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Abstract Conventional malware detection technologies
have the limitation to detectmalware because recentmalware
uses a variety of the avoidance techniques such as obfusca-
tion, packing, anti-virtualization, anti-emulation, encapsula-
tion technology in order to evade the detection of malware.
To overcome this limitation, it is necessary to obtain new
detection technology which is able to quickly analyze mas-
sive malware and its variants, and take the rapid response
to cyber intrusion. Therefore in this paper, we proposed the
malware detection and classification method and implemen-
tation of our system based on the dynamic analysis using
the behavioral sequence of malware (API call sequence) and
sequence alignment algorithm (MSA). Also we evaluated
the effectiveness of our proposed method through the exper-
iment.
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1 Introduction

Conventionalmalware detection techniques are used todetect
and analyze the characteristics of the malicious code. How-
ever, thousands, or tens of thousands of malicious codes are
generated in a day. Thus, the gap between the number of
emerging malware from attackers and the number of sig-
natures that security vendors can deal with can be hardly
narrowed, and the gap is growing rather steadily. Thus, we
cant build a solid defense system from threat of malware in
the way of existing detection technology. The new system or
method which can supplement conventional detection meth-
ods is being introduced.

As mentioned above, malware is a major means of the
recent cyber-attacks since there is a limitation to identify
malware due to the avoidance technique to evade themalware
detection.

Usually, malware is spreading through a variety of prop-
agation methods and infecting a vulnerable system for the
malicious purpose such as spam mail distribution, privacy
disclosure, system corruption, and denial of service. Since
malware can hinder and delay the malware analysis using
a variety of techniques such as obfuscation, packing, anti-
virtualization, anti-emulation, encapsulation technology, an
attacker makes malware simply exit when malware is exe-
cuted in a virtual machine or emulator. Also through the
anti-debugger technology, malware generates unexpected
events by detecting the presence of a debugger. Furthermore,
the malware uses a method to modify the kernel-level struc-
ture and to conceal its own process as a typical technique of
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impeding the detection technology. If you do not diagnose
the infection of malware, the infected systems can continue
to send your personal information to the malware distribu-
tors.

Recently, to evade the detection of malware based on the
behavior of malware which especially uses API calls as the
behavioral information, an attacker attempts to intentionally
remove or distort the behavioral patterns of a malicious code
by adding new API calls, and deleting or replacing exist-
ing ones that do not affect the functionality of the original
code [1]. In addition to these limitations of the conventional
detection techniques, the technology that analyzes a large
amount of malware at the same time and identifies the new
malware, as well as its variants, has not yet been widely
developed.

Therefore, it is necessary to obtain new detection tech-
nology which is able to quickly analyze massive malware
and its variants, and take the rapid response to the cyber
intrusion. In this paper, we propose the malware detection
and classification method based on the dynamic analysis and
the implementation of the malware detection and classifica-
tion system, which uses the API call sequences and multiple
sequence alignment (MSA) algorithm [7]. Since the API
call sequences of malware can indicate the overall behav-
iors of malware, our proposed method conducts extraction
and analysis of the API call sequences by monitoring and
hooking the system API calls in the real PC not in a vir-
tual machine. Our proposed method also applied an MSA
algorithm in order to produce the representative behavioral
patterns (namely, behavioral sequence chains) for some clus-
tered malware families.

The rest of this paper is organized as follows. We review
the related work on malware detection using the sequence
alignment based on the dynamic analysis in Sect. 2. Then we
propose the methods of generation of malware behavioral
sequence chain and our malware detection and classifica-
tion based on API call sequence alignment in Sect. 3. In
Sect. 4, we depict the visualization scenes for the analysis
result obtained from our proposed system. In Sect. 5, we
evaluate the detection performance of our proposed method
through the experiment. Finally, we conclude in Sect. 6.

2 Related work

We introduce some studies on malware detection using the
sequence alignment or longest common subsequence (LCS)
algorithm [9] related to our proposed method.

