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Abstract Affordability of appropriate computing resources
for satisfying prerequisites of Service Level Agreement
(SLA) of clients and optimal utilization of cloud service
providers are limited in the present scenario of cloud com-
puting. To overcome these limitations, researchers have
exploited various scheduling algorithms to process the dead-
line based autonomous jobs. The scheduling algorithms
however do not support multiprocessor demand and adap-
tive resource provisioning. This inference triggers to propose
a new approach called ScHeduling of jobs and Adaptive
Resource Provisioning (SHARP) in cloud computing to han-
dle independent jobs that processes the jobs in a multilevel
manner. The SHARP approach embeds multiple criteria
decision analysis to preprocess the jobs, multiple attribute
job scheduling to prioritize the jobs and adaptive resource
provisioning to provide resources dynamically. These con-
tributions alleviate SLA violations in terms of deadline,
upgrade client satisfaction and enhance resource utilization.
The empirical studies verify the proposed approach in a
cloud environment and show the necessity of the proposed
approach to support elastic resource provisioning and meet
SLA requirements.
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1 Introduction

With the development of advanced Internet technology, the
vast infrastructure is framed as a virtualized cloud infras-
tructure by interconnecting the resources scattered globally
[1–3]. The computing capacity of the virtualized cloud infras-
tructure has been partitioned intomany virtualmachineswith
the aid of virtualization technique [4]. The computing capac-
ity of the Virtual Machines (VMs) rely on the data center
policy or Cloud Service Providers (CSPs) which may either
be homogeneouswhere theVMshave equal processing speed
or heterogeneous where the VMs have different processing
speed [5]. The CSPs have the ability to afford services to
several number of clients simultaneously with the support
of VMs in cloud infrastructure [6]. E-commerce, e-learning
and e-governance applications of the clients that demand a
certain amount of computing power to perform their com-
putation is termed as job [7]. The jobs are categorized into
dependent and independent jobs based on their requests and
behavior [8]. The dependent jobs need the output of other
jobs to complete their execution, whereas autonomous jobs
do not require them [9].

At any arbitrary time immense number of end-users
request services from cloud. During these situations, the jobs
have to be scheduled optimally to meet the Service Level
Agreement (SLA), which is an agreement made between the
service provider and naïve users before offering a service
[10]. Thereby, a job scheduler should play a major role in
fulfilling the user requirements, in assisting for optimal uti-
lization of the service provider and also in enhancing the
throughput of the VM [11]. To achieve these goals, ana-
lysts have proposed several job scheduling algorithms in
cloud computing. Among these, most of the researchers have
focused on scheduling the deadline based independent jobs
that require only uniprocessors for execution [12]. Unfor-
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tunately, most of the complex applications of the clients
demand multiprocessors for processing their jobs.

This demand leads to the following challenges, (1) the
jobs submitted by the clients are blindly acknowledged by the
traditional approach which in turn affects the Quality of Ser-
vice (QoS) of service providers, (2) the existing schedulers
are designed focused only on the client-side, (3) even though
there is a demand for uniprocessor as well as multiprocessor
by the jobs, most of the existing scheduling algorithms are
implicitly designed for processing uniprocessor jobs only, (4)
the existing algorithms do not provide resources based on the
system load and availability of resources, (5) the traditional
myths lack in the provisioning of resources dynamically to
meet the SLA requirements of the naïve users and service
providers.

To meet the above mentioned challenges, this work
presents ScHeduling of jobs and Adaptive Resource Provi-
sioning (SHARP) approach in cloud computing for handling
the ever changing client’s demand. The proposed work
encompasses Multiple Criteria Decision Analysis (MCDA),
Multiple Attribute Job Scheduling (MAJS) and Adaptive
Resource Provisioning (ARP) to process the jobs in a multi-
phased manner. Initially, the jobs are preprocessed with the
aid of MCDA to avoid malware and unfeasible jobs so as to
enhance QoS of the service provider. After which, the jobs
are dynamically prioritized using MAJS that relies on the
attributes of the jobs and service providers. The prioritized
jobs are then mapped to the resources with the aid of ARP,
which supports elastic provisioning of resources to fulfill the
naïve users’ requirements and stabilizes system load. The fol-
lowing section briefly describes the related works. Section 3
describes the entire design of the SHARP approach. Section
4 explains the experimental results and performance study
of the proposed work. Section 5 outlines the conclusion and
future work.

2 Literature review

This section describes the overview of the job scheduling
algorithms that optimally schedule the jobs and resource pro-
visioning algorithms that map the jobs with the appropriate
resources at runtime.

