
Cluster Comput (2019) 22:S10503–S10517
https://doi.org/10.1007/s10586-017-1093-z

Efficient data retrieval using adaptive clustered indexing for
continuous queries over streaming data

M. R. Sumalatha1 · M. Ananthi2

Received: 22 May 2017 / Revised: 27 July 2017 / Accepted: 29 July 2017 / Published online: 31 August 2017
© Springer Science+Business Media, LLC 2017

Abstract The Modern era has highly dynamic, heteroge-
neous and massive data volumes, generated from sensor
networks, social media and telecommunications, stock mar-
ket analyses and the Internet, etc. makes constant query
processing quite challenging in processing real-time data,
which exist as streams and undergo dynamic changes. Large
volumes of data can be efficiently handled by partition-
ing them into clusters followed by Indexing. An efficient
clustering and indexing method is required to process con-
tinuous queries for retrieving data streams. A new index
structure called adaptive clustering and block-based indexing
(ACBBI) is proposed, which is a fusion of cluster-based and
block-based techniques to process continuous queries. The
incoming data are clustered and stored as blocks using the
adaptive clustering method and further indexed by the adap-
tive indexing approach. Livestockmarket values that are time
variant are used for experimentation. The experimental anal-
ysis demonstrates that the ACBBI tree structure significantly
decreases half of the space cost, scales better with increasing
data size and improves the retrieval rate 30% more than an
existing CKDB approach.

Keywords Data stream · Indexing · Query processing ·
Data management · Clustering · Data retrieval · Continuous
queries

B M. R. Sumalatha
sumalatha@annauniv.edu

M. Ananthi
ananthi.it@sairam.edu.in

1 Department of Information Technology, Anna University,
Chennai, India

2 Department of Information Technology, Sri Sairam
Engineering College, Chennai, India

1 Introduction

The data of any area are observed dynamic in the modern
world and that changes their values in no time difference and
these sorts of vibrant and time-variant data are obtained using
real-time data streams. Data streams are the database format
that is used to record streaming data that holds unbounded
data that flows continuously henceforth results in difficult
to store and process these bulk data. Concerning the storage
and processing a difficulty that requires largermemory space,
we designed the adaptive query processor to process the data
immediately by formulating queries dynamically and exe-
cutes to deliver the desired output as soon as data arrives that
avoids storing of intermediate results. Data streams record
large volume of data that flows into the system. Streaming
data continuously change over time. The clustering model
requires the development of a partial data stream that is
updated with new incoming data. Pairs of points tend to look
equidistant from one another because of the sparsity of data
in high-dimensional space,which is not viable for controlling
the data arrival order or storing all data elements. Both index-
ing and query processing must use append-only file access.
Indexes in data stream management systems (DSMSs) are
stored and processed in the main memory itself, since it is
cache oriented and compact. Streaming window indexes are
essential for adapting the incoming data flow rate to handle
high rates of insertion, updation and deletion and records the
continuous datawith a predefined timing constraint (say 10s)
and clubs the data for processing. Online financial applica-
tions, for example, stock market applications, continuously
produce stock price values that depend on time. There are an
infinite number of stock values that vary over time, produc-
ing a huge volume of stock quotes from various companies.
The queries have to be executed continuously in a real-time
environment to produce information on the livestock data.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-017-1093-z&domain=pdf
http://orcid.org/0000-0002-1169-420X
http://orcid.org/0000-0003-3581-6918

S10504 Cluster Comput (2019) 22:S10503–S10517

Continuous monitoring and recording of stock values are
required to produce up-to-date results of continuous queries
upon request. Various company details with varying stock
prices need to be considered for continuous query execu-
tion. The most common information that are users search for
in any stock market site or Apps are current stock values,
analyzing minimum and maximum share value, gainers and
losers on the time/day list, companies that hold top position,
and comparing various company’s stock values. This infor-
mation is produced for them by querying on the continuous
data that are recorded in our tool. These queries need to be
executed daily and the results should be dynamic and time
variant, since these are the probable searches of any stock
market users.

Data partitioning and indexing are one of the main
design considerations for huge volumes of data. Clustering
and then indexing the data help in fast retrieval. Clus-
tering is one way to categorize incoming data based on
the similarity of sectors. Grouping similar data items per-
forms clustering. Incremental maintenance and updating
are required in clustering, which is more expensive than
grouping. Indexing infinite streaming data with finite stor-
age space is a challenging task. Well-organized storage is
required to handle user queries and filter the index streams
efficiently. High-speed query processing needs appropriate
indexing and dynamic retrieval of streaming data, which
leads to efficient query processing. The research issues in
processing continuous queries over data streams are as fol-
lows:

• Finding an appropriate indexing approach that can
accommodate and process huge volumes of data.

• Addressing thenewchallenges for queryprocessing asso-
ciatedwith streaming databases owing to both the vibrant
nature of the datawhich frequently changes over time and
the wider range of queries proposed by the user.

• Maintaining scalability to streaming data of increasing
density.

In this proposed work, a suitable indexing approach is pro-
posed to process large volumes of real-time vibrant data.
A novel clustering and indexing algorithm is introduced
for efficient retrieval of data. A new data index struc-
ture called ACBBI is proposed, which aims to address the
three main challenges in data indexing: (1) adaptive inser-
tion, (2) quick retrieval, and (3) dynamic omission. The
rest of this paper is structured as follows: Related work
is discussed in Sect. 2. The proposed stream processor is
presented in Sect. 3. Section 4 explains the operations of
the ACBBI structure. The performance evaluation is dis-
cussed in Sect. 5, and the conclusions and future work are
described in Sect. 6. Section 7 lists the papers referenced i
this work.

