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Abstract To close the increasing performance gap between
disk storage and processors, flash based solid-state devices
(FSSDs) have been adopted within the memory hierarchy to
improve the performance of hard disk drive (HDD) based
storage system. However, FSSDs still suffer from erase-
before-write restriction, coarse access granularity and limited
write endurance. Recently, the cutting-edge non-volatile
memory technologies are merging, e.g., phase-change mem-
ory and resistive memory, which offer us new storage
alternatives with faster access, byte-addressability and better
endurance. In order to address the imperative data inten-
sive computing issues, we propose to leverage PCM as disk
write cache for constructing a hybrid PCM+HDD storage
architecture in this paper. First, we develop a novel hash-
based write caching scheme called HALO to improve both
spatial and temporal locality on hard disks, thus address-
ing the limitations of traditional LRU caching algorithms
and rendering better I/O performance. To deal with the lim-
ited durability of PCM devices and reclaim the degraded
spatial locality in previous wear-leveling techniques, we
further propose novel PCM wear leveling algorithms that
provide effectively uniform writes while maximizing access
parallelism. We have evaluated this PCM-based hybrid stor-
age architecture using applications with a diverse set of
I/O access patterns. Our experimental results demonstrate
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that the HALO caching scheme leads to an average reduc-
tion of 36.8% in execution time compared to the LRU
caching scheme, and that the space filling curve based
wear leveling extends the lifetime of PCM by a factor of
21.6.
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1 Introduction

In current Big Data era, advances in computing technolo-
gies have triggered a great explosion of digital information.
Such gigantic amounts of data have further widen the speed
gap between calculation and storage and brought about both
performance and power consumption challenges.

One intuitive solution to such challenges is to introduce
hybrid storage architectures which can combine the advan-
tages of multiple types of storage devices. For example,
flash-based hybrid storage drives (HSDs) have been proposed
to integrate standard hard disk drives (HDDs) andflash-based
solid-state drives (FSSDs) into a single storage enclosure [1].
In doing so, Flash-based HSDs deliver fast random access
by combining low-power, fast-access FSSDs and low-cost,
high-capacity HDDs together to end users. Although flash-
based HSDs are gaining popularity in personal computers,
they suffer from several striking shortcomings of FSSDs,
namely high write latency and low endurance, which seri-
ously hinder the successful integration of FSSDs into HSDs,
especially in data intensive server scenarios. A series of tech-
niques have been proposed to address the issues [34,36].
However, most of them only target specific usage scenar-
ios and cannot act as a general solution to eliminate FSSDs’
drawbacks, which continue to threaten the future success of
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FSSD-based HSDs. There exists a continuing need of better
technologies in the storage market.

Fortunately, newcutting-edge non-volatile random-access
memory (NVRAM) devices are emerging, such as phase-
change memory (PCM), spin-torque transfer memory
(STTRAM), and resistive RAM (RRAM). These memory
devices provision a rich set of advanced features, for exam-
ple, they support similar non-volatility as conventionalHDDs
and FSSDs while providing speeds approaching those of
DRAMs. Among these technologies, PCM is particularly
promising, with several companies and universities already
providing prototype chips and devices [2,22]. Compared
to FSSD, PCM is equipped with a number of perfor-
mance and energy advantages [6]. First, PCM has much
lower read response time than FSSD. It offers a read
response time of around 50ns, nearly 500 times faster than
that of FSSD. Second, PCM can overwrite data directly
on the memory cell, in contrast to FSSD’s erase-before-
write. The write response time of PCM is less than 1µs,
nearly three orders of magnitude faster than that of FSSD.
Third, the program energy for PCM is 6 Joules/GB, 3
times smaller than that of FSSD [6]. Thus, PCM is a
viable alternative to FSSDs for building hybrid storage
systems.

In this paper, we design a novel hybrid storage system
that leverages PCM as a write cache to merge random write
requests and improve access locality for HDDs. It includes
new caching and destaging algorithms for better I/O perfor-
mance aswell aswear leveling algorithms for enhanced PCM
life time.

A rich set of techniques have used NVRAM as the
data cache to improve disk I/O [3,9,11,17,38]. Most of
them use LRU-like methods (e.g., Least Recently Written,
LRW [9,11]) to manage small size non-volatile cache to
improve performance and reliability of HDD-based stor-
age and file system. However, the fine-grained LRW for
large PCM cache can cause big mapping overheads while
CSCAN introduced in [11] has a O(log(n)) insertion speed
makes it not suitable for relatively large PCM cache. Specif-
ically, for high density PCM cache with capacity of GBs,
using LRU to manage them will cause big DRAM over-
heads in managing the LRU stack and mapping. In addition,
LRU/LRW cannot ensure that destaging I/O traffic be pre-
sented as sequential writes to hard disks. Some methods
(e.g., CSCAN [11]) as a supplement for LRW can ease
this issue to some extent but it requires O(log(n)) time
for insertion, making it not suitable for large size cache
management.