2.1 Scheduling algorithms

Job scheduling is a NP-hard optimization problem that needs
to process and complete the jobs with the aid of available
resources in the cloud [13]. Considering that there are numer-
ous VMs in cloud computing, a couple of naïve users publish
their requests with distinct goals. Here, a job scheduler plays
a significant role to minimize the makespan of the job by
accurately binding the jobs with the available VMs [14,15].

Many researchers have offered algorithms for scheduling the
jobs with common objectives such as minimizing the waiting
time, minimizing the execution time and cost of execution.
With the aid of traditional job scheduling techniques, the jobs
are categorized into two types, as dependent jobs and inde-
pendent jobs. Initially, the number of jobs submitted by the
naïve users were lower than the available number of VMs
in the resource pool. In such a scenario, the incoming jobs
were simply scheduled using First Come First Serve (FCFS)
algorithm [16].

The jobs submitted by the naïve users contain both dead-
line and non-deadline based jobs which are sometimes dense
and sparse. Many researchers have introduced several algo-
rithms to complete the jobs within their deadline. Among
these, the advanced reservation technique was proposed to
schedule the deadline based jobswhich reserves the resources
for a particular period to complete the jobs within their dead-
line [17]. Sometimes, the reserved VMs may be idle. But
it cannot be utilized by other jobs which are ready for exe-
cution as it may affect the jobs which reserved those VMs
already. To solve these issues, backfilling algorithm was
introduced to utilize the idle VMs and allow jobs that are
capable of completing within the idle time period, without
affecting the reserved jobs [18]. Further, the deadline based
jobs were optimally processed using the Earliest Deadline
First (EDF) algorithm which gives high preferences to the
job having the earliest deadline to attain the user satisfac-
tion. Since, the EDF algorithm does not support preemption
of jobs, the running jobs cannot be preempted when a higher
priority job arrives [19]. So, the fully preemptive-EDF (fp-
EDF) algorithm was introduced that preempts the running
jobs whenever a higher priority job arrives [20]. But it pre-
empts the running jobs without considering the present state
of running jobswhich in turn degrades the performance of the
system. So, the controlled preemptive-EDF (cp-EDF) algo-
rithm was proposed which outperforms EDF algorithm and
fp-EDF by preempting the jobs based on expected comple-
tion time of running jobs [21]. Later, Global EDF (GEDF)
algorithm was proposed which assigns a global deadline to
schedule and complete the jobs within their deadline [22].
Further, MapReduce Task Scheduler for Deadline (MTSD)
algorithm was proposed to meet the time constraint of the
jobs in a heterogeneous environment [23].

The Partial Critical Paths (PCP) algorithm was proposed
to schedule the deadline based jobs depending on their
path [24]. Later, Infrastructure Cloud PCP (IC-PCP) was
presented which has two phases like planning phase and dis-
tribution phase. It shares the sub deadline among the nodes
for completing the jobs within their deadline [25]. Still the
jobs were not able to complete within their deadline, and so
the PCP was modified as Enhanced Ic-Pcp with Replication
(EIPR) that replicates job and simultaneously run the jobs in
several VMs and attempts to complete the jobs within their
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deadline [26]. And also, a one-tier VM architectural design
was adopted to implement the abovementioned algorithms in
whichVMs process only one job at a time. The jobswere pro-
cessed with the aid of VMs, but the processing speed of the
VMs were not fully utilized. As a result, Adaptive Multilevel
Scheduling System (AMSS) was presented which schedules
and processes jobs with the support of VMs in a two-tier
architecture to optimally utilize the processing speed of the
VMs [27]. The two-tier VMarchitecture encompasses a fore-
ground VM and background VM, which dynamically shares
the processing speed of theVMamong bothVMs [28].More-
over, a hybrid task scheduling and load balancing algorithm
was introduced to schedule and balance the load among the
resources in the service provider [29].