2 Related work

The incremental clustering method for data stream of chunks
using supervised learning [29] and post-processing phases.
First phase is the learning phase to create clusters adaptively
and continue the process until no more clusters created. Out-
liers are removed in the post-processing phase. Predefined
data sets were used in their approach. The above incremental
clustering technique is enhanced to process timestamp-based
real-time streaming data in this research work. Xie et al. [27]
used selectivitymethod to store the particular slidingwindow
samples and recorded for a predefined window size of 200.
However, streaming data require dynamic adaptive window
because the window size cannot be predetermined. Omran
Saleh Stefan [22] described patterns from continuous incom-
ing data retrieved in (near) real-time. Linked stream data
(LSD) was introduced to give these data streams a mean-
ingful structure. Relational operators, windows operators,
and source and sink operators are used as data flow oper-
ators in PipeFlow. Some tests showed that PipeFlow acted
upon existingLSDsystems inwhich some requirementswent
beyond classic data streamprocessing.An extremely scalable
and elastic stream-processing engine [8] was implemented
to detect fraud calls within telephone description records in
real time. The stream-processing engine was implemented
in shared-nothing clusters using the parallelization approach
to attenuate the distribution overhead. The limitation in this
work is that even though scalability and elasticity were
proven, semantic web-based query processing was not used.

Multi-top-k queries optimized for uncertain data streams
are discussed in [5]. It tries to balance additional overhead
and save computation time using a faster greedy algorithm
and the intermediate results are stored inmaterialized evalua-
tion. Storing intermediate results could also be amaterialized
approach which may lack in space and performance. Query
indexing [14] was proposed to process continuous queries
on RFID streaming data. Aggregating segments and trans-
formation into single object were implemented, specifically
designed for RFID tags. All types of tags were not supported
in this work. Continuous time-series data were clustered
based on predicting trend characteristics [12]. Analyzing
the trends of incoming streams and split and conquer tech-
niques lead to performance overhead. ClusTree [9] proposed
clustering multiple data streams concurrently. Summaries
of multiple concurrent streams are maintained. Maintaining
summary statistics of each data object leads to a larger work-
load. Various clusteringmethodologies are discussed in [28].
Among them, incremental clustering considers instances, one
at a time. The entire dataset is not required to be stored in
advance in the main memory, which saves time and space.
This clustering method is suitable for processing dynamic
incoming data in which the whole dataset is not known in
advance. This method is utilized in our proposed work. A

123

Cluster Comput (2019) 22:S10503–S10517 S10505

survey of various clustering algorithms [1,10,21,25] for time
series datasets is discussed. From this survey, it is realized
that effective clustering algorithms are required to process
high-dimensional data to increase the processing speed. In
Trie indexing [4], multiway tree structure was used in which
each node was represented as an array of pointers. A word is
considered as a key at each level. The string handling used
in this work leads to memory utilization problems, since any
new keyword that not part of existing array would be added
and making the array grow larger and utilizing space of the
system.

Judy [13] uses a compact trie indexing method where
node structures change dynamically according to the cur-
rent distribution of keys. One cache block is used to hold
multiple compact node structures. Since, dynamic real-time
data streams produce huge volumes of data continuously,
managing a single cache block for indexing the stream-
ing data is intricate. Evolving fuzzy-rule based systems and
metacognitive learning are discussed in existing systems
as an autonomous learning machine to process dynamic
data streams [2,17–20]. Evolving systems based on Takagi-
Sugeno fuzzy models have been discussed [2]. Pratama
[20] initiated a parsimonious classifier called pClass using
a fuzzy-rule based classifier. The first-order regression based
classifier is used for the extraction of fuzzy rules for stream-
ing data. A feature weighting mechanism is implemented
to analyze concept drifts by recalling past data distribution.
The multivariable type-2 fuzzy model [18] and type-2 neuro
fuzzy class using the incremental clustering method [17] are
discussed to automate the machine learning processes for
streaming data. Scaffolding Type-2 classifier (ST2) [16] dis-
cussed handling big data analytics without prior knowledge
of the system using machine learning and meta-cognitive
learning processes. Incremental clustering method can be
adopted by automating the machine learning process without
knowing prior knowledge of the past data. This concept was
proposed by Pratama [16–20] and is adopted in the proposed
work. It uses the incremental clustering method by dropping
out past data and hence failed to have a complete dataset.

Wang et al. [26] described subsequent versions that
pointed on each index node to minimize the cost of time
delay. Many versions are maintained in the index with the
version number; live versions are marked with an asterisk
(*). One data version is stored as arrays on each page. The
limitation is that the usage of version arrays consumes addi-
tional spaces in the main memory. The number of updates
is reduced due to version splits, system performance, and
effectiveness affected in the flash memory. The arrival rate
of update transactions is predefined and is updated every
fixed period. It concentrates only on version-range queries,
not on exact-match queries. Both exact match queries and
version-range queries are considered in the proposed work.
The CKDB tree-indexing scheme was introduced by Deng et

al. [6] to support dynamic continuous queries by combining
the cell-based and KDB tree. Query indexing is performed
in the CPU and stream data was filtered by GPU in paral-
lel. Only range queries are considered. Top-k queries and
KDB trees are maintained in separate arrays. Any query that
overlaps in more than one cell takes more memory space
and retrieval time. Various index entries were maintained for
cross-boundary queries that lead to more space and mainte-
nance costs. The above space inefficiency has been resolved
in the proposed work with the adaptive indexing method.
The indexing requirements of big data were discussed by
Shoshani [24]. There is a need to retrieve billions or trillions
of data valueswithin a second.Multi-variable queries are exe-
cuted. It has beenmentioned that an efficient indexgeneration
and a parallel processor are required to speed up the retrieval
and execution processes in this work. Research directions of
big data are given by Valduriez [15]. It is stated that database
cracking, which breaks the databases into manageable pieces
couldbedonebybuilding the indexdynamically at the timeof
query processing. This can be achieved through the column-
store method. This method is utilized in the proposed work
by using the adaptive clustering method.

The close dominance graph (CDG) index structure
described by Santoso and Chiu [23] was implemented to
address continuous top-k dominating queries where insertion
and deletion are taken simultaneously. Searching time was
reduced while processing regular updates in the database.
A similar approach is used in the proposed work by elim-
inating the duplicate entries and inserting only valid data,
which change in time and stock price value. Mahnoosh khol-
ghi and Keyvanpour [11] stated that the update time will be
longer if the database is distributed in more than one site.
They analysed the performance of different indexing tech-
niques and focused on multi-resolution indexing techniques
to overcome the problem in sliding window indexing over
data streams. Indexing resolution is based on feature extrac-
tion and accuracy is provided to user queries by error bounds.
This method is used in the proposed adaptive indexing tech-
nique. The balanced stream tree [7], called BSTree was
developed for searching, finding similarities and monitoring
real-time data streams. In this work, the least recently visited
pruning technique and symbolic discretization method were
used for similarity search queries to minimize the response
time and lexicographical order was used to store data, which
consumes more space and requires more search time for
alphabets.

