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Abstract Scan operation will involve many fragments and
cause many extra invalid partitioning query operations in
distributed column-oriented database which affects query
efficiency seriously, especially for spatial data. To solve this
question, this paper refers to partitioning strategy in dis-
tributed column-oriented database and advocates a spatial
data storage optimization strategy named ‘SPPS’. This strat-
egy makes adjacent spatial objects stored in the same data
fragment with considering spatial adjacency, and reserves
the spatial information of each fragment. Thus spatial query
operation can locate the relevant fragment on basis of spa-
tial information of fragment, and extra invalid partitioning
scan operations would be lighted. Then the storage and
query efficiency would be improved. To verify the validity
of ‘SPPS’ optimization strategy, this paper carries on rele-
vant experiments based on HBase and records spatial query
efficiency with and without ‘SPPS’ respectively. The exper-
iments results indicate that ‘SPPS’ strategy can optimize the
storage and query efficiency in distributed column-oriented
databases.
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1 Introduction

With the rapid development of sensor technology and net-
work technology, there has been a massive boost in the
spatial data. Besides, timely analysis and management of
such spatial data become a major challenge in current GIS
field [1–3]. To face the challenge, a kind of NOSQL database
which named distributed column-oriented database system
becomes a main solution [4–7]. In distributed column- ori-
ented database, data is partitioned into multiple fragments
with range partitioning or consistent hash partitioning [7–
9]. For example, HBase [10] and Bigtable [11] distribute
datasets by the range of their keys; Dynamo [12] and Cas-
sandra [13] choose consistent hashing as their partitioning
strategies. Whether adopting range partitioning or consistent
hash partitioning, it will usually lead to the workload skew
of the system, and the data request operation of reading and
writing can be focuses on a single node, which decreases
the efficiency of distributed system. This paper focuses on
range partitioning, and try to optimize the spatial data stor-
age in distributed column-oriented database. Usually range
partitioning approach adopts schema-based strategy aiming
to generate equi-sized partitions [14], which neglects the
characteristic of data. Besides, it provides scan query with
start and end primary key [15]. This scan operation may
involve some inconsistent data, and cause many invalid frag-
ment queries [6]. Most importantly the invalid fragment scan
query will become more frequent with the increase of the
number of fragments. Thus spatial query efficiency would
be decreased seriously in the distributed column-oriented
database [14,16,17].

Different from the general data, spatial data has strong
regularity, mainly in the performance of geographical space
distribution, that is to say, there is a certain spatial distance
relationship among spatial objects, either adjacency or sep-
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aration [18]. If we can fully consider these characteristics of
spatial data in the process of partitioning, and store spatial
adjacent objects into the same data fragment and spatial sep-
arate objects into different data fragments, thus to reduce the
number of query operation crossing fragments and nodes,
which means the number of invalid partitioning scan oper-
ation would be decreased. For example, in order to search
hotels near Optics Valley, Wuhan, China on the global scale,
because the data is stored in a plurality of data fragments by
a random method in spite of such a small range of queries,
the query operation may involve multiple fragments and
lead to lower query efficiency. If we store the information
of hotels near Optics Valley into one fragment, and equip
the fragment with the spatial position information, the query
operation can be implemented on the fragment directly on
basis of the spatial information, thus to decrease the system
workload of query operation and increase the query effi-
ciency in distributed column-oriented database to a certain
extent.

Based on this, this paper presents a data storage optimiza-
tion strategy named spatial proximity partitioning storage
(SPPS). SPPS optimization strategy takes the spatial proxim-
ity into account and records the spatial position information
in the partitioning process. The most common query method
is scan query in distributed column-oriented database. It will
retrieve the data in each fragment due to get fragment posi-
tion information according to the start and end primary key
[19]. Thus a question will come out which caused by the
operation refers to “division of primary key”. This opera-
tion can be concluded as below: Each spatial object will be
stored into the distributed column-oriented database accord-
ing to lexicographic order of primary key. Then it divides
the primary key and form many fragments in the process
of partitioning. So some spatial adjacent objects would be
stored into different fragments in the process of partition-
ing. Then some fragments which do not contain our query
result would belong to the range of start and end primary
key. Even though some other spatial data storage methods
on basis of distributed column-oriented database consider
spatial proximity, they will get some uncorrelated fragments
using start and end primary key merely if they do not con-
sider the “division of primary key”. The SPPS strategy can
locate the exact fragments which contain query result with
the help of spatial position information contained by frag-
ments. It avoids the question of getting fragment position
according to start and end primary key merely. To realize
it, our ‘SPPS’ strategy contains four parts. First, it obtains
the spatial distribution principle of spatial data with adopt-
ing spatial sampling approach to analyze spatial data, and
divides the whole space into many subspaces according to
the spatial distribution. Second, we design the partitioning
key of each fragment. Then we establish the mapping func-
tion relationship between the subspace and the partitioning