Therefore, it is crucial to rethink the current cache man-
agement strategies for PCM. In this paper,we propose a novel
cache management algorithm, named HALO which uses a
chained hash table to manage PCM, merge random write
requests, and improve data access locality to hard disks. It

manages address mapping through cuckoo hash tables and
implements a new two-way destaging policy. These tech-
niques together save DRAM overheads significantly while
maintaining constant speeds for both insertion and query.
Also, HALO is very beneficial in terms of managing caching
items, merging random write requests, and improving data
access locality to hard disks. In addition, by removing the
dirty-page write-back deadline limitations that commonly
exist in DRAM-based caching systems, HALO enables bet-
ter write caching and destaging, and thus achieves better
I/O performance. And by storing cache mapping informa-
tion on non-volatile PCM, the storage system is able to
recover quickly and maintain integrity in case of system
crashes.

To use PCM as a write cache, we must address PCM’s
limited durability. Several existing wear-leveling techniques
have shown good endurance improvement for PCM-based
memory systems [28,29,44]. However, these techniques are
not specifically designed for PCM used in storage and file
systems, and thus can negatively impact spatial locality of
file system accesses, which in turn degrade read-ahead and
sequential access performance of file systems. We propose
two new wear leveling techniques: rank-bank round robin
wear-leveling and space filling curve wear-leveling. In the
space filling curve wear-leveling, we not only provide a good
write balance among different regions of the device, but also
keep data locality and enable good adaptation to the file sys-
tem’s I/O access characteristics.

For assessing the effectiveness of our hybrid storage
system, we conduct extensive experiments for a diverse
set of real-world I/O workloads. By thoroughly studying
the system’s I/O performance and endurance characteristics
compared to traditional techniques, HALO is demonstrated
to be a fast and durable PCM write cache in HDD-based
storage system. To be specific, HALO leads to an average
reduction of 36.8% compared to LRU caching scheme in
terms of execution time; in addition, the SFC wear level-
ing extends the lifetime of PCM device by a factor 21.6.
This paper is a substantial extension upon our preliminary
study presented at [20]. It further includes the rank-bank
round-robin wear leveling algorithm for comparisons and the
two-way destaging for better front-end service performance.
In addition, we have provided more comprehensive evalu-
ation results such as the HDD throughput, response time,
detailed write access counts, bank deviation and memory
overheads of mappings.

The rest of the paper is organized as follows. We first
describe the design of a hybrid PCM-HDD architecture in
Sect. 2, followed by Sect. 3 where the details of our wear-
leveling algorithms are provided. Section 4 then provides
experimental methodology and results. Section 5 provides
a brief overview of related work. Finally, we conclude the
paper in Sect. 6.
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2 PCM based hybrid storage

Hybrid storage devices have been constructed in many dif-
ferent ways. Most HSDs are built using flash-based solid
state devices as either a non-volatile cache or a prefetch
buffer inside the hard drives. The combination of FSSDs and
HDDs offers an economic advantage with low-cost compo-
nents and the mass production. This composition of hybrid
storage devices, as shown in Fig. 1a, is currently the most
popular.

Exploring emerging NVRAM devices such as PCM as
components in hybrid storage devices has attracted signifi-
cant research interests. Research in this direction proceeds
along two distinct paths. Along the first path, PCM is used
as a direct replacement for FSSDs, as shown in Fig. 1b.
Along the second path, PCM is used in combination with
FSSDs to compensate FSSDs’ lack of in-place updating,
and possibly push HDDs out of hybrid storage devices, as
shown in Fig. 1c. For example, Sun et al. [36] use this
type of hybrid storage devices to demonstrate its capabil-
ity of high performance and increased endurance with low
energy consumption. However, there are twomajor problems
associated with this approach. First, since FSSDs provide
primary data storage space, the erase-before-write problem
still exists, although it happens at lower frequency. This
causes significant performance loss for data intensive appli-
cations. Second, without HDDs in the memory hierarchy,
large volumes of storage space cannot be leveraged at rea-
sonable performance costs. In terms of cost per gigabyte,
FSSDs are still about 10 to 20 times more expensive than
HDDs.

For the above reasons, we investigate the benefits of lever-
aging PCM as a write cache for hybrid storage devices that
are designed along the first path. As shown in Fig. 1b,
we use PCMs to completely replace FSSDs while retain-
ing HDDs for their advantages in storage capacity. With the
fast development of PCM technologies, we expect that the
PCM-based hybrid storage drive will become more popu-
lar. In this section, we describe our hybrid storage system
- HALO that uses PCM as a write cache for HDDs to
improve performance and reliability of HDD-based stor-
age and file systems. Specifically, we first introduce the
HALO framework and its basic supportive data struc-
tures, and then elaborate on the caching and destaging
algorithms.

Fig. 1 Different architectures of hybrid storage devices

Fig. 2 Design of the HALO framework

Fig. 3 Data structures of HALO caching

2.1 HALO framework and data structures

Using PCM as caches for HDDs demands efficient caching
algorithms. We design a new caching algorithm, referred to
as HALO, to manage data blocks that are cached in PCM
for hard disk drives. HALO is a non-volatile caching algo-
rithm which uses a HAsh table to manage PCM and merge
random write requests, thereby improving access LOcality
for HDDs. Figure 2 shows the HALO framework. The basic
data structure of HALO is a chained hash table used to main-
tain the mapping of HDD’s LBNs (Logical Block Number)
to PCM’s PBNs (PCM block addresses). Sequential regions
on HDDs, in units of 1MB, are managed by one hash bucket.
The information associated with sequential regions is used
to make cache replacement decisions.