A comparison of existing indexing techniques is listed in
Table 1. In index-structured trees, tries and the advanced Judy
implementation of compact tries were discussed in previous
work. Some tries were found to be relevant indexing struc-
tures that permit constant time insert and access rates. Each
node in the trie is a pointer array that pursues a multi-way
tree structure, and each level in the tree indexes a letter in

123

S10506 Cluster Comput (2019) 22:S10503–S10517

Table 1 Comparison of existing indexing methods

Indexing name Method Advantages Limitations

Tries [4] Multi-way tree structure Constant insertion and access time
if the key length is fixed. Suitable
for high insertion rates

Less memory utilization

Burst tries [4] Same suffix keys in same
containers, Binary search

Efficient memory utilization. Less
memory consumption

Fixed size containers. Internal
nodes may have null
pointers—memory wastage. Not
optimal solution

Judy compact trie [13] Dynamic structure based on current
distribution keys. Range search

More and more densely populated.
Less cache hit misses

Constant tree depth for all single
element operations

BSTree [7] (balanced
stream tree)

Similarity search To minimize response time Consume more space and more
searching time

a word. Although it follows a multi-way tree structure, over
utilization of memory is a major problem. The key distri-
bution leads to a memory utilization problem with tries. In
the worst case, when the keys are uniformly dispersed across
the domain, memory is wasted with naïve tries because many
null pointers denote the trie nodes in the sparse pointer arrays.
To overcome naïve tries, diverse compression methods were
hosted. It is very challenging to index dynamic data, and
queries need to be executed continuously with a minimum
impediment. Therefore, an indexing method is required for
faster access of incoming data, and detecting the update rate
of streaming data is an open problem.

3 Proposed work

Dynamic, heterogeneous and large volumes of data are con-
tinuously generated fromvarious applications, such as sensor
networks, social media, telecommunications, stock market
analyses, search engines, network monitoring and so on. An
efficient clustering and indexing method is proposed to pro-
cess these streaming data and continuous queries. Clustering
is used to partition the incoming data streams based on some
key factors that will make the processing efficiencies instead
of handling bulk data. Appropriate indexing approaches are
essential to handle fast incoming data and to process continu-
ous flowof queries.Owing to the dynamic nature of incoming
flow, adaptive processing is required. So, adaptive clustering
and indexing structure is proposed in this work to efficiently
process continuous queries.

3.1 ACBBI stream processor

A new index structure is proposed to reduce the cost of space
and speed up the retrieval from data storage, which mainly
focuses on leaf node indexing where the data are stored. The
tree-based indexing structure requires lesser space than the
linear structure. Henceforth, tree-based indexing proposed in

the system in order to handle proper indexing and efficient
retrieval for real-time, time-variant data. ACBBI is proposed
to index and retrieve speedy streaming data. The ACBBI
stream processor architecture is shown in Fig. 1. Incom-
ing data streams are fragmented according to the key value
pairs and grouped together by applying incremental cluster-
ing based on the timestamp. Here, clustering is performed
adaptively only when there is a variation in the incoming
value and timestamp. Each cluster is further divided into
blocks. Each block is indexed based on an extended B+ tree.
Next, the query processor for processing continuous queries
proceeds are used the indexed data. The stream query pro-
cessor consists of query indexing, a query plan and query
executor, which are used to process continuous queries effi-
ciently. User queries are sent through the application and
the results are fed back to the users. The notations used
in the ACBBI stream processor are represented in Table
2.

3.2 Adaptive clustering algorithm

Adaptive clustering groups live streaming data into different
clusters based on the key value and incremental clustering
approach. Incremental clustering envisages instances of one
at a time and allocate them toprevailing clusters. In incremen-
tal clustering, a complete dataset is not required in advance
for storing the data. This mechanism is very much suitable
for dynamic data streams. Algorithm 1 describes the adaptive
clustering technique. Incoming streaming data are identified
bymappingwith the key value k (step 2). The key value is the
segregation parameter of incoming data. The flag is initial-
ized as false initially and becomes true after cluster is updated
(step 3–4). The current timestamp value is set as threshold
value to control and identify the live data (step 5). The data are
hashedwith k to find their corresponding cluster andmapping
data are filtered (step 6).In the stockmarket application, stock
values are identified based on the company name as a key.
In addition, the companies are grouped together as sectors

123

Cluster Comput (2019) 22:S10503–S10517 S10507

Fig. 1 ACBBI stream processor

Table 2 Notations used

Ds Data streams

K Key value

dk Filtered mapping of data with key

Ts Time stamp

Sp Block starting pointer

B Block id

Live entry

Ni Number of update index entries

M Number of data items

Ţ Threshold timestamp

Rs Record set

Rl , Rh Low range and high range value

and the sector name is used as a key value for quick retrieval
of company details. Livestock market entries are clustered
based on the sector and only the values that vary in terms the
stock price are considered. The incoming data are checked
for live entries by considering the timestamp as a threshold Ţ
(step 8) and a cluster segment is identified through the find-
Stream method. If the data belong to an existing segment,
then existing cluster is updated (step 9) and increment the
cluster (step 10–12). Otherwise (step 15), a new cluster is
formed (step 16) and we set the counter value as 1 (step 17).
A new segment is created for a new cluster (step 18) and
added to the existing cluster list (step 19). Finally, data with
their timestamp are inserted into the corresponding cluster
(step 22). Here, data clustering is performed adaptively only
when there is a variation in the data and timestamp.