key. Finally, to store the spatial adjacent objects into the same
fragment,wedesign the primarykeybasedon the partitioning
key of fragment, so the spatial position information of frag-
ment can be implied by the primary key. Owning to ‘SPPS’
strategy, spatial query can be directly located on the data
fragment according to spatial mapping relationship and the
value of primary key, then it can decrease the number of
invalid partitioning query operations and enhance the effi-
ciency of spatial query in the distributed column-oriented
database.

2 Related work

In order to optimize the storage of spatial data in distributed
column-oriented database and reduce the influence of spatial
query caused by invalid partitioning scan, extensive research
has been conducted by scholars. Existing methods can be
classified into two categories on basis of whether or not con-
sidering space partitioning in the data partitioning process.
First, it just considers how to implement a relatively more
reasonable partitioning method which we called “Data par-
titioning strategy”. Second, it considers the spatial adjacent
property, and designs some space partitioningmethodswhich
we called “space partitioning strategy”. Detailed exposition
will be descried as below.

2.1 Data partitioning strategy

Data partitioning strategy holds that the partitioning meth-
ods in distributed column- oriented database is inefficiency
and stupid and has shortcomings of hot spot problem
and low performance. So many scholars want to design
a more reasonable data partitioning method and optimize
data storage and management in distributed column-oriented
database.

A reasonable data partitioningmethod should disperse the
partitioning fragments into system evenly so as to ease the
hot spot problem and improve query efficiency. Chen et al.
[7] took full account of the problems like the hot spot and
inefficiency caused by the existing partitioning method in
NoSQL database, and designed a more reasonable partition-
ing method which named HRCH which combines together
the consistent hash and the range partitioningmethod.HRCH
can improve the system’s scalability, and avoid the hot spot
problem as far as possible; Cruz et al. [20] proposed an
automated workload-aware table segmentation mechanism
in order to select a reasonable primary key division point for
implementing data partition process. It takes full account of
the workload of the system and makes the data fragments of
the table be more evenly distributed into the cluster, so the
workload of searching can be evenly allocated to each node.
This way it can lead to a better overall load balance across
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regions, and the query efficiency can be improved. Ye and
Li [21] considered the question of request skew, and pro-
posed a heterogeneous distributed storage system based on
Cassandra [13] which is well known as a NoSQL database. It
can reduce total time-consuming of read requests and write
requests to a certain extent, also the storage utilization of
each node can be balanced after applying this distributed
storage system; Elghamrawy [22] proposed an adaptive-
rendezvous hashing partitioning module named ARHPM. It
can make up the drawback with which Cassandra ignores the
nature of nodes in the process of assigning data to Cassan-
dra nodes, and optimize the partitioning results in Cassandra
database.

2.2 Space partitioning strategy

This strategy tries to implement a reasonable space parti-
tioning strategy on basis of the adjacent characteristics of
spatial data, thereby reduce the number of invalid parti-
tion scan operations and enhance the efficiency of spatial
data query [3,3,6,16,23–26]. To implement this target, many
scholars adopt space filling curve to construct primary key.
Space filling curve is a linearization technique transform-
ing high dimensions to one dimension, and it can keep
adjacent property for spatial data. Besides, it will store the
spatial data according to the lexicographic order of primary
key in distributed column-oriented database. So the adja-
cent objects would be stored as adjacent key-value pairs
owing to the property of space filling curve and lexicographic
order.