Cho, et al. [2] proposed a malware similarity calculation
system to detect variants of malware among the same group
of malware and suggested the process which can dimin-
ish overheads of the sequence alignment processes. They
removed the repeated API subsequences from the whole

API call sequence to reduce the total length of it in order
to improve the overall accuracy of the similarity calculation.
Such a system can detect malware by computing similarity
of the API call sequence of a target process with all mal-
ware sequences stored previously because it does not have the
common patterns of the malware groups/families. Therefore,
they evaluated their proposed system by similarity calcula-
tion experiments and verified the performance improvement
of the alignment process by eliminating the repeated API
subsequences.

Also Chen, et al. [3] proposed a new approach to detect
malware by usingmultiple sequence alignment techniques to
align variable length of virus and worm code. It shows that
converting the hexadecimal code of viruses and worms to the
amino acid alphabet and the rational numbers between 0 to 1
could be effective to detect malware. They also demonstrated
that their novel approach would be feasible to identify mal-
ware code through multiple sequence alignment followed by
dataminingmethods such asANNs and symbolic rule extrac-
tion. However, this study was aimed to identify the malware
signature with the hexadecimal code instead of the API call
sequences.

Kim, et al. [1] proposed a method for detecting code
clones, software plagiarism, code theft, and polymorphic
malware using sequence alignment algorithms. They show
that an attacker can evade the detection by inserting dummy
codes or replacing existing codes in the sequence. They found
that these kinds of polymorphic attacks were ineffective and
the birthmark sequences extracted from the malicious pro-
gram with a hybrid approach based on “non-consecutive
insertion” and “highest frequency deletion” were proved
to be effective. This study also discussed the limitation
of sequence alignment techniques for comparing software
birthmarks and demonstrated the performance of sequence
alignment algorithms against polymorphic attacks.

Elhadi, et al. [4] proposed a malware detection system to
enhance malware detection using API call graph. Their pro-
posed mechanism consists of the following phases; in the
preprocessing phase, they unpacked malware and extracted
the API calls using API call monitoring tool so that the
API call and its parameters were stored in the database. In
the second phase, they constructed the data dependent API
call graph and updated the malware API call graph database
for matching algorithm. In the last phase, the system com-
pared the data dependent API call graph by graph matching
algorithm and calculated the similarity in order to identify
whether the input sample is malware or not. Usually, graph
matching algorithms have a NP-Complete problem and are
very slow due to their computational complexity. Therefore,
their proposed system simplified the data dependent API
call graph to reduce the computation complexity of graph
matching by selecting paths with the same edge label in the
query graph and the data graph. Then, their system calcu-
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lated the similarity using LCS algorithm by mapping two
paths selected from both the query graph and the data graph.
They showed that their system achieved the performance on
98.6% detection rates and 98.8% accuracy for their dataset
(75 malware samples, 10 benign programs).

3 The proposed system based on behavioral
sequence chain

To detect and classify known/unknown malware and its vari-
ants, in this paper, a malware detection and classification
system based on the behavioral sequence chains of malware
is proposed. As shown in Fig. (1), Our proposed system is
composed of five functional steps: (1) Data collection and
Sequence extraction; (2) Feature extraction and preprocess-
ing; (3) Clustering; (4) Behavioral sequence chain extraction;
and (5) eDetection and classification.

In the first step, we executed all malware samples in
the limited environment and extracted API call sequences
by hooking API calls. Our 1790 malware samples of our
dataset were collected from the famous website providing
malware such as malshare.com [10] and VXVolt.net [11]. In
the second step, we selected the features which can iden-
tify a target process as benign or malware and converted the
integer sequence of API calls extracted into the character
sequence. Because MSA algorithm can use only character
sequence. In the third step, in order to generate precisely the
behavioral sequence chains of the malware families, we cat-
egorized the collected malware samples as some malware
groups in advance. Then we were able to generate the behav-
ioral sequence chain of malware by extracting the common
API call sequence of the final malware groups (namely, fam-
ilies) clustered in the previous step. Finally, we detected and
classified malware by calculating similarity value between
the behavioral sequence chains and API call sequence of a
target process.

Figure 2 shows two procedures of the proposed system -
the behavioral sequence chain generation andmalware detec-
tion and classification, which include the functional steps in
Fig. 1 and are explained in each Sects.3.1 and 3.2.