2.2 Resource provisioning algorithm

Similar to job scheduling, resource provisioning plays a vital
role in completing jobs within their deadline by mapping
them with the appropriate resources. From the state of the
art, resource provisioning in cloud computing are categorized
into several types such as cost aware resource scheduling,
efficiency aware resource scheduling, energy-aware resource
scheduling, load balancing-aware resource scheduling, QoS-
aware resource scheduling and utilization-aware resource
scheduling [30]. Among these, Heterogeneous Earliest Fin-
ish Time (HEFT) algorithm was proposed to improve the
QoS by giving high preference to the job having the earliest
finish time among the jobs in a queue. InHEFT algorithm, the
jobs are mapped with the appropriate VMs in the resource
pool [31]. Further, the Hierarchical Load Balancing Algo-
rithm (HLBA) was proposed to balance the system load.
In HLBA algorithm, the jobs were scheduled to resources
based on three parameters namely network utilization, mem-
ory and idle computing power [32]. Further, the Graphical
Load Balance (GLB) algorithm was introduced to define
a set of decisions for mapping the jobs with the resources
in the cloud environment [33]. Several optimization algo-
rithms such as Ant Colony Optimization (ACO) and Particle
Swarm Optimization (PSO) were introduced that optimally
map the jobs with the resources at runtime [34,35]. More-
over, the genetic algorithm for workload scheduling in cloud
based e-learning was introduced to optimize the scheduling
of e-learning workloads with a predefined set of conditions
[36]. Further, Dynamic Resource Provisioning and Monitor-
ing (DRPM) was proposed to select VMs for running the
jobs that minimizes the completion time of the jobs. DRPM
embeds host fault detection algorithm that finds andmaps the
appropriate VMs for running the jobs to minimize the cost
[37].

Existing algorithms are focused only to fulfill the client
side requirements and concentrate on optimal scheduling
of jobs requesting for uniprocessor only. Moreover, the

current techniques focus on job scheduling and resource
provisioning independently. And also, the existing resource
provisioning techniques do not support elastic provisioning
of resources. From the state of the art, it is very clear that the
existing algorithms do not focus on multiprocessor job and
adaptive resource provisioning. Thus, the proposed SHARP
approach optimally schedules the incoming jobs to fulfill the
user requirements, minimizes the turnaround time, mitigates
the number of VMs, minimizes SLA violation and boosts the
resource utilization.

3 System framework and problem formulation

Due to the advancement of network technologies, a sig-
nificant number of naïve users approach cloud computing
that has several CSPs CC = {CSP1,CSP2, ...,CSPn} to
process their jobs in a cost-effective manner. This work is
centered on processing jobs efficiently in a CSP. Sometimes,
VMs in a CSP are not able to process certain jobs and there-
fore in turn may affect subsequent jobs, thus leading to SLA
violations. Consequently, these jobs ought to be filtered to
minimize SLA violations. Furthermore, it is found that the
waiting time of the jobs can be decreased by altering the
order of their execution. Hence, several existing scheduling
algorithms have either statically or dynamically prioritized
the jobs that request for a uniprocessor for execution, based
on their attributes. After prioritization, the jobs are processed
using the appropriateVMpresent in theCSP. But, an efficient
scheduling algorithm has to prioritize the jobs thatmay either
require uniprocessor or multiprocessor for their execution.

Hence, thisworkproposes a newapproach calledScHedul-
ing of jobs and Adaptive Resource Provisioning (SHARP) in
cloud computing that meets the requirements. At any given
arbitrary time, a naïve user submits a large number of jobs
to a cloud system. Among these, some of the jobs may not
be processed with the aid of VMs in a CSP. Thus, these
jobs need to be preprocessed and forwarded to other CSPs
in a cloud system to minimize their SLA violations and to
enhance user satisfaction. The jobsmay require either unipro-
cessor or multiprocessor for their execution. The proposed
SHARP approach focuses on dynamically prioritizing the
jobs based on their attributes and VM attributes. It also maps
the jobs with the suitable number of VMs in the CSP depend-
ing on the requirements and system load for processing them.
During the period of job execution, a job may not use the
entire processing speed of the VM and so the VMs can be
deployed in a two-tier VM architecture. This additionally
helps for dynamic provisioning of VMs based on the need
of the jobs and availability of the VMs. SHARP approach
also supports scaling of VMs to avoid overloading. The con-
tributions of the proposed SHARP approach are scheduling
deadline based independent jobs and provisioning resources
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Fig. 1 SHARP architecture

adaptively so that the performance of the CSP and utilization
of the resource in CSP are strengthened.