2.1.1 Mapping management

As shown in Fig. 3, the chained hashtable includes an
in-DRAM array (i.e., the bucketinfo table) and on-PCM
mapping structures. Another CuckooHashtable enables
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space-efficient fast query. The bucketinfo table stores infor-
mation for HDD data regions. Each bucket item in the table
represents a 1 MB region on the disk partition or logical vol-
ume. Hence, the number of buckets in the bucketinfo table
is determined by the size of the disk volume. Each bucket-
info item, if activated, contains three components: listhead,
bcounts, and recency. listhead maintains the head block’s
PBN of a list of cache items that map to the same sequential
1 MB disk area, bcounts represents the number of caching
blocks, and recency records the latest access time-stamps
for all cache items in this bucket. We use a global request
counter globalReqClock to represent the time-stamp; when-
ever a request arrives, the counter increases by one. The
total_counts variable records how many HDD blocks have
been cached inside PCM, while activated_bucks indicates
the number of bucketinfo items activated in the bucketinfo
table. buck_scan is used to search the bucketinfo table for a
candidate destaging bucket.

Cache items that are associated with a bucket item do not
need to be linked in ascending order of LBNs, because they
are only accessed in groups during destaging. Each newly
inserted item will be linked to the head of the list. This guar-
antees insertions to be finished in constant time. Each cache
item maintains a 4 KB mapping from HDD block address
(LBN) to PCM block number (PBN). It contains a LBN (the
starting LBN of 8 sequential HDD blocks), the PBN of the
next PCM block in the list and an 8-bit bitmap which repre-
sents the fragmentation inside a 4KB PCM block. If the 8-bit
bitmap is nonzero, the nonzero bits represent cached 512B
HDD blocks. Each cache item is stored on each PCM block’s
meta data section [2].

2.1.2 Cuckoo hash table

To achieve fast retrieval of HDD blocks, a DRAM-based
cuckoo hash table is maintained using the LBN as the key
and the PBN as the value. On a cache hit, the PBN of the
cache item is returned, which enables fast access of data
information in the PCM. Traditionally, hash tables resolve
collisions through linear probing or chained hash and they
can answer lookup queries within O(1) time when their load
factors are very low, i.e., smaller than log(n)/n,where n is the
table size. With an increasing load factor, its query time can
degrade toO(log(n)) or evenO(n). Cuckoo hashing solves the
issue by usingmultiple hash functions [10,26]. It can achieve
fast lookups within O(1) time (albeit a bigger constant than
linear hashing), as well as good space efficiency i.e., high
load factor. Next, we introduce how we achieve such space
efficiency.

We set 100 as the maximum displacement threshold in
the Cuckoo hashtable. When the Cuckoo hashtable cannot
find an available slot for a new inserting record within 100
item displacements, it indicates that the hashtable is almost

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2  3  4  5  6  7  8

M
ax

 L
o

ad
 F

ac
to

r

Num of Hash Functions

Fig. 4 Max load factors for different numbers of hash functions in
Cuckoo hashing

full and requires a larger size table and rehashing. And such
critical load factor before rehashing is counted as maximum
load factor. Figure 4 shows how the number of hash func-
tions influences the average maximum load factor we can
achieve for running seven traces. When the number of func-
tions is two, only 50% load factor can be achieved; as the
number of functions increases, the load factor of Cuckoo
hash tables initially grows rapidly and then the slope of the
curve becomes smaller thus the benefit achieved becomes
marginal. Thereforewe use four functions in our design since
a larger number of functions can in turn bring higher query
and computation overheads. In addition, we set a larger ini-
tial size of hashtable to keep the load factor lower than 80%
when PCM cache is fully loaded. In this way we are able
to maintain the average displacements per insert below 2 for
better performance.

Here, we give a sample calculation of DRAM overhead
by the HALO data structures. In total, for a 2 GB PCM cache
with 4 KB cache block size, 0.5M items will be placed in the
hashtable. As each item takes 8 Bytes and the load factor of
the cuckoo hashtable is 0.8, the total memory overhead of the
Cuckoo hashtable is about 5 MB. With the bucketinfo table
normally consuming about 6–12 MB DRAM, we need less
than 20MBDRAM to implement HALO cachemanagement
for 2 GB PCM and 1 TB hard disk.

2.1.3 Recovery from system crashes

Mapping information of a PCMblock that contains the LBN,
the next PBN and the bitmap are stored on non-volatile PCM.
Therefore, in case the system crashes, it can first reboot and
then either destage the dirty items from PCM to HDD or
rebuild the in-DRAM hashtables by scanning information
on fixed positions of the PCM meta data sections (to get the
cache items’ information including LBN, bitmap and next
PBN). As the PCM’s read performance is similar to that of
DRAM, the recovery procedure should only take seconds to
rebuild the in-memory mapping data structures. In doing so,
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we can avoid loss of cached data and guarantee the system
integrity.

2.2 HALO caching scheme

Our caching algorithm is described in Algorithm 1. When
a request arrives, the bucket index is computed using the
request’s LBN. The hash table is then searched for an entry
corresponding to the LBN. In the event of a cache hit, the
PBNs are returned from the hash table and the corresponding
blocks are either written in-place to, or read from, the PCM.
The corresponding bucket’s recency in the bucketinfo table
is also updated to the current time-stamp. In the event of
a cache miss on a read request, data is read directly from
the HDD without updating the cache. In the event of a cache
miss on a write request, a cache item is allocated in the PCM,
and data is written to that cache block. Then, if the bucket
item of the bucketinfo table for the LBN is empty, it will
be activated. After that, the bucket item’s list of cache items
is updated, the address mapping information is added to the
hash table, the recency of this bucket is set to the current
time-stamp, and the bucket’s bcounts is incremented. The
updated access statistic information are used by the two-way
destaging algorithm to conduct destaging procedures.

