A., Zomaya, A.Y.: Adaptive multiple-
workflow scheduling with task rearrangement. J. Supercomput.
71(4), 1297-1317 (2015)

Dong, J., WANG, H., Cheng, S.: Energy-performance tradeoffs in
laaS cloud with virtual machine scheduling. China Commun. 12(2),
155-166 (2015)

Durao, F,, Carvalho, J.LE.S., Fonseka, A., Garcia, V.C.: A systematic
review on cloud computing. J. Supercomput. 68(3), 1321-1346
(2014)

Ahmad, S.G., Liew, C.S., Rafique, M.M., Munir, E.U., Khan, S.U.:
Data-intensive workflow optimization based on application task
graph partitioning in heterogeneous computing systems. In: IEEE
Fourth International Conference on Big Data and Cloud Computing
pp- 129-136 (2015)

Chen, C.: Workflow task scheduling in cloud computing based on
hybrid improved CS algorithm and decision tree. J. Univ. Electron.
Sci. Technol. China 45(6), 974-980 (2016)

Liu, J.X., Yang, X.F,, X. Y.: Cloud workflow scheduling method
based on batch processing strategy. Comput. Integr. Manufac. Syst.
21(2), 336-343 (2015)

Luo, Z., Wang, P., You, B., Jie, S.U.: Optimization scheduling of
workflow’s accuracy based on reverse reduction under constraint
time. J. Beijing Univ. Posts Telecommun. 40(1), 99-104 (2017)
Doulamis, N.D., Kokkino, P., Varvarigos, E.: Resource selection
for tasks with time requirements using spectral clustering. IEEE
Trans. Comput. 63(2), 461-474 (2014)

. Kong, Y.,Zhang, M., Ye, D.: A belief propagation-based method for

task allocation in open and dynamic cloud environments. Knowl.
Based Syst. 115, 123-132 (2016)

Xing, G., Xu, X., Xiang, H., Xue, S., Ji, S., Yang, J.: Fair
energy-efficient virtual machine scheduling for internet of things
applications in cloud environment. Int. J. Distrib. Sensor Netw.
13(2), 1-11 (2017)

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Hao, L., Cui, G., Qu, M., Ke, W.: Resource scheduling optimization
algorithm of energy consumption for cloud computing based on
task tolerance. J. Softw. 9(4), 895-901 (2014)

Cao, F., Zhu, M.M., Wu, C.Q.: Energy-efficient resource man-
agement for scientific workflows in clouds. In: 2014 IEEE World
Congress on Services (SERVICES), pp. 402-409 (2014)

Jrad, F,, Tao, J., Brandic, 1., Streit, A.: SLA enactment for large-
scale healthcare workflows on multi-Cloud. Future Gener. Comput.
Syst. 43(4), 135-148 (2015)

Wang, Y., Wang, J., Han, Y.: A two-stage resource scheduling
method for workflow cloud computing system. J. Sourth China
Univ. Technol. 45(1), 80-87 (2017)

Rodriguez, M.A., Buyya, R.: Deadline based resource provisioning
and scheduling algorithm for scientific workflows on clouds. IEEE
Trans. Cloud Comput. 2(2), 222-235 (2014)

Luo, Z.Y., Wang, P., You, B., Zhu, X.S.: Serial reduction optimiza-
tion research of complex product workflow’s accuracy under the
tine constraint. Adv. Mech. Eng. 8(10), 1-9 (2016)

Ahmed, W., Wu, Y.: Estimation of cloud node acquisition. Tsinghua
Sci. Technol. 19(1), 1-12 (2014)

Cao, B., Wang, X., Xiong, L., Fan, J.: Searching method for par-
tical swarm optimization of cloud workflow scheduling with time
constraint. Comput. Integr. Manufac. Syst. 22(2), 372-380 (2016)
Xu, Y., Li, K., Hu, J., Li, K.: A genetic algorithm for task schedul-
ing on heterogeneous computing systems using multiple priority
queues. Inf. Sci. 270(6), 255-287 (2014)

Chen, H., Zhu, J., Manho, M.A., Zhu, X.: Scheduling for stochastic
tasks and resources in virtualized clouds. Syst. Eng. Electron. 39(2),
348-354 (2017)

Wu, C.M., Chang, R.S., Chan, H.Y.: A green energy-efficient
scheduling algorithm using the DVFS technique for cloud data-
centers. Future Gener. Comput. Syst. 37(7), 141-147 (2014)
Calheiros, R.N., Buyya, R.: Meeting deadlines of scientific work-
flows in public clouds with tasks replication. IEEE Trans. Parallel
Distrib. Syst. 25(7), 1787-1796 (2014)

Guo, Y.Q., Song, J.X.: Optimal task-level scheduling based on mul-
timedia applications in cloud. Comput. Sci. 42(11),413-416 (2015)
Mandal, Vasundhara, D., Kar, R., Ghoshal, S.P.: Digital FIR filter
design using fitness based hybrid adaptive differential evolution
with particle swarm optimization. Nat. Comput. 13(1), 55-64
(2014)