4 Design of SHARP approach

Because of pay per usage model and cost-effective services,
the naïve users decide to process their jobs in CSPs rather
than processing them in different service vendors. The naïve
users could submit various jobs with different demands that
could be treated optimally in the cloud system with the aid
of the proposed SHARP approach. Figure 1 describes the
SHARP architecture. In the proposed SHARP approach, the
incoming jobs are gathered by a Cloud User Interface (CUI)
that stores the jobs in a job queue Jqueue. The jobs in Jqueue
are then preprocessed by the MCDA methodology using the
various attributes of the jobs and VMs. After preprocess-
ing, the jobs are prioritized using the MAJS algorithm by
considering the multiple attributes of jobs along with VMs.
After prioritization, the jobs are mapped with the best suit-
able VMs in the Virtual Machine Monitor (VMM) by the
adaptive resource provisioning (ARP) method. After map-
ping, the jobs have to be processed with the respective VMs.
ARP method also supports elastic resource provisioning to
stabilize the system load. During execution, a job may not
utilize the entire processing speed of a VM and so the VMs
need to be deployed in a two-tier VM architecture to uti-
lize the idle processing speed of the VMs. The computing

capacity of the VM in a two-tier architecture is partitioned
into foreground and background VM to share the process-
ing speed of the VM dynamically. The utilization manager
has a detailed information about jobs running in the VMs
and the VM switcher allocates the jobs to the foreground
and background VM depending upon the priority of the
jobs.

A set of instructions needed for processing the requests
of naïve users is defined as a job. A job may be either
compute-intensive or data-intensive. A job that needs more
computation time than data transfer time is termed as
compute-intensive job [38]. The proposed work considers
only compute-intensive jobs. A job is represented as ‘ j’. The
various tuples of the job are described as given in Eq. (1).

j =
(
j type, ls, �T , �R

)
; ∀ j in Jqueue (1)

where j type represents a job type as either compute-intensive
job or data-intensive job, ls represents the length of the job
in terms of Million Instructions (MIs) [39,40], �T contains
the detailed time information of the job and �R contains the
information of resource requirements. �T = {

ta, td
}
where

ta denotes the arrival time of the job and td denotes the
deadline of the job. A job may request for a multiprocessor
for execution that supports concurrent processing of jobs.
�R = {

rmin, rmax
}
where rmin denotes the minimum number

of VMs required to process the jobs and rmax represents the
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maximum number of VMs needed to process the jobs. The
VMM stores the information of the VMs in the cloud system
and the tuples of the VMM are given in Eq. (2).

VMM =
(
VMa,VMbusy, �M

)
(2)

where VMa is a resource pool that holds the set of available
VMs and VMbusy represents the set of non-idle VMs in the
resource pool. �M holds the information of the VMs and the
tuples of the VMs are described in Eq. (3).

�M = (ps, st) ; ∀VM in VMM (3)

where ps represents the processing speed of a VM and st
represents the storage capacity of a VM. The jobs are initially
passed to the MCDA.

4.1 Multiple criteria decision analysis (MCDA)

Multiple criteria decision analysis preprocesses the jobs to
identify undesirable jobs or malware jobs so as to minimize
the delay in the processing of subsequent jobs. The jobs
are preprocessed using the various tuples of the jobs and
resources in a twofold criteria. As a first step, the maximum
required processing speed of a job is represented as Smax and
computed as given in Eq. (4).

ji (Smax) = ji (ls)

ji
(
rmin ∗ (

td − ta
)) ; where i ∈ (1, n) (4)

where ‘n’ denotes the total number of jobs submitted to the
cloud system during the time interval and stored in Jqueue.
The first criteria of the MCDA is represented as J f −MCDA

and computed as given in Eq. (5).

J f −MCDA =
{
1; i f

(
ji

(
rmin

) ≤ | ( ji (Smax) ≤ VMk (ps))| ≤ |VMa |
)

0; otherwise
; where i ∈ (1, n) , k ∈ (1, y) (5)

where ‘y’ denotes the number of VMs in VMa . Among ‘n’
jobs, the jobs which satisfy the criteria as defined in Eq. (5)
are stored in the J f −q queue. The rejected jobs are stored
in Jr−q and passed to the second level of preprocessing. In
the second step, the minimum processing speed required for
a job is represented as Smin and is computed with the aid of
various tuples of the job as expressed in Eq. (6).

jx (Smin) = jx (ls)

jx
(
rmax ∗ (

td − ta
)) ; ∀ j in Jr−q (6)

The second criteria of theMCDA is represented as Js−MCDA

and computed as given in Eq. (7).

Js−MCDA =
{
1; i f ( jx (rmax) ≤ | ( jx (Smin) ≤ VMk (ps))| ≤ |VMa |)
0; otherwise

; where ∀ j in Jr−q , k ∈ (1, y) (7)

The accepted jobs of Js−MCDA are appendedwith the jobs
in J f−q and the rejected jobs are forwarded to other CSPs for
execution. After preprocessing, the jobs in J f −q are given as
input to the Multiple Attribute Job Scheduling phase.