Algorithm 1 Cache management algorithm
1: Compute the bucket index i from the LBN
2: if this is a write request then
3: Search the cuckoo hashtable using the LBN
4: if this is a cache hit then
5: Write to the PCM block with returned PBN
6: Bucket[i].recency ← global ReqClock
7: else
8: //Cache miss
9: Allocate and write a PCM block
10: if Bucket[i] is empty then
11: Activate Bucket[i]
12: activate_bucks ← activate_bucks + 1.
13: end if
14: Link item to Bucket[i].listhead, add to cuckoo hashtable
15: Bucket[i].recency ← global ReqClock
16: Bucket[i].bcounts ← Bucket[i].bcounts + 1
17: total_bcounts ← total_bcounts + 1
18: end if
19: else
20: //This is a read request
21: Search the cuckoo hashtable.
22: if cache hit then
23: Read the PCM block with the returned PBN.
24: Bucket[i].recency ← global ReqClock.
25: else
26: //Cache miss
27: Read the block from HDD.
28: end if
29: end if

2.3 Two-way destaging

Since the capacity of PCM cache is limited, we have to
destage some dirty data from PCM to HDD in order to spare
cache space for accommodating new requests. Therefore, we
propose a Two-Way Destaging approach to achieve this tar-
get. The Two-Way Destaging approach contains two types of
destaging: on-demand destaging and background destaging,
which are activated to evict some data buckets out of PCM.
Next, we will introduce when to trigger each destaging and
how to select the victim buckets.

The on-demand destaging is activatedwhen the utilization
of PCMcache reaches a high percentage, e.g, 95%of the total
size. Such on-demand method can sometimes incur addi-
tional wait delay to front-end I/O requests, especially when
the I/O load intensity is high. To complement this approach
and relax such contention, we introduce another destaging
method which is triggered when both the PCM utilization
is relatively high, e.g., 80%, and the front-end I/O inten-
sity is low (specifically, disk performance utilization smaller
than 10%). Through combination of these ways of destaging,
PCMspace can be appropriately reclaimedwithminimal per-
formance impacts to front-end workloads.

For either destaging method, a bucket is eligible to
be destaged to HDDs if any of the following two con-
ditions holds: First, the bucket’s bcounts needs to be
greater than the average value of bcounts plus a con-
stant threshold T H BCOUNT S and the bucket’s recency
needs to be older than global ReqClock by a constant
T H RECENCY . For every unsuccessful round of scan, these
two thresholds will dynamically decrease to make sure that
victim buckets can be found within a reasonable num-
ber of steps. Second, the bucket’s recency needs to be
older than global ReqClock by a constant ODRECENCY

(ODRECENCY � T H RECENCY ). As soon as a bucket is
identified as eligible for destaging, all cache blocks associ-
ated with the bucket are destaged to the HDD in a batching
manner, the bucket is deactivated and the corresponding
items in the cuckoo hash table are deleted. As these cache
blocks are mapped to 1MB sequential region of HDD, this
batch of write-backs are supposed to only incur one single
seek operation to HDD, thus providing good write locality
and causing minimal affects to read requests.

We select these two criteria for determining destaging can-
didates for the following reasons. First, we want to choose a
bucket that has enough items to form a large enough sequen-
tial write to the HDD to increase spatial locality of write
operations, and at the same time it needs to be one that is not
recently used in order to preserve temporal locality. Second,
for those very old and small buckets, we evict them from the
PCM by setting the control variable ODRECENCY .
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Table 1 Parameters used for wear leveling

LSN Global stripe number (0–64 K)

Blk Offset of blocks in a bank

Seq Sequence number in a SFC cube

Cube Cube number (0–31)

Sstripe Number of blocks in a stripe (64)

Scube Number of stripes in a cube (2048)

Ncubes Number of cubes (32)

Nranks Number of ranks in a PCM (8)

Nbanks Number of banks in a rank (16)

OSinStripe Offset of blocks in a stripe

OSinCube Offset of stripes in a cube

OSinBank Offset of stripes in a bank

(R, B, S) Rank, bank, stripe

3 Wear leveling

Although the write-endurance of PCM is 3–4 orders of mag-
nitude better than that of FSSDs, it is still worse than that of
traditional HDDs. When used as storage, excessively unbal-
anced wearing of PCM cells must be prevented to extend its
lifetime. A popular PCMwear leveling technique [28] avoids
frequent write requests to the same regions by shifting cache
lines and spreads requests through randomization at the gran-
ularity of cache lines (256B). This technique is feasiblewhen
PCM is used as a part of main memory; however, when PCM
is used as a cache for back-end storage, this technique can
negatively impact spatial locality of file system requests that
are normally several KBytes or MBytes in size. In addition,
the use of Feistel network or invertible binary matrix for
address randomization requires extra hardware to achieve
fast transformation. To address these issues, we propose two
wear leveling algorithms for PCM in hybrid devices, namely
rank-bank round-robin and space filling curve (SFC)-based
wear leveling. Instead of using 256-Byte cache lines or single
bits as wear leveling units, our algorithms use stripes (32 KB
each). Such bigger units can significantly reduce the number
of data movements in wear leveling. In addition, with the
fast access time of PCM devices, the time to move a 32 KB
stripe is quite small (less than 0.1 ms). Hence, the data move-
ment overhead will not affect the response times of front-end
requests. The important parameters for our algorithms are
listed in Table 1.