For example, Nishimura et al. [6] presented a multi-
dimensions spatial data partitioning method and applied
it into LBS (location-based services). This method adopts
space filling curve to partition the space, and encodes the
primary key of spatial object according to the result of space
partitioning. Then, it stores the spatial data into HBase, and
designs a multi-dimensions index construct combining index
mechanism of HBase. Then the times of invalid partition-
ing scan can be decreased, and the query efficiency would
be enhanced with this index structure. Also some scholars
adopted geohash [27] in the construction of primary key
[3,25,26,28,29]. For example, Le andHong [3] adopted geo-
hash [27] to construct primary key, and the spatial objects
which contain the same prefix encoding value will store
together in physical storage. To make up the limitations of
geohash, it advocates BGRP tree which is based on R tree.
Besides, some other scholars adopted other methods to con-
sider adjacent proximately. Zhang et al. [5] adopted the grid
index to partition the space, and established a spatial index
which can decrease the operations of invalid partitioning
scan and support high efficient query for spatial data; Vo et
al. [16] presented a spatial partitioning framework, which is

Fig. 1 Situation of invalid partitioning scan

based on Mapreduce processing and has been demonstrated
in Hadoop-GIS framework.

Nevertheless, most of them just consider the question of
space partition instead of the partitioning storage strategy
in distributed column-oriented database, which can result in
invalid partitioning query in the process of scan operation in
distributed column-oriented database as before. For example,
a case of adopting geohash [27] to partition space and encode
the spatial object, which is shown as Fig. 1.

In Fig. 1, each grid represents one fragment in distributed
column-oriented database. And the red range represents
actual query area. However, it will scan not only the range of
red color but also unnecessary range of yellow color, which
generates many invalid scan operations and decreases the
efficiency of spatial query.

In our viewpoint, it is difficult to decrease the number of
invalid partitioning scan operation by means of data parti-
tioning strategy which separates the redundancy of invalid
partitioning scan operation into each nodes. Besides, space
partitioning strategy tries to partition the spatial data in an
appropriate way, and designs the encoding value on basis
of space partitioning results. Then it can avoid unneces-
sary partitioning scan operation to some degree. However,
many space partitioning strategies presented by scholars does
not consider the partitioning strategy of distribution column-
oriented databases and lose the spatial information of each
fragment, so the data in each fragment is still disorder and
unsystematic. The invalid partitioning scan operations still
exist in distributed column-oriented database, which influ-
ence the storing and query efficiency of spatial data. To avoid
these, we store the spatial data of the same scope of area into
same fragment, and record the spatial scope of each frag-
ment by designing ‘SPPS’ strategy. It can locate the storage
location which contains spatial data according to the spatial
information of fragments. Then it can decrease invalid parti-
tioning scan operations to a certain extent, and improve the
efficiency of spatial data querying.
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Fig. 2 Optimization thinking and method

3 Partitioning storage optimization strategy

As mentioned above, the most common method to deal
with spatial data in column-oriented database is adopting
space filling curve and geohash to consider adjacent of spa-
tial data adequately. However this method cannot consider
the adjacent character of spatial data among fragments, and
fragments do not contain spatial message, so spatial query
operation just can be carried out on basis of start and end
primary key, which can generate many invalid partitioning
scan operations and influence spatial query efficiency. How-
ever our optimization strategy which called SPPS partitions
space with consideration of spatial distribution situation of
spatial object, and confirms the spatial range of each frag-
ment in the process of partitioning. Thus the fragment can
contain enough spatial information to locate the specific
fragment in the process of spatial query. Besides, we adopt
Geohash [27] to consider spatial adjacent in each fragment.
And spatial range scan querying can be conducted in each
fragment which contains spatial objects separately. Then the
invalid partitioning scan can be decreased, and the spatial
query can be accelerated. Our optimization thinking contains
three parts: First, how to consider spatial adjacent of spa-
tial objects; second, how to design the function relationship
between subspace and fragment; lastly, how to store spatial
data according to this function relationship. To solve these
questions, our ‘SPPS’ strategy contains four steps which can
be showed as Fig. 2.

First, we will carry on the spatial sampling partitioning
operation and get distribution principle of spatial objects;
Second, we will conduct the design of partitioning key of
fragment, and then define the mapping function relationship
between subspaces and partitioning key which is called spa-
tial longest common prefix (SLCP); Lastly, we will carry out
the designing of primary key to store spatial object into the
correspond fragment. Now we will present the optimization
strategy in detail.