4.2 Multiple attribute job scheduling (MAJS)

The MAJS prioritizes the jobs with the aid of the different
attributes of the jobs and VMs. The priority value of ‘ j’ is
represented as ‘P’ and it is computed as given in Eq. (8).

Pj = j (ls)/ j (d)

VMx̄ (ps)
; ∀ j in J f −q (8)

where VMx̄ represents the average processing speed of the
VMs inVMM.After computing the priorities of jobs, the jobs
in J f −q are sorted in the descending order to give preference
to jobs that require more processing speed. After prioritiza-
tion, the jobs with the same priority are resorted based on
the rmin value of ‘ j’. The algorithm below describes the way
how jobs with equal priority are prioritized.
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4.3 Adaptive resource provisioning (ARP)

In adaptive resource provisioning (ARP), the system load is
initially computed to effectively schedule and complete the
jobs within their deadline. The system load is defined as a
ratio between the estimated processing speed of the jobs to
the processing speed of the availableVMs inCSP.The system
load of a CSP is represented as ρ and computed as given in
Eq. (9).

ρ =

∑
j in J f −q

j (Smax) ∗ j
(
rmin

) + ∑
j in Js−q

j (Smax) ∗ j
(
rmin

) + ∑
VM∈VMbusy ,

jVM
(
t f

)
<t̄ d

VM(ps)

∑
VM∈VMa

VM (ps) + ∑
VM∈VMbusy ,

jVM
(
t f

)
<t̄ d

VM(ps)
(9)

where t f denotes the finishing time of the running job, t̄ d

denotes the average deadline of the jobs for processing them
in a respective CSP. The total computational speed of a CSP
needs to be scaled dynamically by creating newVMs so as to
complete the jobs within their deadline, whenever the system
gets overloaded. The required processing speed of a scalable
VM is represented as VMreq and it is computed as given in
Eq. (10)

VMreq (ps) = max j (Smax) ; ∀ j in J f −q (10)

The computing capacity of aCSP is scaled up by creating new
VMs only when the VMs present in the CSP are incapable
of processing the incoming jobs. The additional processing
speed required for processing the jobs in J f−q is represented
as Aps and it is computed as given in Eq. (11).

Aps =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(ρ − 1) ∗

⎛
⎜⎜⎝

∑
VM∈VMa

VM (ps) + ∑
VM∈VMbusy ,

jVM
(
t f

)
<t̄ d

VM(ps)

⎞
⎟⎟⎠ ; i f ρ > 1

Retain; otherwise

(11)

After finding Aps , the additional number of VMs required
for processing the jobs in J f −q is represented as η and it is
computed as given in Eq. (12)

η =
{ ⌈

Aps/VMreq
⌉ ; i f VMreq ≤ Aps

1; Otherwise
(12)

‘η’ number of VMs are created with the specified process-
ing speed VMreq . The processing speed of the scalable VMs
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also depend on the CSP policy. The scaled VM information
is updated in VMa in the VMM. Finally VMM stores all the
information relevant to the VMs. After scaling VMs and pri-
oritizing the jobs in J f−q , the jobs in J f−q are appended
with the jobs in Js−q .

4.3.1 One-tier VM architecture

The ARP is similar to the backfilling algorithm and it con-
siders that the state of the job can be saved and restored; as
a result the ARP is able to resume its computation in later
times with the aid of different VMs. The ARP incurs job
preemption and restoring cost in the SHARP approach. The

prioritized jobs are stored in the queue Js−q . After priori-
tizing, the SHARP approach provides customized resources
to process the jobs in Js−q when there is enough number of
VMs in VMa . Sometimes, the number of VMs in the VMa

may be inadequate and incapable to process the job at the
head of Js−q . Hence, the ARP with the support of backfill-
ing algorithm schedules the subsequent jobs in Js−q that may
have the ability to complete within their deadline with the aid
of VMs in VMa by utilizing the idle computing power of the
VMs. The job at the head of the Js−q is scheduled for process-
ing whenever the total number of VMs which includes VMs
processing low priority jobs, idle VMs and capable VMs in
VMa is greater than or equal to rmin of the job.
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The mapping algorithm optimally maps the jobs with the
VMs to support dynamic provisioning of resources based on
the system load and availability of the VMs thus minimizing
the SLA violations.