Clustering is done by grouping the incoming data based
on the sector as a key factor. Algorithm 2 describes about sec-
tor based clustering for streaming data. findStream algorithm
gives an overview about how the incoming stream data are
segregated as clusters based on sector. The algorithams two
functions: splitting and grouping. The algorithm splits data
based on key (sector) and group data that have same keys.
(step 4) Sectors are classified by hashing the incoming stream

123

S10508 Cluster Comput (2019) 22:S10503–S10517

datawith keyvalue and are stored asCh (clusteringwith hash-
ing). This classification is done only when there is a change
in data (step 1–3). Then, that is split based on Ch (step 5–6).
Segregated data are grouped based on similar sectors (step 7)
that are identified by checking the similarity among the data
entries. Similarity measurement is represented in Algorithm
3. The grouped entries are inserted as blocks (step 9). The
live entries are split using keys (k1, k2, . . .kn) through which
various sub streams such as (Sp1, Sp2,...Spn) are obtained.
Grouping operation is shown in Eqs. 1 thru Eq. 3.

Gspi = {Di1, Di2, Di3, , Dik} . (1)

Gspj = {
Dj1, Dj2, Dj3, , Djk

}
. (2)

Dspk =
n⋃

k=1

Gspk . (3)

Checking for changes in the value and time validity
controls incoming streams. If both conditions are satis-
fied, then data are clustered based on similarity. Grouped

entries are stored as blocks in the memory for further
indexing. Similarity between streams of data is measured
for clustering and is described in Algorithm 3. Two cate-
gories are considered here: (i) the same sector with differ-
ent values and (ii) different sectors with different values.
Different values represent changes in the timestamp and
data. The same sector with the same value and differ-
ent sectors with the same value are omitted to reduce
repeated data, which leads to memory wastage. Control-
ling and simultaneously checking incoming data, perform
data removal. Readings of xij (step 1–2) represents differ-
ent data streams of various companies of the same sector.
Differences in values are denoted as x and y values. The
similarity between x and y is measured (step 3–4). Ck
signifies clusters. The same sector with different values
is added to the same cluster (step 5–6). Different sectors
with varying data indicated as x and z are stored in dif-
ferent clusters (step 12–14). A basic similarity checking
method is used and calculated as shown in Eqs. 4 and
5.

xi=
{
xi1, xi2, xi3, . . . xip

}
and yi=

{
yi1, yi2, yi3,yip

}

(4)

sim
(
xip, yip

) =
√(

xip − yip
)2 (5)

After clustering, the clustered data are stored as blocks for
further indexing using the adaptive indexing method.

4 Adaptive indexing methodology

Adaptive indexing is the method used to index incoming
dynamic data, which leads to fast retrieval of data for further
processing. Each cluster is divided into equal sized blocks
to store the large volume of incoming data. All the blocks
are indexed as tuple where each tuple consists of <K,Sp,#,
B>,where K is the key value based on clusters. The initial
value of each block is represented as Sp and the block num-
ber is denoted as B. The # symbol represents the live entries
based on the timestamp. Because stream data are embedded
with a timestamp, a timestamp number is attached to each
entry. Newly arriving data are represented using a # sym-
bol, whereas expired data are considered as meta data. Each
block is indexed using B+ Tree. Each non-leaf node has at
most Ni index entries. Each index entry includes a corre-
sponding child node and its pointer. Each leaf node stores a
maximum of N data items. The leaf node shares the array list
to maintain the data and metadata. The query processor pro-
cesses, continuous queries by retrieving incoming data using
the adaptive indexing method. Insertion becomes efficient
and good for accessing useful data by clustering and index-
ing adaptively. The adaptive indexing approach is shown in
Fig. 2.

123

Cluster Comput (2019) 22:S10503–S10517 S10509

Fig. 2 Adaptive indexing
approach

Insertion and Searching are two main issues in han-
dling data items. Inserting data streams and searching data
for query execution algorithms are discussed in this sec-
tion. Dynamic deletion is the removal of duplicate entries
and filtering the valid incoming data. The deletion opera-
tion is not discussed separately because incoming streams
are filtered based on the timestamp and the change in
value. Subsequently, repeated data that are not required for
further processing are automatically removed and no sepa-
rate procedure is required for deletion. The insertion phase
accepts new data by comparing it with the existing data and
key value. Data are inserted only when there is a change
in the value and change in the timestamp, as shown in
(10).

�(Ts) > 0 and �(Price) �= 0; where Ts > Tsp

and key ∈ Ds (6)

Differences in the timestamp are represented as �(Ts). and
calculated from the present timestampTs and previous times-
tamp Tsp. Changes in price are calculated from the variation
with the previous reading, represented as�(Price). If there
is no match found with previous data as in Eq. 6, then the
changed data are added into the cluster. Otherwise, new

incoming data are omitted. This is to control the dupli-
cate entering of incoming data. Similarly, new updates are
accepted by comparing (Ts, Price). If price remains the same
and Ts differs, an update is made to the existing cluster,
thereby reducing the overall size of the cluster, as shown
in (Eq. 7).

�(Ts) > 0 and �(Price) = 0; where Ts > Tsp

and key ∈ Ds . (7)

4.1 Insertion in ACBBI

Insertion of new arrivals is shown in Algorithm 4. Live
entries are identified using timestamp Ts. We search an
empty block (step 1) and create a leaf node to insert new
entries (step 3–4). Next, data are inserted into tree array
list AL (step 5). If the timestamp of current data is equal
to or within the system timestamp and there is a change in
the value (step 7), then we insert current data into array
list (step 8); otherwise, we update the timestamp of the
existing value as current (Step 10). Previous data that are
retrieved until the threshold timestamp Ţ (step 11) are
grouped together, as represented in CompNode algorithm
(step 11–12).

123

S10510 Cluster Comput (2019) 22:S10503–S10517

The CompNode algorithm provides the simultaneous
update of cumulating incoming entries for further searches
and is shown in Algorithm 5. Similar data are mapped by
hashingwith key value (Step 1–2). The timestamp of grouped
data is set as TL , which is the last timestamp value (step 3).
Previous entries up to TL are summed up and stored as Nsum

(step 4). The average value is calculated for the grouped data
and further stored to maintain the metadata (step 5).