3.1 Rank-bank round-robin wear leveling

The rank-bank round-robin wear leveling technique is in-
spired by the RAID architecture. It adopts a similar round-
robin procedure to distribute address space among PCM
memory ranks and banks for achieving uniformity in inter-

Fig. 5 Rank-bank round-robin wear leveling

region write traffic.We firstly apply block striping over PCM
devices in order to ensure an even distribution of writes at
the rank and bank granularity. This scheme iteratively dis-
tributes data first over ranks, and then over banks within the
same rank. Similarly, consecutive writes to the same rank are
distributed over the banks within that rank. This scheme is
shown in Fig. 5. Aside from assuring a good write distribu-
tionbetween ranks andbanks, the proposed schemealso takes
full advantage of parallel access to all ranks in the PCM. This
means that writing Nrank blocks of data at the same time is
possible,where Nrank represents the number of ranks in a par-
ticular device. This parallel access translates into improved
response times, which is important for data-intensive appli-
cations. After block striping, we apply a start-gap rotation
scheme inside each bank similar to the method in [28], but
different in terms of the size of data units (i.e., in stripes of 32
KB rather than cache lines of 256 B for better spatial locality
and less frequent rotations). We illustrate the calculation of
LSN, rank index, bank index and logical stripe offset for the
address mapping of Rank-Bank round-robin wear leveling in
Eq. (1).

LSN =
⌊

PBN

Sstripe

⌋

Rank = LSN mod Nranks

Bank = LSN mod Nbanks

OSinBank =
⌊

LSN

Nranks
× Nbanks

⌋ (1)

3.2 Space fill curve based wear leveling

The rank-bank round robin wear leveling algorithm can
achieve even distribution among all banks and ranks for most
cases as described later in Sect. 4. However, under certain
workloads, a few intensively accessed banks still reduce life-
time of the PCM device. To solve this problem, we propose
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using the Hilbert space filling curve (SFC) to further improve
wear leveling. SFCs are mathematical curves whose domain
spans across a multidimensional geometric space in a bal-
anced manner [19].

In theory, there are an infinite number of possibilities to
map one-dimensional points to multi-dimensional ones, but
what makes SFCs suitable in our case is the fact that the
mapping schemes of SFCs maintain the locality of data. In
particular, points whose 1D indices are close together are
mapped to indices of higher dimensional spaces that are still
close. In our case, the LBN sequence is represented by the 1D
order of points. The 3D space, into which the LBN sequence
ismapped, is constructedwith a tuple of three elements along
the stripe dimension (the offset of stripes in a bank), the
bank dimension (the offset of banks in a rank), and the rank
dimension (the offset of ranks in a device).

LSN =
⌊

PBN

Sstripe

⌋

OSinStripe = PBN mod Sstripe
Cubeno = Stripe mod Ncubes

OSinCube =
⌊
Stripe

Ncubes

⌋

Seq = StartGapMap(O SinCube)

(R, B, S) = SFCMapFunc(Seq)

(2)

We have 512 stripes in a bank, 16 banks in a rank and 8
ranks in a device. We evenly split the 3D space into 32 cubes
along the stripe dimension. In other words, the number of
stripes in each cube is 16 × 16 × 8 (i.e., #stripe × #bank
× #rank). After splitting, we apply the round-robin method
to distribute accesses across these cubes. And inside every
cube, a start-gap like stripe shifting is implemented, making
the 3D SFC cube move like a snake. The consequence is
that consecutive writes in the same cube can only happen
for addresses that are 32 stripes away, which dramatically
reduces the possibility of intensivewriting in the same region.
Within each cube, we apply SFC to further disperse accesses.
WeorchestrateSFC todisperse accesses across ranks asmuch
as possible. This helps exploit parallelism from the hardware.

In summary, using SFC in combination with the round-
robin method, we are able to map a 1D sequence of block
numbers into a 3D triple of stripe number, rank number
and bank number. The address mapping scheme is generally
depicted in Fig. 6. The left figure shows the logical organi-
zation of the device with its 32 cubes (or parallelepiped’s,
to be more precise, because the size is 8 × 16 × 16). The
right figure shows a 3-dimensional space filling curve that
is used in our work. The mapping scheme starts with PBN
provided by the system and ends up with a 3-tuple (R, B, S)
calculated based on Eq. (2). The SFC based wear leveling is
designed for a best trade-off among write uniformity, access
parallelism and spatial locality.

Fig. 6 Space filling curve based wear leveling

Fig. 7 PCM simulation and trace replay

4 Experimental evaluations

In this section, we first introduce the evaluationmethodology
and then demonstrate the experimental results in terms of I/O
performance and PCM endurance.