4.3.2 Two-tier VM architecture

The jobs may not utilize the entire processing speed of the
VMs during their execution. Hence, the VMs are deployed
in a two-tier VM architecture so as to improve resource uti-
lization and optimally utilize the processing speed of the
VMs. Thus, the computing capacity of a VM is partitioned
into foreground and background VM so as to utilize the
idle computing power of a VM. The VM processing speed
is shared dynamically between foreground and background
VM. Initially, the processing speed of the VMs are allocated
to foreground VMs and remaining idle computing power are
provided to the background VMs. The utilization manager
maintains all the information’s about the utilization of the
foreground VM and background VM. Using these informa-
tions, VM switcher assigns jobs to them. In the two-tier VM
architecture, the foregroundVMs and background VMs have
high and low priority respectively. To satisfy the priority of
foreground and background VM, job having higher priority
runs in the foreground VM and utilize the required process-
ing speed of the VM. Similarly, a job having lower priority
runs in the background VM to utilize the remaining process-
ing speed of the VM. So, the VMs deployed in a two-tier
VM architecture have the ability to handle two jobs concur-
rently.

After prioritization, the SHARP approach initially pro-
cesses the jobs as per the job order in Js−q whenever there
are sufficient number of foreground VMs available in VMM.
After assigning the jobs to foreground VMs, the expected
completion time of the jobs are computed using the attributes
of jobs and VMs. The expected completion time of a job run-
ning in a particular VM is represented as ET and is computed
as given in Eq. (13).

ET
j = j (Smax) ∨ j (Smin)

VM (ps)
; j running in FVM (13)

The ARP chooses rmin or rmax required resources of the run-
ning jobs depending on the system load to perform their

execution. Sometimes, the number of foreground VMs in
VMa become inadequate and incapable to process the job at
the heads of Js−q . At that moment, the ARP with the aid
of backfilling algorithm schedules and allocates the subse-
quent jobs that can complete within their deadline, to the
foreground VM. Also, the ARP checks the possibility of
assigning the jobs to the background VM by comparing the
deadline of the incoming job with the ET of job in Js−q and
ET of the running jobs of each virtual machine to decide
whether the job can be allocated to the same VM. Among
the VMs in VMM, those which are eligible to process and
complete the jobs within their deadline, are selected for
processing the jobs and are represented as VMte. VMte is
calculated as given in Eq. (14).

VMte =
{
1; i f

(
ET

j (running) + ET
j

)
< j

(
td

)

0; otherwise
∀VM in VMM

(14)

The eligible VMs are stored in VMtemp. Then, a job in Js−q

may be assigned to the background VM only if the job sat-
isfies the constraints defined in Eq. (15). The mapping of a
job with the background VM is represented as M j

VM and is
given in Eq. (15).

M j
VM =

{
map j wi th VMs in VMtemp; i f

(
j
(
rmin

)∨ j (rmax)
)
<

∣∣VMtemp
∣∣

Not mapped; Otherwise

(15)

While mapping, the resource requirements of the job may
vary depending on the system load. The jobs only choose
the appropriate number of VMs in the VMtemp. In two-tier
VM architecture, the delay of running jobs in foreground
VMs do not affect the subsequent job processing because
the remaining idle processing speed of the VMs are utilized
by background VMs for subsequent job execution. Once a
job running in the foreground VM completes it’s execution,
the VM switcher swaps the job running in the background
VM to foreground VM to satisfy the priority of foreground
and background VM. Further, the job at the head of Js−q is
scheduled for processing whenever the total number of VMs
that includes VMs that are processing low priority jobs, idle
VMs and capable VMs in VMa is greater than or equal to
rmin of a job at the head of the Js−q .
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The algorithm is initiated when a new job arrives or when
the running jobs come to a completion.

5 Experimental setup and performance analysis

Cloud service providers provide service to naïve users based
on the storage and computation request. Practically, it is diffi-
cult to obtain cloud infrastructure to perform the experiments.
For the rationale of research, many open source tools are
available to develop and test the experiments. Among these
tools, CloudSim is the most popular tool for conducting the
simulation experiments [41]. It also provides a generalized
and extensible framework for modeling and simulating the
proposed algorithm and the efficiency can be compared with
other existing algorithms. It simulates the behavior of an IaaS
provider by receiving the requests from the naïve users and
process them using the VMs.