The aggregation is part of a scalable removal operation
specified as the CompNode algorithm. This algorithm is used
to compute the average of stock prices of a company on a par-
ticular day and replace with a single value. This is performed
to minimize the overall memory used. After some point of
time, some values may not be looked up frequently, so they
can be replaced by a single entry that contains the average of
stock prices. This is achieved by simultaneously compress-
ing the entries using the CompNode algorithm. The change
in value and average of the threshold timestamp can only be
stored in the memory, which saves memory and reduces the
number of reads/writes. Simultaneously, past data of expired
timestamp are aggregated and stored as metadata to retrieve
historical based query. Aggregated data are removed from
the current index in the main memory, which is not required
to process continuous real-time queries.

4.2 Search algorithm on ACBB

Searching of data is explained in Algorithm 6. Data are
searched in the ACBT(Adaptive Clustering Based Tree).
Three cases of retrieval analyzed. Timestamp based search,
key based search and range based search in which timestamp
and key based are considered as exact match query search
(step 2–10); range based search is considered as range query
and shown in (step 13–17). Timestamp of incoming data and
its array list are checked for live entries as presented in (step
23–27). Live data are retrieved based on the current times-
tamp, as represented in steps 3–4. If a timestamp is used as
one of the key values and searching data are another key
(Step 6), then this represents an exact match query. First, the
cluster is identified based on key values (step 8). Then, the
corresponding block is identified based on the search data
(step 9). Live entries from the block are searched with key
values to find the data (Step 10). The query range is specified
as Rl (low range value) and Rh(high range value), which are
used as key values in the search. Live entries are searched
based on these range values in the corresponding block and
cluster (step 14–17). The search of live data from the list is
shown in steps 22–27.

5 Implementation

A real-time system, i.e., a stock market application has been
used for experimentation. Live readings are recorded from

123

Cluster Comput (2019) 22:S10503–S10517 S10511

the online stock web site http://www.money.rediff.com. An
application named TrayApp is developed which records the
livestock market values and continuously updates the current
stock value of each company. This updating is done every
time when there is a small change in the live values. National
Stock Exchange (NSE) and BSE(Bombay Stock Exchange),
which provide livestock readings of various companies, are
used in the web application. Stock entries are updated every
30s continuously. The readings are recorded daily during
business hours. Simple, complex, time-based and predictive
analysis queries are considered in this work. The user cannot
find queries regarding predictive analysis and comparative
analysis between companies in the present scenario. This
webpage also provides a search area for the users to post
their queries and obtain reliable answers in a quick way. The
web page also provides comparison charts on future pre-
dictions about the stock market and can give suggestions to
the user on future investments. For new users who do not
know much about the stock market, the web page provides a
well-defined view on the stocks and provides suggestions for
investing in companies. An API is developed for query pro-
cessing, retrieving live stock market data from the web and
processing the requested query. Data tuples are considered in
the range of 100–1000, varying based on the incoming data
arrival. The incoming entries are updated for every 30s. The
maximum number of entries in a node is 8 and underflow
is considered below 2 entries. A strong version condition
underflow is considered as 3 entries to maintain a balanced
tree.

5.1 Query formulation

Stock quotes of companies are used as a streaming database
that is uploaded daily or even hourly and readings are taken
every 30s to include new quotes. Some sample queries based
on exact matches and range queries have been considered for
the experiment. We formalize the queries as follows:

Definition 1 (Valid key update) this query takes the readings
of stock values continuously every 30s (t). Given a streaming
data Ds, let q be the streaming query object at time position
t. The timestamps of the query for the last Ts time period
would be r,

{∀Ds {V (q [t−Ts] , r [t−Ts])} ,� (Ts) > 0 and �(P) �=0
∀Ds, � (Ts) > 0 and �(P) = 0

(8)

The insertion of new tuples is described in (eq8) if there is
a variation in time and price. If there is no variation in the
previous value, only timestamp is updated. This denotes the
variation in the timestamp Ts and stock value P.

Definition 2 (To obtain the min value and max value for
each key maintained in Ds) given a streaming database Ds,
let q be the streaming query object at time position t then,

Mn = ∀Ds
n∑

k=1

min (q [t] , r [t]) (9)

Mx = ∀Ds
n∑

k=1

max (q [t] , r [t]) (10)

where k = 1, 2, 3. . .n, n is the amount of incoming data
maintained in Ds. The minimum value of the key is denoted
in (9) and the maximum value of quotes is represented in
(10).

Definition 3 (Displaying list of gainers and losers) given a
streaming database, let q be the streaming query object at
time position t,

Gain =
n∑

Ds=1

Max(%ch [q [t]) (11)

where %ch is the percentage change in values.

Loss =
n∑

Ds=1

Min (%ch [q [t]]) . (12)

Equations 11 and 12 represents the list of gainers, and losers.

6 Performance evaluation

The performance of the proposed indexing method ACBBI
is evaluated for streaming data. CKDB tree (cell-based KDB
tree) was a similar approach to the proposed ACBBI system.
In their systems, indexing was done by combining adaptive
cell and KDB-tree to support dynamic continuous queries
over streaming data. Both query indexing and filtering of
streaming data were done. Queries were split and stored in
cells. Each cellwas partitioned into equal sized sub-cells. The
drawback of this existing systemwas cross boundary queries
were maintained with multiple index entries which leads to
more space overhead and maintenance costs. This drawback
is overcome in this proposed systemACBBI. Live stockmar-
ket values, which continuously produce data that vary in
time, are used for experimentation. The storage costs,mainte-
nance costs and query performance of the proposed indexing
method are evaluated. Live entries and stock entries are
maintained separately to efficiently handle query retrieval.
Query indexing approaches must handle dynamic continu-
ous queries, such as exact match queries and range queries.
Existing systems concentrate mostly on range queries only.