3.1 Spatial sampling partitioning

The partitioning strategy in distributed column-oriented
databasewould generate unreasonable fragment distribution.
Besides, the data in each fragmentwill be stored into database
according to a randommethod which can lead to the disorder
storage in every fragment. Therefore, we must consider how
to disperse spatial data according to spatial distribution prin-
ciple and make each fragment has an equal sum of spatial
objects approximately in the process of spatial data storage.
To achieve this, this paper adopts spatial sampling method
to obtain the general distribution of spatial data. In the pro-
cess of spatial sampling, we adopt random sampling method
to analyze spatial object, and confirm the partitioning num-
ber combining the size of spatial data, lastly, spatial data is
divided by STR [30] method on basis of the sampling distri-
bution regularities. STR divides space range into a number
of partitions in vertical direction, and then divides each verti-
cal strip into several partitions in horizontal direction. It will
insure all the partitions of spatial data is roughly equal. And
the space range of each subspace can be obtained at the end
of the space partitioning. Then, we will number each sub-
space following the column and row successively, and get a
mapping relationship between number and subspace range,
which can be showed as Formula (1)

< Number, Range < Point1, Point2 >> Formula1

In this formulation, Number is the serial number of subspace;
Range < Point1, Point2 > expresses the space range
of subspace; Point1andPoint2represent the lower left and
upper right point of rectangular range. Thus, there will have
a unique number which can map into each subspace, and we
can ensure that the spatial data in the same subspace is adja-
cent. Most importantly, we can confirm the serial number of
the subspace by the space range of each subspace. It will be
used in the query process.

3.2 Partitioning key of fragment

Data is dispersed into cluster in fragmentation in the
distributed column-oriented database. Each data fragment
would have its own storage range. The storage range of each
fragment is some segment in hash ring, when distributed
column-oriented database adopts consistent hash partition-
ing method to disperse data. Otherwise, the storage range of
each data fragment is the start and end primary key, when
distributed column-oriented database adopts range partition-
ing method to disperse data. Whether adopt consistent hash
or range partitioning, the data fragment of partitioning key
should meet the following rules: first, ensuring there are no
overlaps between data fragments of partitioning key domain.
Second, the collection of all fragments is equal to the whole
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Fig. 3 The designing of
partitioning key

of key value scope in size. Lastly, the fragmentation of the
partitioning key value is orderly [8]. To ensure neighboring
storage of spatial data, we should store spatial data into the
distributed column-oriented database according to the result
of space sampling partitioning. That is to say, we should
store the spatial data in the same subspace into the same
fragment.

To ensure this point, this paper designs the partitioning
key of fragment on basis of prefix tree [31]. Prefix tree is a
highly efficient searching tree, which is widely used in search
engines. Each parent node encoding is the prefix code value
of the corresponding child node in the prefix tree, and com-
position of the parent node codes usually contain different
letters, each prefix encoding value of parent node is not the
same as his brother’s. It can be showed as Fig. 3a.

It is difficult to build the mapping relationship between
partitioning key of data fragment and subspace when adopt-
ing prefix tree directory, because the prefix code values for
each node of the tree lack certain regularity. So this paper
will adopt variant prefix tree to design the partitioning key of
fragment which is showed in Fig. 3b. The characteristics of
the variant prefix tree can be concluded as two points: First,
the encoding value of each father nodewill have the same let-
ter with other father nodes, except for the last letter. Second,
each layer will have ten child nodes in variant prefix tree,
and only the tenth node in each layer has child tree nodes.
Then the partitioning key will hold a certain regularity, and
the mapping function relationship can be easily built through
this variant prefix tree.

3.3 SLCP mapping relationship

We can confirm the serial number of subspace which indi-
cates the location of spatial object through the mapping
relationship which is shown as < Number, Range <

Point1, Point2 >>. In addition, we can get the data

range of each fragment after designing partitioning key of
fragment. However, it lacks related function mapping rela-
tionship between them,whichmakes it difficult to confirm the
storage location of fragment where the spatial object should
store. Based on it, this paper designs a mapping relation-
ship which called ‘SLCP’ code to confirm the relationship
between serial number of subspace and data range of each
fragment. It helps to form one-one mapping function rela-
tionship between subspace and data fragment. The specific
approach can be concluded as follow: fetching the node
encoding value according to the method of Layer traversal,
and then building the ‘SLCP’ mapping relationship with the
serial number of subspace. The ‘SLCP’mapping relationship
can be shown as Formula (2)

F1(M) = K . . . K
︸ ︷︷ ︸

(Number/10)

F2(Number%10)Formula2

In this formula, the mapping relationship can be divided two
parts. First part, we will build some same letters, and the
number of same letters is Number/10. Second part, ‘SLCP’
mapping relationship will contain a function which is called
F2(Number%10), and we will splice the mapping value
when getting the value of two parts. Besides, Number is the
serial number of subspace, and F2(Number%10) is a very
simple mapping function, which can be shown as formula
(3):

F2(Number%10) =
{

< 0, B >,< 1,C >,< 2, D >,< 3, E >,< 4, F >

,< 5,G >,< 6, H >,< 7, I >,< 8, J >,< 9, K >

}

Formula3

In this formula, the return value will correspond to the node
encoding value in the second layer of variant prefix tree.
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Fig. 4 SLCP mapping
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Lastly, the results of SLCP mapping relationship can be
shown as Fig. 4.