5.1 Experimental setup

CloudSim toolkit has been selected to simulate the proposed
work and verify it’s effectiveness. The personal computer
configuration is as follows 3.4 GHz, 4 GB RAM, 750 GB

hard disk and 64 bit OS, which provides a platform for
deploying the CloudSim [42]. The workload traces of grid
workload archive (GWA) contains informations about the
non-interactive batch jobs [40,43]. Since this work focuses
on analyzing and studying information about the cloud users
with non-interactive independent batch jobs, GWAmeets the
common objectives of cloud by providing workload traces
that reflect the characteristics of the real application running
in one VM. Using GWAworkload traces, the job parameters
like submission time, requested number of VMs, the actual
runtime of applications and VM processor information are
not only recognized but also the length of a job (Million
Instructions) is computed. Though the workload traces do
not have information about the deadline of the jobs, they are
randomly generated and an XML file is generated with the
help ofGWAworkload traces alongwith deadline of the jobs.
The proposed SHARP approach has developed a new strat-
egy by integrating job prioritization, scheduling algorithms
and resource provisioning techniques. The computing capac-
ity of the data center is considered as 15,000 MIPS (million
instructions per second). In a real environment, the number
of jobs submitted by the clients vary with respect to time.
Hence in the proposed work, the jobs are randomly gener-
ated and processed in the cloud environment. Ten runs are
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Table 1 Simulation parameters

Parameter Range

Job size (MI) 5000–25000

Number of jobs 40–800

Maximum number
of VMs request in
homogeneous
environment

60

Maximum number
of VMs request in
heterogeneous
environment

75

Computing power on
data center (MIPS)

15,000

Computing power of
VM in
homogeneous
environment
(MIPS)

250

Computing power of
VM in
heterogeneous
environment
(MIPS)

200–1500

Number of VM 15–75

Deadline (ms) 10–100

carried out with the generated dataset and the number of jobs
and VMs are considered as like in the previous iteration. The
standard deviation between the previous run and next run is
varied approximately between + or − 0.2.

The number of jobs, number of VMs and their corre-
sponding simulation parameters are shown inTable 1.During
scaling of VMs, the range of the simulation parameters may
vary with respect to system load.

5.2 Performance analysis

Since the main objective is to meet the SLA requirements
of the jobs, first the proposed SHARP approach is com-
pared with the existing techniques for their effectiveness in
minimizing SLA violations, minimizing the waiting time,
minimizing number of VMs and maximizing the data center
utilization. The utilization of a data center is indicated by the
number of VMs used for a given workload.

5.2.1 Number of VMs

Figure 2 shows the number of VMs required for processing
the jobs. This section shows how the number of VMs utilized
vary with respect to workload to meet the SLA requirements
of the applications and complete them successfully. It can be
noticed that the number ofVMs utilized by SHARP approach

remains approximately stable with respect to workloads. It
is absorbed from the experiment that the average number of
VMs utilized in the proposed SHARP approach is approxi-
mately 30% less than the average of existing algorithms. The
reason for such a wide variation is that SHARP approach
tries to run batch jobs by using unutilized VMs with the
help of adaptive resource provisioning when sparse number
of jobs are submitted. When more number of batch jobs are
submitted, the APRmaintains stability by allocating themin-
imum number of resources depending on the system load. It
is observed that during overloading, the servers used by the
existing approach are scaled up thus increasing the number
of VMs up to 50. This is due to static scalability of server.
In SHARP approach, if any running job delays its execu-
tion, the remaining idle computing power is used to run the
subsequent jobs in a background VM.

Figure 2a, b represents the number of VMs required
for processing the jobs in a homogeneous environment
and heterogeneous environment respectively. The maximum
number of VMs in a homogeneous environment is 60 and
have equal processing speed. But in a heterogeneous environ-
ment, the maximum number of VMs created varies between
15 and 75. The jobs are mapped with appropriate VMs in
a heterogeneous environment. The SHARP approach min-
imizes the number of VMs utilized in two-tier compared
to one-tier VM architecture by utilizing the idle computing
power of the VMs.

5.2.2 Waiting time of the jobs

To make a precise study and analysis of the proposed
approach, the jobs are randomly submitted in batches by par-
titioning the jobs in workload traces that vary with time as
in a cloud environment. The current scheduling algorithms
concentrate only on prioritizing the jobs submitted by the
naïve users, but are not aware of mapping them with the
VMs in the cloud system so as to complete them success-
fully within their deadline. To the exceptional of our talents,
the present resource provisioning algorithms do not sup-
port dynamic resource provisioning and so the VMs within
the VMM may be insufficient or surplus depending upon
the system load. Moreover, the present schedulers can only
optimally schedule uniprocessor requests. But, many prob-
lematic applications demand multiprocessor to perform their
computation. So, SHARP approach has been proposed to
execute both uniprocessor as well as multiprocessor requests
of the naïve users.