4.1 Evaluation methodology

4.1.1 Experimental setup

To realize our proposed PCM-based write cache for hybrid
storage devices we have designed a PCM simulation frame-
work that simulates different caching schemes (HALO and
LRU), wear leveling algorithms and PCM devices’ char-
acteristics including hardware structure, performance and
wearing status. As we can see from Fig. 7, during evalua-
tion, the block-level I/O traces are input to the simulators.
The I/O requests are then processed by caching and wear
leveling schemes, which generate two types of intermediate
I/O requests: PCM requests and HDD requests. The PCM
requests are processed by the PCM simulator to get response
and wear leveling results. The HDD requests come from
cache misses and destaging, which are stored as HDD trace
files.HDD trace files are then replayed by the blktrace tool [4]
on a 500 GB, 7200RPM Seagate disk in a CentOS 5 Linux
2.6.32 system with an Intel E4400 CPU and 2.0 GB mem-
ory. The DRAM-based system buffer cache is bypassed by
the HDD trace replaying process. Traces are replayed in a
close-loop way for measuring system service rate.
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Table 2 Workload statistics
Fin1 Fin2 Dap Exchange TPC-E Mail Randw

Write ratio 84.60% 21.50% 54.90% 74% 99.8% 90.10% 100%

Dataset (GB) 18.03 8.85 84.2 163.8 13.2 85 5.9

AvgReqSize (KB) 3.38 2.4 77 13.65 10.48 4 4

4.1.2 Metrics

Because PCM devices have much higher (more than 10
times) throughput rates and response performance than those
of HDDs [2], we reasonably assume that the total execution
time of a workload trace is dominated by the replay time of
the HDD trace. For example, if the HDD traffic rate is about
10% and the write throughput is about 50 MB/sec, then the
PCMcachemust have a throughput rate of about 500MB/sec,
which is consistent with the reported performance of current
PCM devices [2].

Based on the above discussion, the workload execu-
tion time can be calculated as follows: (Total_I O_Size ∗
Tra f f ic_Rate/Average_Throughput). The traffic rate is
calculated as the total number of accessed disk sectors (after
the PCM cache’s filtering) divided by the total number of
requested sectors in the original workloads. This metric is
similar to the cache miss rate. The lower the traffic rate we
can achieve, the better the cache scheme performs. In order to
achieve shorter execution times and better I/O performance,
we must minimize the traffic rate and at the same time max-
imize the average HDD throughput. According to our tests,
a standard hard disk can achieve as high as 100 MB/sec of
throughput for sequential workloads but can only achieve 0.5
MB/sec for workloads with small random requests. We will
evaluate whether the HALO caching scheme can reduce the
HDD traffic rate while maximizing average throughput of a
hard disk by reducing the inter-request seek distance among
all disk writes.

To evaluate wear leveling techniques, we define the PCM
life ratio metric, which is calculated by dividing the achieved
lifetime with the maximum lifetime. The life ratio is sig-
nificantly affected by the uniformity of write requests. For
example, if all write traffic goes to 1% of the PCM area, the
life ratio can be reduced to 1% of themaximum life time. The
life ratio is directly determined by the region with the max-
imum write count if there are no over-provisioning regions
provided by the device.

4.1.3 Workloads

In our tests,we use seven representative real-world I/O traces.
The workload statistics are described in Table 2. Specifi-
cally, the traces Fin1 and Fin2were collected with the SPC-1
benchmark suite at a large financial organization [37]; the

trace Dap was collected at a Display Advertisement Plat-
form’s payload server; the trace Exchange was collected at
a Microsoft Exchange 2007 mail server for 5000 corporate
users; the trace TPC-E was collected on a storage system
of 12 28-disk RAID-0 arrays under an OLTP benchmark,
TPC-E [35]; the trace Mail was collected on a mail server
by Florida International University [35]. The seventh trace
Randw was collected by us on the target disk while running
the IOmeter benchmark [25] with the 4 KB-100% random-
100% write workload for 120 min.

4.2 I/O performance

To evaluate the execution times of aforementioned seven
traces, we choose 512 MB as the cache size for Fin1 and
Fin2, and 2GB as the cache size for the other five traces.
Figure 8 shows the results for Non-cache, HALO-cache and
LRU-cache respectively. As we can see, the execution times
are reduced greatly for all traces. The execution improvement
of HALO caching over LRU caching is 47.11% for Fin1,
27.48% for Fin2, 18.97% for Dap, 28.27% for Exchange,
66.10% for TPC-E, 2.65% for Mail, and 67.11% for Randw.
The improvement level is mainly determined by the random-
ness and write ratio of the traces. Note that for theMail trace,
the improvement is only 2.65%. The reason is that most of
write requests in the Mail trace are sequential requests, for
which there is not much room for HALO caching to improve
on LRU caching. As introduced in Sect. 4.1, the improve-

Fig. 8 Execution time
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Fig. 9 Traffic rate for Fin1, Fin2 and Dap

Fig. 10 Traffic rate for exchange, TPC-E, mail and Randw

ment of execution time comes from two aspects: first, the
reduction of traffic rate because of better cache hit; second,
the increasing on HDD average throughput due to improved
write access sequentiality.