3.1 Malware behavioral sequence chain generation

In this section, we explain the procedure to generate the
behavioral sequence chains identifying themalware families.
As shown in Procedure 1 of Fig. 2, this procedure con-
sists of four functional steps explained in Fig. 1. Through
the sequence extraction and feature extraction and prepro-
cessing, the behavioral sequences of malware samples are
extractedbyAPIhooking library after they are executed in the
limited execution environment. In the feature extraction and
preprocessing and clustering, these sequences are made in

the form of a character sequence used in the MSA algorithm
and are grouped into some families with similar behavior.
From the behavioral sequence chain extraction step, each
behavioral sequence chain of the malware family is gen-
erated by extracting the common sequence with the MSA
algorithm. Finally, each behavioral sequence chain is added
in the database.

• API call sequence extraction We executed all malware
samples in the limited environment which are not the
virtual environment but real PC. Whenever we executed
them, in order to recover the infected PC to its clean state,
we used PC Recovery software, called Wow-Comback.
We extracted API call sequences from malware samples
withAPI hooking library. These sequences are composed
of 47 classes (from 1 to 47) which 102 API calls hooked
are classified into according to their functions. At this
point, we found that the interval time for collecting API
calls is about 0.5 s. When we checked the functional run-
ning time of malware, most of the malware generally
terminated their malicious function within 0.5 s except
for particular malware such as the logic bomb that is
triggered by responding to an event or when a certain
date/time is reached. For most of the malware in our
dataset, the length of the API call sequences represented
the number of features collected for 0.5 s. It also implied
meaningfully the length of the API call sequences col-
lected during execution time of a process as shown in
Fig. 3.

• Feature extraction and preprocessing We defined 26
classes used as a feature in advance. Theses featuresmust
be able to identify a target process as benign or malware.
In this step, we extracted feature sequence composed of
26 classes from the API call sequence generated in the
previous step. And we converted the integer sequence
into the character sequence to use it as an input sequence
of MSA as shown in Fig. 2.

• Clustering We grouped the collected malware samples
into some malware families with similar behavior. This
clustering is necessary in order to generate the behavioral
sequence chains of the malware families. Because the
noise caused by dissimilarity in MSA makes a unprecise
alignment result and the significant performance degra-
dation of data processing of MSA. Therefore we had
three-steps clustering mechanism. The first step is the
division by decision tree (Weka C4.5) [12]. Through this
step, we can get 48malware groups clustered by 856mal-
ware samples. The second step is the subdivision by the
MSAalgorithmandwe can get several subgroups accord-
ing to the sequence patterns of each group generated in
the first step. Finally, we merged the similar subgroups
by calculating similarity between the commonbehavioral
sequence of each subgroup.
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Fig. 1 Functional flow of the
proposed system

Fig. 2 Two procedures of the
proposed system

• Behavioral sequence chain extraction We generated the
behavioral sequence chain by extracting the common
behavioral sequence of each final malware family gen-
erated in the clustering step. For this, we used ClustalX
[5,9] tool and JalView application widely used for MSA
algorithm in bioinformatics.

3.2 Malware detection and classification

In this section, we discuss themalware detection and classifi-
cation scheme by calculating the similarity value between the
behavioral sequence of a target process and the behavioral
sequence chain of each malware family. In order to calcu-
late similarity, we firstly generated the behavioral sequence

of a target process through the sequence extraction and fea-
ture extraction and preprocessing as shown in Procedure 2
of Fig. 2. Then we calculated the similarity value between
two sequences and compared them. Once the sequence of a
target process has the similarity value over than the similar-
ity threshold, we detect the target process as malware and
classify it into the malware family with the highest similarity
value. The sequence of a target process detected and classi-
fied as malware is reported and stored in the database.

Our proposed system used two algorithms to calculate the
similarity value, which is Smith-Waterman and LCS algo-
rithm. Because they are based on sequence alignment and
provide the matched region and the length of the longest
common sequence.
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Fig. 3 Comparison of the
Sequence Length of
Backdoor.Win32.Simda

3.2.1 Similarity based on Smith-Waterman algorithm
(similarity-SW)

The Smith Waterman algorithm is a popular algorithm of
some local alignment methods [6]. It defines that alignment
algorithm is to identify regions of similarity between two
strings of sequences by inserting or deleting the defined gap
into each sequence. The similarity between two sequences
using Smith-Waterman is calculated as follows;

Simsw(X, Y )

=

⎧
⎪⎨

⎪⎩

0, i f XLength = 0 or YLength = 0
N/A, i f XLength > YLength
Matchsw(X,Y )

XLength
× 100, i f XLength ≤ YLength

⎫
⎪⎬

⎪⎭

XLength = length(X), YLength = length(Y ) (1)

Let sequence X and sequence Y denote the behavioral
sequence chain of each malware family compared and the
behavioral sequence of a target process, respectively.