123

http://www.money.rediff.com

S10512 Cluster Comput (2019) 22:S10503–S10517

Table 3 Performance
comparison of ACBBI with the
web-based approach

Approach/streaming data Adaptive clustering
based approach (ACBBI)

Traditional Web
based approach

Variation
in readings

No. of entries/min 250 ∼>1500 >1200

No. of entries/h 696 41,760 ∼> 40,000

Valid input data/day 1624 2,71,440 2,69,816

Response time/entry 0.6 ≥15 ∼14.4

Available memory (MB) 21.56 3550 3528.44

Memory used (MB) 1.94 280 >270

Remaining memory (MB) 19.62 3270 3250

Exactmatch queries and range-basedqueries,which aremore
frequent, are considered and tested in the proposed system.
Frequently used queries are considered as registered queries
that execute continuously to evaluate the proposed indexing
method. Data entries are tested by varying the number of
tuples from 1,00,000 (100K) to 9,00,000 (900K), which is
considered as the maximum range of incoming tuples.

6.1 Data retrieval evaluation

Indexing should be adaptive, efficient and reliable due to the
dynamic nature of incoming data in data stream systems.
Cluster-based indexing is analyzed in terms of data indexing
and query indexing. Data indexing is considered for effi-
cient storage and fast retrieval. Query indexing is required
to handle dynamic continuous queries, which lead to quick
response and processing time of queries. ACBBI includes
both data and query indexing. This indexing is comparedwith
an existing cell tree indexing method called the CKDB tree.
The CKDB [6] tree splits the query into cells. In this existing
work, most frequent queries are maintained in the top-k list
and the remaining queries are in the KDB tree. The same
query is fragmented into two cells, so referring that query
requires the comparison of more than one cell. The query
retrieval must compare both the top-k list and the KDB tree,
which requires additional space andmore processing time. In
ACBBI, only required live data are updated. All the incom-
ing streams of data are not stored like traditional systems.
Because stock values are used for experimentation, only vari-
ation in values and changes in the timestamp are considered.
Only timestamps are updated for the stock quotes that do not
change for a particular time period. A new indexing node
does not need to be inserted in the tree. Only updating of the
old entries is performed, which leads to space consumption.
Each cluster size is determined by the variation in incom-
ing data entries and time, which are allocated based on their
block size. The cluster size is calculated as shown in Eq. 13:

Ci = α j + β j .

(⋃k
i=1 Ni

)

B
. (13)

The number of entries varies over time j. α j . is a constant
factor determining the minimum entry that varies over time
j. Ni . is the change in β values, which may increase or
decrease. β j (±values) varies over time j. B is the block
size, which determines the number of entries occupied in one
cluster.

Readings from 232 companies are taken for experimen-
tation as shown in Table 3. An average of more than 40,000
records is retrieved for an hour in traditional existing system.
More than 2 lakh entries are received per day. These readings
vary based on different input queries. More than 90% varia-
tion in performance is found from the results obtained. In the
proposed ACBBI work, all incoming data are not required
for processing queries. Duplicate records are eliminated by
filtering incoming data using adaptive incremental clustering
based approach. Though it takes a little bit of processing time,
it saves 90% of memory and processing time. Also, accuracy
in results is maintained subsequently for exact information
is retrieved always.

6.2 Storage cost evaluation

Storage for a given set of queries are evaluated and compared
with existing CKDB tree and KDB-tree. A set of query data
Qwhere number of queries at a time |Q| is 10,000 considered
for execution. Amount of storage required for using ACBBI
is compared with existing system using real-time application
which is shown in Fig. 3. The M, N and constant value c are
used where M refers to the actual number of records without
incremental updation and N is the number of records after
adaptive incremental updation. Eq. 14 shows that N is lesser
than M. When the queries are executed using ACBBI for a
400K number of queries 4000MB is used while the existing
system CKDB consumes 8000MB for the same number of
queries.

N ≤ √
M .c (14)

The comparison between the proposed storage of ACBBI
indexing approach and the CKDB tree is done and shown in
Fig. 3. The streaming processor when receiving 1500 num-
ber of records, with the CKDB existing system approach of

123

Cluster Comput (2019) 22:S10503–S10517 S10513

Fig. 3 Storage comparison of
ACBBI with CKDB-tree

Fig. 4 Space cost with
parameters of cluster size T by
varying v

123

S10514 Cluster Comput (2019) 22:S10503–S10517

Fig. 5 Index maintenance cost

(a) Uniform (b) Skewed

(c) Hyper-skewed

0

10

20

30

40

0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5

CP
U

 T
im

e
(m

s)

Percentage of Query data

CKDB

ACBBI

0

100

200

300

400

CP
U

 T
im

e
(m

s)

Percentage of Query data

CKDB

ACBBI

0

50

100

150

200

250

300

350

400

450

0.1 0.2 0.3 0.4 0.5

CP
U

 T
im

e
(m

s)

Percentage of Query data

CKDB

ACBBI

indexing occupies 280MB space while executing a 100K
number of queries. However, the proposed ACBBI index-
ing has occupied 1.94MB only since the arrival of 1500
number of records is reduced to 250 numbers. Hence, the
incoming streaming data are analyzed and duplicate values
removed. The storage is highly reduced by the proposed
indexing method. The storage size is reduced by 44% when
compared with CKDB-tree. Moreover, ACBBI scales up for
the huge data values too.

6.3 Cluster capacity evaluation

Each cluster capacity is viewed from varying the coverage
ratio of cluster represented as v and cluster capacity denoted
by T. Amount of storage is calculated by varying the data dis-
tributionwith the given set of queries. The overflowcondition
of cluster capacity is considered for 75% of incoming data.
Therefore, the space cost is monitored by changing the block
size with 80, 90 and 100% and are shown in Fig. 4. Query
data apply with three distributions of uniform, skewed and
hyper-skewed cases are evaluated for estimating the storage
cost of ACBBI. The constant arrival of streams is measured
and represented as uniform distribution that is calculated by

the coverage ratio of blocks and is shown in Fig. 4a Storage
cost is almost similar when there is variation in cluster size.

Apart from the uniform distribution, sudden changes in
streams which is known as skewed data are measured when
the threshold value for block size reaches 100% at v = 1,
and storage cost increases T, the cluster capacity value is opti-
mal and uniform when the cluster size increases gradually.
Skewed distribution is shown in Fig. 4b. The storage cost of
the high speed rate of incoming data named as hyper-skewed
and is shown in Fig. 4c. Storage capacity increases when
the cluster size T is above 1000. However, the results are
consistent when there is an increase in cluster size. The per-
formance is high compared to the existing system in skewed
and hyper-skewed cases.