Prasad, A.S., Rao, S.: A mechanism design approach to resource
procurement in cloud computing. IEEE Trans. Comput. 63(1), 17—
30 (2014)

Chen, H.K., Zhu, J.H., Zhu, X.M., Ma, M.H., Zhang, Z.S.:
Resource-delay-aware scheduling for real-time tasks in clouds. J.
Comput. Res. Dev. 54(2), 446-456 (2017)

Xu, X., Dou, W., Zhang, X., Chen, J.: EnReal: an energy-aware
resource allocation method for scientific workflow executions in
cloud environment. IEEE Trans. Cloud Comput. 4, 166—179 (2016)
Abrishami, S., Naghibzadeh, M., Epema, D.H.J.: Deadline-
constrained workflow scheduling algorithms for infrastructure as a
service clouds. Future Gener. Comput. Syst. 29(1), 158-169 (2013)
Yang, G., Stolyar, A.L., Walid, A.: Shadow-routing based dynamic
algorithms for virtual machine placement in a network cloud. IEEE
Infocom 12(11), 620-628 (2013)

Li, X., Wu, J., Tang, S., Lu, S.: Let’s stay together: towards traf-
fic aware virtual machine placement in data centers. In: 2014
IEEE Conference on Computer Communications INFOCOM), pp.
1842-1850 (2014)

Xiaohu, W., Loiseau, P.: Algorithms for scheduling deadline-
sensitive malleable tasks. In: 2015 53rd Annual Allerton Confer-
ence on Communication, Control, and Computing (Allerton), pp.
530-537 (2015)

@ Springer

S706

Cluster Comput (2019) 22:S693-S706

Shengjun Xue received his
Ph.D. degree in Wuhan Univer-
sity of Technology, China, in
2002. From 2007 to 2008, he
did his postdoctoral research in
the Department of Computer Sci-
ence and Technology, Purdue
University, USA. Now, he is a
full professor of Jiangsu Engi-
neering Center of Network Mon-
itoring of Nanjing University of
Information Science & Technol-
ogy, China. Up to now, he has
chaired four national projects and
published more than 90 research

papers in international journals and international conferences. His
research interests include Computer networks, computer supported
cooperative work (CSCW) and high performance computing research.

@ Springer

Yue Peng is currently studying
as a Master Candidate in Com-
puter Science, Nanjing Univer-
sity of Information Science &
Technology, China. She received
the Bachelor’s degree in Net-
work Engineering in 2015 from
Nanjing University of Informa-
tion Science & Technology. Her
research interests include cloud
computing, green computing and
big data.

Xiaolong Xu received the doc-
tor’s degree in computer sci-
ence and technology in 2016
from Nanjing University. He is
currently an assistant professor
in the School of computer and
software, Nanjing University of
Information Science & Technol-
ogy, China. He has published
more than 20 research papers in
international journals and con-
ferences. His research interests
include cloud computing, green
computing, and big data.

Jie Zhang is working towards
her Ph. D. degree in the depart-
ment of computer science, Nan-
jing University. She also serves
as an engineer of Shanghai Mete-
orological Bureau. She receives
her Master degree and Bachelor
degree both from Nanjing Uni-
versity of Information Science &
Technology. Her research inter-
ests include Cloud Computing,
Big Data and Workflow Schedul-
ing.

Chao Shen is a lecturer in
the School of computer and
software, Nanjing University of
Information Science & Tech-
nology, China. She has pub-
lished several research papers in
international journals and con-
ferences. Her research interests
include meteorological informa-
tion technology and big data.

Feng Ruan is a lecturer at
Nanjing University of Infor-
mation Science & Technology.
He received the B.S. and M.S.
degree in the Nanjing University
of Information Science & Tech-
nology. Now he is PHD student
in Computer Science Depart-
ment of Nanjing University of
Information Science & Tech-
nology. His research interests
mainly include complex system,
computer network, routing pro-
tocol and algorithm design, data
fusion, and cloud computing.

	DSM: a dynamic scheduling method for concurrent workflows in cloud environment
	Abstract
	1 Introduction
	2 Related work
	3 Time overhead and resource utilization analysis in cloud environment
	3.1 Time overhead model
	3.2 Resource utilization model

	4 A dynamic scheduling method for concurrent workflows
	4.1 Critical path lookup
	4.2 Time and utilization aware task scheduling
	4.3 Priority driven resource preemption
	4.4 Global workflow scheduling

	5 Experiments and analysis
	5.1 Experiment environment and parameter setting
	5.2 Performance evaluation and analysis
	5.2.1 Evaluation on number of employed PMs
	5.2.2 Evaluation on time cost
	5.2.3 Evaluation on resource utilization

	6 Conclusion and future work
	Acknowledgements
	References