Now, it forms a one-one mapping relationship between
each subspace and fragment. Thus partitioning key of each
data fragment can represent a certain space range, that is to
say, each data fragment holds a certain space range, which
can be used in the future spatial query. Besides, in the pro-
cess of storing spatial data, we can confirm the serial number
of subspace which is the spatial object belong to, then get
the data range of data fragments according to the serial num-
ber and SLCP mapping relationship, and store spatial object
into corresponding fragment according to spatial sampling
partitioning.

3.4 Designing of primary key

Primary key is the uniqueness identifying of spatial objects
in distributed column-oriented database. It not only has the
capacity of rapid data retrieving, but also decides the stor-
age location of spatial data in distributed column-oriented
databases [32,33]. So how to design a reasonable primary
key for each spatial object is very important. In this paper,
we should ensure that spatial object should be stored into
distributed column-oriented database according to ‘SLCP’
mapping relationship. In the process of spatial data storage,
it will sort the data according to the primary key of lexico-
graphic order, and then partition the primary key according
to default partitioning method. Lastly, the spatial data will
form some data fragments and disperse them into distributed
column-oriented database. The data partitioning process can
be shown as Fig. 5.

Based on it, ‘SPPS’ optimization strategy confirms the pri-
mary key range of each data fragment based on the mapping
encoding value of ‘SLCP’, and to support spatial query, we
adopt geohash encoding method to build primary key of each
spatial object. Besides, to differentiate every spatial object,
we also use the unique encoding value of spatial object, so
the designing of primary key can be divided into three parts
in this paper, which is shown as Fig. 6.

GeoHash encodingPrefix code Geography ID

Fig. 6 Designing of primary key

In Fig. 6, the first part is prefix encoding value which is
constituted by the partitioning key of data fragmentings. It
would make spatial object stored into corresponding data
fragmentings. The process can be expressed as below, firstly
we should estimate the serial number of subspace where the
spatial object locates, and then confirm the range of partition-
ing key corresponding to data fragment according to ‘SLCP’
mapping relationship, lastly, employ the start primary key
of partitioning key as prefix key of spatial object which can
make spatial object stored into data fragmentings on basis of
spatial partitioning rule. The second part is spatial encoding
which employs geohash encoding to decrease the dimensions
of geographical spatial location information from two to one,
thus to support spatial range query operation. The third part
is the unique geographical ID which can identify the role of
geographical object. On the whole, it can consider adjacent
property of spatial data in the process of partitioning, make
each fragment of spatial data in a certain space range, and
keep the spatial range information of each data fragment.
Then we can locate related data fragments according to the
spatial range information of data fragment, so the scan query
can be conducted in specific fragment which contains spatial
object we searched,and invalid data fragments scan operation
can be decreased, and the query efficiency of spatial data can
be increased.

4 Experiments

To investigate the effect of SPPS’s optimal decisions, we
design the experiments based on Hbase, and compare the
storing efficiency between our ‘SPPS’ strategy and default
strategy firstly. In first part, we take HBase default parti-
tioning strategy to store spatial data, and the primary key is
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composed by Geohash and geography ID. In second part,
store the spatial data using our ‘SPPS’ optimization strategy.
The process can be shown as the follows:

• Sampling and analyzing the spatial data, and then obtain-
ing the distribution rule of spatial data. Lastly, finishing
the process of splitting spatial area according to spatial
distribution rule.

• Computing the subspace where the spatial object locates
according to the coordinates of each spatial object, and
getting serial number of subspace.

• Confirming prefix-code of data fragment where spatial
objects store, and computing the geohash value of this
spatial object. Then, get the primary key of spatial object
contains prefix encoding, object’s geohash and object’s
ID.

After finishing the storage efficiency comparison of spatial
data, we will compare query efficiency between ‘SPPS’ stor-
age strategy and default storage strategy by implementing
some spatial query experiments in HBase.