6.4 Index maintenance cost evaluation

The index maintenance cost is measured using storage space
used by the clustered streaming data by varying percentages
of query data from10 to 80%.ACBBIoutperforms than exist-
ing KDB and CKDB-tree. The ratio of frequency in updation
time of ACBBI is compared with CKDB, ACBBI varies with
34% than CKDB tree. The updation in ACBBI happens only

123

Cluster Comput (2019) 22:S10503–S10517 S10515

Fig. 6 Query Performance of
ACBBI compared with CKDB
tree

when there is a change in value and timestamp in incoming
record which reduces the amount of update operations. Thus,
execution time of update operation is less than the existing
system and shown in Fig. 5.

Figure 5a shows the uniform readings where x-axis rep-
resents the percentage of query data with respect to CPU
execution time. ACBBI varies by more than 34% compared
with CKDB. ACBBI varies by more than 10–50% compared
with CKDB respectively, both in the cases of skewed and
hyper skewed and is shown in Fig. 5b and c.

6.4.1 Query performance evaluation

The ACBBI indexing method is compared with an exist-
ing CKDB-tree in terms of query performance. A set of
queries is executed continuously by varying the number
of tuples. CPU time is measured with the number of data
tuples using ACBBI and CKDB. Execution time of the uni-
form, skewed and hyper-skewed distribution of data while
varying the number of queries is shown in Fig. 6a, b

and c respectively. ACBBI performs much higher than
CKDB-tree around 36% for uniform, skewed cases and 10%
of hyper skewed cases. The proposed method outperforms
for voluminous records. ACBBI approach on an average,
improves query performance than CKDB tree. The search
through ACBBI index has only the minimum amount of
data because the insertion of all incoming streaming data
is avoided.

7 Conclusion

Adaptive clustering block-based indexing (ACBBI) is pro-
posed and implemented to capably process data streams.
ACBBI consists of both cluster-based and block-based
indexing methodologies. The adaptive clustering algorithm
clusters incoming streaming data dynamically based on
the extension of an incremental clustering method. Block-
based indexing reduces the storage space and provides easy
retrieval. Different data distributions of incoming data, such

123

S10516 Cluster Comput (2019) 22:S10503–S10517

as uniform, skewed and hyper-skewed by varying query data,
are investigated to measure the space cost and query perfor-
mance. The results show that (1) ACBBI has an improved its
performance of retrieving data by 41% to that of existing sys-
tems and works proficiently in easy retrieval. (2) This system
also outperforms more than half times of the existing system
in terms of storage cost. An experimental analysis, a real-
time stock market application is considered. The incoming
streaming data for this application are handled by the pro-
posed ACBBI. The efficiency of the stream query processing
is improved and the space cost is reduced. Frequent updates
of incoming data are accommodated. Thus, ACBBI shows
substantial potential in reducing the storage cost, and the
retrieval rate is improvedwith increasing data size. Hence, an
effective data stream management technique is devised and
analyzed in this work. Big data is the latest technology where
huge amount of data is stored and processed. In the future,
this approach may be enhanced for the streaming of big data
to efficiently store and retrieve huge volume of data. The
velocity of huge data can be retrieved instantly by enhanc-
ing dynamic heuristic optimization technique. This can be
applied in various other streaming, time-variant applica-
tions and semantic approach can be applied. Semantic based
streaming data along with adaptive indexing and dynamic
query processing will improve the efficiency and scalability
of stream processing in future.

References

1. Amini, A., Wah, T.Y., Saboohi. H.: On density-based data streams
clustering algorithms: a survey. J. Comput. Sci. Technol. 29(1),
116–141 (2014). doi:10.1007/s11390-013-1416-3

2. Angelov, P., Filev, D.: An approach to online identification of
Takagi-Sugeno fuzzy models. IEEE Trans. Syst. Man Cybern. B
34, 484–498 (2004)

3. Angelov, P.P., Zhou, X.: Evolving fuzzy-rule-based classifiers from
data streams. IEEE Trans. Fuzzy Syst. 16(6), 1462–1475 (2008)

4. Badiozamany, S., Risch, T.: Scalable ordered indexing of streaming
data, VLDB Proceedings (2012)

5. Chen, T., Chen, L., Ozsu, M.T.: NongXiao, optimizing multi-Top-
k queries over uncertain data streams. IEEE Trans. Knowl. Data
Eng. 25(8), 1814–1829 (2013)

6. Deng, X.W., Wang, L., Chen, X., Ranjan, R., Zomaya, A., Chen,
D.: Parallel processing of dynamic continuous queries over stream-
ing data flows. IEEE Trans. Parallel Distrib. Syst. 26(3), 834–845
(2015)

7. Ferchichi, A., Gouider, M.S.: BSTree—an incremental indexing
structure for similarity search and real time monitoring of data
streams. Lecture Notes in Electrical Engineering, Future Infor-
mation Technology, vol. 276, pp. 185–190. Springer, Heidelberg
(2014)

8. Gulisano, V., Jimenez-Peris, R., Patiño-Martínez, M., Soriente, C.:
StreamCloud: an elastic and scalable data streaming system. IEEE
Trans. Parallel Distrib. Syst. 23(12), 2351–2365 (2012)

9. Hesabi, Z.R., Sellis, T., Zhang, X.: Anytime Concurrent Clustering
of Multiple Streams with an Indexing Tree. JMLR: Workshop and
Conference Proceedings, vol. 41, pp. 19–32 (2015)

10. Khalilian, M., Mustapha, N.: Data stream clustering: challenges
and issues. In: Proceedings of International Multi Conference of
Engineers and Computer Scientist IMECS, vol. 1(1) (2010)

11. Kholghi, M., Keyvanpour, M.R.: Comparative evaluation of data
stream indexing models. Int. J. Mach. Learn. Comput. 2(3), 257–
260 (2012)

12. Kontaki, M., Papadopoulos, A., Manolopoulos, Y.: Continuous
trend-based clustering in data streams. Data Warehous. Knowl.
Discov. 251–262 (2008)