Figures 9 and 10 show the traffic rates for the seven
traces with the HALO cache policy and the LRU cache pol-
icy, respectively. In most cases (with the cache size ranging
from 256MB to 6 GB), HALO consistently achieves 5–10%
lower traffic rates than LRU. Take the trace Fin1 for example,
HALO achieves 5, 6, 9, 10.3, 3, 1% lower traffic rates than
LRU, where the cache size varies from 256 MB to 3 GB.
We observe similar results for Exchange and TPC-E. For
Dap, because the access repeatability and temporal locality
is very poor, the traffic rate for HALO and LRU remains rela-
tively high. However, HALO still gets a 6% lower traffic rate
than LRU. For Randw, as it has a completely random write
access pattern, all cache schemes can get almost no cache
hits. That explains why the traffic rate of HALO and LRU are
almost identical. Yet, HALO can still bring significant per-
formance improvement in terms of execution time because
of improved write access locality. For Fin2, as the cache size
becomes larger, the PCM write cache consistently reduces
more traffic until it reaches 768MB. This is due to Fin2’s rel-
atively high read ratio (84.60%) and thus the opportunities for

Fig. 11 HDD throughput rate and HALO’s improvement over LRU

Fig. 12 Average inter-request LBN distance

optimizing write operations are limited. For Mail, HALO’s
improvement is more insignificant for larger cache sizes.
However, for small cache sizes (512 MB–2 GB), the traf-
fic rate under LRU caching is about 2% less than that under
HALO caching, because most write requests are already in a
uniformly sequential pattern, so our cache scheme—which
is targeted at random-write workloads—cannot show good
improvement.

We use the average inter-request LBN distance as a metric
to evaluate the IOaccess sequentiality toHDD, and the results
are shown in Fig. 12.We notice that the average inter-request
LBNdistance is reducedgreatly byHALOcaching for almost
all traces. This explains why the average disk throughput
with HALO is much larger than with Non-cache and with
LRU, as shown in Figs. 11 and 12. However, for Fin2, HALO
does not reduce the LBN distance, because the majority of
Fin2 requests are read requests, and there is little room for
HALO to improve performance. As we can see in Fig. 13,
normalized HDD’s request response times are demonstrated
for LRU and HALO. On average, HALO leads to 34.2%
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Fig. 13 Normalized disk response time

better request response time than LRU because of improved
access locality and workload intensities achieved by HALO
caching and Two-Way destaging algorithms.

4.3 Wear leveling results

Table 3 and Fig. 14 illustrate the wear leveling results for
different wear leveling schemes. SG-max represents the
maximum bank write count deviations for non-randomized
region-based start-gapwear leveling (SG).Avg-counts repre-
sents the average bank write counts of all 128 banks. NAME-
life represents the life ratio compared to perfect wear level-
ing, which can be calculated by 1

(N AME-max/Avg-counts+1) .
The “lifetime improvement” column gives an indication of
the SFC wear leveling technique’s lifetime improvement
compared to that of SG. The average life ratio is 0.9255 for
SFC-based wear leveling (SFC), 0.619 for rank-bank round-
robin wear leveling (Rank-Bank RR or RR), and 0.0598 for
SG. The average lifetime improvement with our schemes for
all traces is 21.60.

Figure 15 shows the bank write count deviations for RR
and SFC under Fin2workload. The x-axis is the bank number
for 8 ranks * 16 banks per rank. The y-axis is the deviation
of wear counts among all banks. We observe that SFC can

Fig. 14 Life ratio comparison between different wear leveling tech-
niques

Fig. 15 Wear leveling results for Fin2

achieve very good wear uniformity and very low deviations
for all banks. This is very helpful for extending the life ratio
and lifetime of a PCM device. Bank deviations for the other
traces are similar and not shown here for space limit.

5 Related work

In this section, we review recent works on nonvolatile mem-
ory and caching techniques.

Table 3 Wear leveling results

SFC-max RR-max SG-max Avg-counts SFC-life RR-life SG-life Improve#

Fin1 113,921 5,094,200 44,559,020 1,799,300 0.9405 0.261 0.0388 23.23

Fin2 38,507 195,648 7,510,848 202,822 0.8404 0.509 0.0263 30.96

Dap 90,802 1,820,127 13,999,887 285,233 0.7585 0.1355 0.0200 36.99

Exchange 1,93,633 9,699,420 1.87E+08 5,765,866 0.9675 0.3728 0.0299 31.36

TPC-E 3148 56,823 13,154,423 1,665,767 0.9981 0.967 0.1124 7.88

Mail 32,278 1,320,622 37,488,462 2,678,274 0.9881 0.6698 0.0667 13.82

Randw 12,762 23,859 6,135,289 871,481 0.9856 0.9733 0.1244 6.924
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5.1 Hybrid memory systems