4.1 Experimental environment

In our laboratory, we have deployed an HBase cluster, which
is consisted of twomaster nodes and six slave nodes and each
node equipped with 12GB of memory and 4 core CPU. Bes-
dises, there are 100 million spatial points in our experiment
data whose size is about 40GB.

4.2 Results and discussion

• Case one: comparison of storing efficiency

In the processing of storing spatial data, we take parallel
framework–MapReduce to import the spatial data, and com-
pare the cost time of these two storage strategies (as shown
in Fig. 7).

Rectangle within blue color shows the time consumption
of SPPS store pattern, while red color shows that of the
default store pattern. As we can see, time consumption of
2651s showed in blue is less than that of 2728s showed in
red, so SPPS is more efficient in storing spatial data.

• Case two: comparisons of database querying effi-
ciency

To demonstrate the efficiency of ‘SPPS’ optimization strat-
egy, we have compared query efficiency of this two storing
strategies include default storing strategy and ‘SPPS’ storing
strategy. We conduct common range query using scan query
method and record the RPC numbers of querying as an index,
different size of data returned byRPC, and time consumption
of querying. Additionally, spatial query operation would be

Fig. 7 Comparison of storage efficiency

divided into two parts caused by the different situations of
query ranges which can be shown as Fig. 8.

In Fig. 8, one rectangle represents one fragmentwhich cor-
responded to one subspace, and red rectangle represent query
range. (a) Shows that query range covers only one fragment
and (b) indicates that query range covers many fragments.
Our experiment will be conducted in these two situations.

When the spatial query situation is (a), the query operation
will be implemented in single fragment before and after opti-
mization. The query operation can be directed on affirmatory
fragment with start and end primary key in scan operation.
We record the RPC number at different data size, which is
shown in Fig. 9, the size of data that RPC returns, which is
shown as Fig. 10, and cost time of querying, which is shown
as Fig. 11.

When spatial query situation is (b), it cannot be imple-
mented in single fragment, as we can get the start and end
primary key in the process of querying. And spatial data is
stored into distributed column-oriented database based on
lexicographic order of primary key. Then start and end pri-
mary key may be involved in irrelevant fragments. However,
‘SPPS’ can calculate the set of fragments which obtain query
result according to the spatial position relationship implied
by the primary key. To verify our theory, we conduct spa-
tial query before and after optimization. We also record the
query records of RPC number which are shown in Fig. 12,
size of data that RPC returns which is shown as Fig. 13, and
cost time of querying which is shown as Fig. 14.

After finishing the query experiments and analyzing the
experiment results, we can conclude two points as follow:

• When the scope of query covers a few subspaces, the
query processing will execute in the same fragment, and
do not cover other data fragments. So the efficiency of
query does not improve obviously, but the efficient of
‘SPPS’ query keep the same level with default strategy.
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Fig. 8 Two different situations of spatial query

Fig. 9 Information of RPC
numbers when scopes of query
cover a few subspaces
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Fig. 11 Time cost when scopes
of query cover a few subspaces

Fig. 12 Information of RPC
numbers when scopes of query
cover many subspaces

Fig. 13 Data size of RPC
return when scopes of query
cover many subspaces
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Fig. 14 Time cost when scopes
of query cover many subspaces

• When scope of query covers many subspaces, the query
processing will execute in many fragments. Then ‘SPPS’
can locate query fragment immediately, and avoid invalid
fragment scan operations, so the RPC invoking times,
RPC return data and query times can be decreased. It
represents that the efficiency of spatial query is improved
significantly.

Overall, when querying scopes cover many subspaces, the
‘SPPS’ optimization strategy can decrease the workload of
query, and improve the efficiency of query obviously.

5 Conclusion

In this paper, we proposed ‘SPPS’ optimization strategy
which considers spatial adjacent property. Different from
other spatial data storage method, the ‘SPPS’ strategy can
hold geospatial information of data fragments, so it can
directly locate the fragments which contain spatial object.
Then invalid partitioning scan operation can be decreased
and the query efficiency of spatial data will be improved.
nevertheless, our ’SPPS’ optimization strategy can be used
into other spatial object with using MBR(Minimum Bound-
ing Rectangle), and yet we did not test the storage and query
efficiency in this paper. So I will continue to study this ques-
tion in future work. Beside, we plan to continue to study the
question of the storage and management of spatial-temporal
data in distributed column-oriented database and try to opti-
mize the storage of spatial-temporal data.
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