13. Luan, H., Du, X.,Wang, S.: Prefetching, J+ tree: a cache-optimized
main memory database index structure. J. Comput. Sci. Technol.
24(4), 687–707 (2009)

14. Park, J., Hong, B., Ban, C.: An efficient query index on RFID
streaming data. J. Inf. Sci. Eng. 25, 921–935 (2009)

15. Patrick Valduriez INRIA, Montpellier, Indexing and Pro-
cessing Big Data, 2014. http://www.lirmm.fr/mastodons/talks/
Valduriez-Bigdata-indexing-2014.pdf

16. Pratama, M., Lu, J., Zhang, G., Anavatti, S.: Evolving type-2 fuzzy
classifier. IEEE Trans. Fuzzy Syst. 24(3), 574–589 (2015)

17. Pratama, M., Lu, J., Zhang, G., Anavatti, S.: Scaffolding type-2
classifier for incremental learning under concept drifts. Neurocom-
puting 191, 304–329 (2016)

18. Pratama, M., Lu, J., Zhang, G., Anavatti. S.: An incremental type-
2 meta-cognitive extreme learning machine. IEEE Trans. Cybern.
(99) 1–15 (2016)

19. Pratama, M., Anavatti, S., Lughofer, E.: pClass: an effective clas-
sifier to streaming examples. IEEE Trans. Fuzzy Syst. 23(2),
369–386 (2014)

20. Pratama, M., Anavatti, S., Lu, J.: Recurrent classifier based on
an incremental meta-cognitive scaffolding algorithm. IEEE Trans.
Fuzzy Syst. 23(6), 2048–2066 (2015)

21. Punithavalli, K.V.M.: Clustering time series data stream—a litera-
ture survey. Int. J. Comput. Sci. Inf. Secur. (IJCSIS) 8(1), 289–294
(2010)

22. Saleh, O., Hagedorn, S., Sattler, K.-U.: Processing, complex event,
on linked stream data. Datenbank Spektrum 15, 119–129 (2015).
doi:10.1007/s13222-015-0190-5

23. Santoso, B.J., Chiu, G.-M.: Close dominance graph: an efficient
framework for answering continuous top-k dominating queries.
IEEE Trans. Knowl. Eng. 26(8) 1853–1865 (2014)

24. Shoshani, On the Role of Indexing in Scientific Domains.
Big data and Extreme Computing. Lawrence Berkeley National
Lab (2013). http://www.exascale.org/bdec/sites/www.exascale.
org.bdec/files/17_BDEC_Shoshani_indexing.pdf

25. Silva, J.A., Faria, E.R., Barros, R.C., Hruschka, E.R., De Carvalho,
A.C.P.L.F., Gama, J.A.P.: Data stream clustering: a survey. J. ACM
46(1) (2013)

26. Wang, J., Lam, K.-Y., Chang, Y.-H., Hsieh, J.-W., Huang, P.-
C.: Block-based multi-version B+tree for flash-based embedded
database systems. IEEE Trans. Comput. 64(4), 925–940 (2015)

27. Xie, Q., Zhang, X., Li, Z., Zhou, X.: Optimizing cost of continu-
ous overlapping queries over data streams by filter adaption. IEEE
Trans. Knowl. Data Eng. 28(5), 1258–1271 (2016)

28. Yogita, D.T.: Clustering techniques for streaming data—a survey.
IEEE Conference on Advance Computing Conference (IACC), pp.
951–956 (2013). doi:10.1109/IAdCC.2013.6514355

29. Zheng, L., Huo, H., Guo, Y., Fang, T.: Supervised adaptive incre-
mental clustering for data stream of chunks. J. Neurocomput.
502–517 (2017). http://dx.doi.org/10.1016/j.neucom.2016.09.054

123

http://dx.doi.org/10.1007/s11390-013-1416-3
http://www.lirmm.fr/mastodons/talks/Valduriez-Bigdata-indexing-2014.pdf
http://www.lirmm.fr/mastodons/talks/Valduriez-Bigdata-indexing-2014.pdf
http://dx.doi.org/10.1007/s13222-015-0190-5
http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/17_BDEC_Shoshani_indexing.pdf
http://www.exascale.org/bdec/sites/www.exascale.org.bdec/files/17_BDEC_Shoshani_indexing.pdf
http://dx.doi.org/10.1109/IAdCC.2013.6514355
http://dx.doi.org/10.1016/j.neucom.2016.09.054

Cluster Comput (2019) 22:S10503–S10517 S10517

M. R. Sumalatha is an Asso-
ciate Professor at Department
of Information Technology and
Deputy Director at Centre for
Technology Development and
Transfer, Anna University. She
has been selected as one of
the leading achievers around the
globe from New Providence,
USA (2010) and for Dr. APJ
Abdul Kalam Award for Teach-
ing Excellence in the year 2015.
She has many research publica-
tions to her credit and her area
of research interest includes Dis-

tributed Systems, Cloud Computing, Big Data Analytics, Social Plat-
forms, Data Security and Privacy.

M. Ananthi is an Associate Pro-
fessor at Department of Infor-
mation Technology, Sri Sairam
Engineering College. She
received her B.E degree from
the Bharathidasan University,
Trichy, M.E degree from
Sathyabama University, Chen-
nai. She is currently doing her
PhD in the area of Data Man-
agement issues and online data
stream analysis in Anna Uni-
versity. She has published her
research work pertaining to data
streams in international confer-

ences Her research interests include data management, data streaming,
and query processing.

123

	Efficient data retrieval using adaptive clustered indexing for continuous queries over streaming data
	Abstract
	1 Introduction
	2 Related work
	3 Proposed work
	3.1 ACBBI stream processor
	3.2 Adaptive clustering algorithm

	4 Adaptive indexing methodology
	4.1 Insertion in ACBBI
	4.2 Search algorithm on ACBB

	5 Implementation
	5.1 Query formulation

	6 Performance evaluation
	6.1 Data retrieval evaluation
	6.2 Storage cost evaluation
	6.3 Cluster capacity evaluation
	6.4 Index maintenance cost evaluation
	6.4.1 Query performance evaluation

	7 Conclusion
	References