Where, Matchsw(X,Y ) is matching count of all match-
ing regions of the alignment result from the Smith-Waterman
algorithm without the gap count. As shown in Eq. (1), the
length of the sequence X must not be longer than of the
sequence Y. In other words, the sequence of a target pro-
cess must be compared with all behavioral sequence chains
which have the smaller length than itself. It is in order to
decide whether the sequence of a target process contains the
behavioral sequence chain having high similarity value.

3.2.2 Similarity using LCS (similarity-LCS)

We define the similarity using LCS as follows: Let sequence
X and sequence Y represent each the behavioral sequence
chain of the malware families compared and the sequence of
a target process.

SimLCS(X,Y )

=

⎧
⎪⎨

⎪⎩

0, i f XLength = 0 or YLength = 0
N/A, i f XLength > YLength
LCS(X,Y )
XLength

× 100, i f XLength ≤ YLength

⎫
⎪⎬

⎪⎭

(2)

where LCS(X,Y ) is the length of the longest common sub-
sequence between two sequences. The condition statement
of the sequence length of this equation is equal to that of the
Eq. (1). We will discuss the performance measurement and
comparison with somemethods including these twomethods
in the next Sect. 5.

4 Visualization of the proposed system

This section describes several visualization scenes of the
analysis results which the proposed system provides. Fig. 4
shows the implementation of visualizing both the behavior of
the process executed in a computer system and the behavioral
features obtained from computer systems (namely, hosts) and
network devices. The behavioral features of a host process
can be categorized by eight types of function and the behav-
ioral features of network process can be categorized by four
protocol types of the packets occurred in its network.

The right of Fig. 4 visualizes the behavioral sequence of
each process according to the order of occurrence with the
sequence of behavioral features that are already represented
on3DDNAstructure shown in left side ofFig. 4.Through this
visualization technique, a securitymanager can recognize the
behavioral features and sequences of the processes running
on the host. In addition, once receiving the alert generated by
a security analyzer that detects the abnormal behavior from
an external host or a network device, the information related

123



S926 Cluster Comput (2019) 22:S921–S929

Fig. 4 Scene of behavior
visualization

Fig. 5 Visualization scene of
similarity analysis

to the alert can be displayed on the scene of both 3D DNA
structure and behavioral sequence in Fig. 4.

Through our visualization technique, we may intuitively
represent the behavioral sequence of the process running on
the host and also analyze the correlation of behavioral fea-
tures obtained from the particular host and the associated
network data.

Figure 5 shows the result of analyzing similarity between
the behavioral sequence of a target process (unknown sus-
picious process) and the behavioral sequence chains of the
defined malware families. Furthermore, it displays the ana-
lytical results belonging to the top 5 of the highest similarity
value. That is, the left side of Fig. 5 shows the behavioral
sequence of a target process and each behavioral sequence
chain of five malware families belonging to the top 5 of the
highest similarity value, and displays the results of the pair-
wise alignment which is used for calculating similarity using
LCS algorithm. 3D visualization scene in right side of Fig. 5

represents the behavioral sequence of a target process and the
behavioral sequence chains in the three-dimensional coordi-
nate space according to the results of similarity analysis on
the left side of Fig. 5. It is more intuitive and easier to pro-
vide a security manager with the results of similarity since
it displays a similar region between the behavioral sequence
of a target process and each behavioral sequence chain of
five malware families belonging to the top 5 of the highest
similarity value.