While NVRAM has non-volatility and energy benefits over
DRAM and has great performance advantages over HDDs, it
has limitations such as short device endurance and asymmet-
ric access latency. To overcome these limitations, researchers
have combined conventionalmemory systemswithNVRAM
to avoid these limitations and leverage the benefits of both
HDDs and NVRAM. Ramos et al. [30], Wang et al. [40]
and Zhang et al. [43] place PCM and DRAM side-by-side
behind the bus to build a hybrid system [18]. Ramos et
al. [30] have introduced hardware extensions to the mem-
ory controller (MC) tomonitor popularity and write intensity
of memory pages. They migrate pages between DRAM and
PCM, and let operating systems (OS) in charge of updat-
ing memory mapping [39], such that performance-critical
pages and frequently written pages are placed in DRAM,
while non-critical pages and rarelywritten pages are in PCM.
Zhang et al. [43] also rely on the MC to monitor access pat-
tern. Their work differs from [30] by completely relying
on OS to manage pages and treating DRAM as an OS-
managed write partition. Over time, frequently written pages
are placed into DRAM to reduce writes to PCM. Shi et al.
present a flash+PCM hybrid nonvolatile disk cache system
where flash is used mainly as read cache and PCM is used
as write cache [33]. In [16], non-volatile memory is used as
both buffer cache and journaling layers for ext4 file system.
Our work aims at combining PCM and HDDs as a back-end
storage device. Instead of relying on hardware and/or online
detection mechanisms to partition data between PCM and
HDDs, we store data blocks based on logical block numbers
and record the mapping with hash tables, which avoids the
involvement of OS in monitoring data access patterns and
the need of additional hardware.

5.2 Caching and logging

Least recently used (LRU) and least frequently used (LFU)
are common and effective cache replacement policies. LRU-
k [24], LRFU [15], MQ [45] and LIRS [14] are important
improvements to the basic LRU policy. They consider inter-
access time, access history and access frequency to improve
hit ratio. DULO [13] and DISKSEEN [7] complement LRU
by leveraging spatial locality of data access. DULOgives pri-
ority to random blocks by evicting sequential blocks (those
with similar block addresses and timestamps). However, the
limited sequential bank size and volatility of DRAM pre-
vents DULO from detecting sequences within a larger global
address space and over a longer time scale. For this reason,
DULO is not positioned to attain performance improvements
over LRU for random access workloads in storage and file
systems.

Logging is a method that aims to mitigate random writes
to hard drives [31] and flash-based SSDs [42]. When data
blocks are appended to early blocks rather than updated in
place, the garbage collection is necessary and becomes a
critical issue. DCD [23] uses a hard disk as a log disk for
improving the randomwrite performance of hard disks.How-
ever, it does not solve issues such as random reads from the
logs disk and suffers from expensive destaging operations
(still random writes) under heavy workloads. Several tech-
niques employ non-volatile devices to boost the performance
of storage and file systems. Some use NRVAMas the file sys-
tem metadata storage [8,9,27], while others use NVRAM as
LRU/LRW caches in file and storage systems [3,17,21,38].
However, these techniques have limitations. For example,
they can only boost performance for certain types of file
systems; they also cannot ensure the sequential write-back
to HDDs due to the usage of LRU policy to manage cache
replacement. The HALO scheme as proposed in our hybrid
storage system addresses both of these limitations.

5.3 Wear leveling for PCM

Many research efforts have been invested in studying wear
leveling in order to extend the lifetime of PCM. Qureshi
et al. [29] make the writes uniform in the average case by
organizing data as rotating lines in a page. For each newly
allocated page, a random number is generated to determine
the detailed rotation behavior. Seong et al. [32] use a dynamic
randomized address mapping scheme that swaps data using
random keys to prevent adversaries. Zhou et al. [44] propose
a wear-leveling mechanism that integrates two techniques
at different granularities: a fine-grained row shifting mech-
anism that rotates a physical row one byte at a time for a
given shift interval, and a coarse-grained segment swapping
mechanism that swaps the most frequently written segment
with the less frequently written segments. Their work suffers
from the overhead of hardware addressmapping and the over-
head of periodical sorting to pick up appropriate segments
for swapping. Ipek et al. [12] propose a solution to improve
the lifetime of PCM by replicating a single physical memory
page over two faulty, otherwise unusable PCM pages. With
modifications to the memory controller, TLBs and OS, their
work greatly improves the lifetime of PCM. In [41], Wang et
al. provide inter-set and intra-set wear-leveling techniques to
uniformize write operations to ReRAM which is used as on-
chip caches. Our wear leveling work is distinguished from
these prior efforts. We regard the global address space as a
multidimensional geometric space and employ a novel space
filling curve-based algorithm to evenly distribute accesses
across different dimensions. Comparing with existing work,
our approach significantly extends the lifetime of PCM in
hybrid storage devices.
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6 Conclusions

In this paper, we propose a new hybrid PCM+HDD storage
system that leverages PCM as a write cache to merge random
write requests and improve access locality for the storage sys-
tem. Along with this, we also design a cache scheme, named
HALO, which utilizes the fast access and non-volatility
features of PCM to improve system I/O performance with
guaranteed reliability.Results fromadiverse set ofworkloads
show that HALO can achieve lower traffic rates to HDDs due
to better caching and achieve higher system throughput led
by smarter destaging techniques. Therefore, our approaches
reduce execution times significantly, 36.8% on average. This
hybrid storage organization is especially beneficial for work-
loads with intensive randomwrites. We also design two wear
leveling schemes, rank-bank round-robin wear leveling and
space filling curve based wear leveling, to extend the life-
time of PCM in the proposed hybrid devices. Our results
show that SFC-based wear leveling improves the life time
of PCM devices by as much as 21.6 times. Also, we have
integrated an in-house PCM simulator into DiskSim 4.0 [5]
as a new hardware model.

In the future, we plan to devise dynamically partitioned
read/write cache schemes for improving a wider range of
workload patterns. In addition, a scalable and hierarchical
hash table can be introduced for further reducing memory
space overhead.
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