We are developing MSA application based on a ClustalX
and JalView to extend the number of features in the future
work. As shown in Fig. 6, we can extract the most common
subsequence. Each character of the common subsequence is
extracted when the occupancy ratio of the character in each
column of multiple sequences from the MSA result is over a
certain threshold. We can assign this threshold optionally.
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Fig. 6 MSA application
developed for behavioral
sequence chain generation

5 Evaluation and empirical results

In this section, we explain the method of determining a simi-
larity threshold and evaluate performance detecting malware
of the proposed system. As a dataset, we used 1790 mal-
ware and 1138 benign API call sequences. 854 of malware
sequences were used for generating the behavioral sequence
chains of malware families and the remainder was for mea-
suring detection performance. To evaluate the effectiveness
of the proposed system, we use Recall, Precision, Accuracy
and F-measure.

Recall (R) = T P/ (T P + FN ) (3)

Precision (P) = T P/ (T P + FP) (4)

Accuracy (AC) = T P + T N

T P + T N + FP + FN
(5)

F − Measure (F) = 2 × (Recall × Precision)

(Recall + Precision)

= 2T P

2T P + FP + FN
(6)

• TP (True Positive) is the number of running processes
correctly detected as malware.

• TN (True Negative) is the number of running processes
correctly detected as benign.

• FP (False Positive) is the number of running processes
mistakenly detected as malware.

• FN (False Negative) is a number of running processes
mistakenly detected as benign.

5.1 Evaluation and empirical results

A suitable similarity threshold should be selected to identify
malware and benign executables more accurately. For deter-
mination of this threshold, we have several experiments by
increasing a similarity threshold in increments of 5 from 70%
to 95%.

As shown in Table 1, F-measure is the highest at 94.30
when the threshold is 85%. Through these experimental
results, we can determine that a suitable similarity thresh-
old for our test data is 85%.

Table 1 Comparison of
detection performance by
changing similarity threshold

Similarity threshold (%) Recall (%) Precision (%) Accuracy (%) FP (%) F-measure

95 57.26 99.29 81.82 0.35 72.63

90 88.89 98.22 94.26 1.32 93.32

85 93.59 95.01 94.89 4.04 94.3

80 97.12 83.62 90.12 15.64 89.87

75 99.25 72.07 82.3 31.63 83.5

70 99.35 53.2 60.27 71.88 69.29
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Table 2 Comparison of
detection perfomance

Method Actual class Detected class R (%) P (%) AC (%) FP (%) F

Malware Benign

Similarity- SW Malware 866 (TP) 59 (FN) 93.62 92.91 93.81 6.02 93.26

Benign 66 (FP) 1030 (TN)

Similarity-LCS Malware 876 (TP) 60 (FN) 93.59 95.01 94.89 4.04 94.3

Benign 46 (FP) 1092 (TN)

5.2 Comparison of detection performance

In this section, we evaluated detection performance of our
proposed methods (the Similarity-SW and the Similarity-
LCS) explained in Sect. 3.2.

As shown in Table 2, two methods have similar per-
formance at recall. However, similarity-LCS has higher
performance at a precision (95.01%), accuracy (94.89%),
and the false positive rate (4.04%). Therefore, we calculated
the f-measure of them and we can see that the similarity-LCS
method achieved higher performance than the similarity-SW
method.

6 Conclusion

In this paper, we proposed the malware detection and classi-
fication system by generating the behavioral sequence chains
of some malware families and calculating the similarity
between the behavioral sequence chain and the sequence
of a target process. This system consists of two procedures
and five functional steps. First, to generate the behavioral
sequence chain, we executed the collected malware samples
in the limited execution environment and extracted their API
call sequences. Through the feature extraction and prepro-
cessing and clustering steps, these sequences were processed
as an input sequence set of MSA. From the result of MSA,
the behavioral sequence chain of malware is finally gener-
ated and added in the database. Second, to detect a target
process as malware or benign, we extracted the API call
sequence of a target process and converted it into a char-
acter sequence. Then we detected and classified malware
by measuring the similarity between the API call sequence
of a target process and the behavioral sequence chains of
the malware families. At that time, this similarity value was
calculated fromour proposed equation based on anLCSalgo-
rithm.

Also, we introduced visualization for the analysis result
obtained from our proposed system. Through this visualiza-
tion, a security manager will be able to recognize the threat

situation intuitively and easily. Finally, we evaluated detec-
tion performance of our proposed methods and the method
of calculating similarity based on an LCS algorithm achieved
higher performance on the precision, accuracy, false positive
rate and F-measure (95.01, 94.89, 4.04, and 94.30%).
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