Figure 3 represents the waiting time of the jobs. Figure
3a, b represents the waiting time of the jobs in homogeneous
environment and heterogeneous environment respectively.
The SHARP approach integrates preprocessing to eliminate
the unfeasible jobs so as to minimize the waiting time of the
jobs, does job prioritization with the aid of job and resource
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Fig. 2 Comparison of VMs required in various approaches

Fig. 3 Waiting time of the jobs. a Homogeneous environment. b Heterogeneous environment

attributes, and provides resources adaptively. In adaptive
resource provisioning, the new VMs are created depending
upon the system load. SHARP approach integrates backfill-
ing algorithm to schedule the subsequent jobs when the VMs
required to process ‘ j’ at the head of Js−q is greater than the
capableVMs inVMM. InSHARPapproach, thewaiting time
of a job is further reduced by deploying the VMs in a two-tier
architecture which avoids process delay caused by running
jobs on subsequent jobs, by running them in a background
VM. During overloading, the SHARP approach scales up
the required number of VMs and thus minimizes the waiting
time of the jobs.

5.2.3 Resource utilization

Since the main objective of the scheduler is to maximize the
revenue of the service provider by optimally utilizing them,
the proposed approach concentrates on data center utiliza-
tion. The data center utilization is indicated by the number
of VMs which are used for processing the given workload.

Figure 4 represents the resource utilization. It canbeobserved
that the number of VMs utilized vary with respect to work-
load and their deadline. It is also noticed that the proposed
approach utilized the VMs efficiently by partitioning the
computing capacity of VMs into foreground and background
VMs. The batch jobs always run in the foreground VM. If
the jobs cannot use the full processing speed of the VM, the
subsequent jobs may run in the background VM by utiliz-
ing the remaining idle computing power of the VM. Hence,
the proposed approach uses less number of VMs compared to
other techniques thus improving the utilization of data center
by 10–15 %.

Figure 4a, b represents the resource utilization in a homo-
geneous and heterogeneous environment respectively. The
SHARP approach integrates backfilling algorithm to boost
the resource utilization by running the succeeding jobs when
the ‘ j’ at the head of Js−q requires more VMs than the capa-
ble VMs in VMM. During a sparse number of requests, the
SHARP approach picks the highest possible number of VMs
to stabilize the system utilization which boosts the resource
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Fig. 4 Resource utilization. a Homogeneous environment. b Heterogeneous environment

Fig. 5 SLA violations. a Homogeneous environment. b Heterogeneous environment

utilization and improves user satisfaction. On the other hand,
the SHARP approach chooses the jobs with minimum num-
ber of VMs request to avoid over provisioning of VMs.
Thereby, the proposed SHARP approach totally increases
the utilization of the resources by 25% to 30 %.

5.2.4 SLA violations

This section evaluates how the deadline of the batch jobs
affects the performance of service providers. Even though
the number of VMs is unlimited in real cloud infrastructure,
this experiment initially limits the number of VMs to 75 and
the number of batch jobs vary between 50 and 800. Fixing the
number of VMs and batch jobs range allowed to observe the
effects of the deadline with the system performance. Figure
5 represents the SLA violations. As the size of the work-
load increases and users’ urgency level increases, SHARP
approach dramatically minimizes the number of SLA viola-
tions from 10 to 55% by dynamically scaling up the VMs
depending on the system load.

Figure 5a, b represents the SLA violations of job in homo-
geneous and heterogeneous environment respectively. The
reason for such a large difference is that the proposed sched-
uler could initiate new VMs when there is more number of
batch job submissions. The number of jobs submitted by the
naïve users vary with respect to time. Though the existing
algorithms do not allocate the resources based on the sys-
tem load, the proposed SHARP approach supports dynamic
provisioning of resources depending upon the system load
and job requirements. The proposed SHARP approach min-
imizes the SLA violations by scaling up the number of VMs
depending on the system load.

6 Conclusion and future work

The number of jobs submitted by the naïve users vary with
respect to time. The ultimate objectives of the work were
to fulfill the user requirements, to stabilize the number of
VMs, to mitigate SLA violations of jobs, and to boost
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resource utilization. The proposed research work presents
ScHeduling of jobs and Adaptive Resource Provisioning
(SHARP) for optimal scheduling and processing of dead-
line based independent jobs in a cloud environment. The
proposed SHARP approach examines the difficulties of cur-
rent scheduling algorithms and bilaterally focuses on job
scheduling and resource provisioning. In SHARP approach,
MCDA preprocesses the jobs using the different attributes
of jobs and resources to mitigate the number of jobs vio-
lating their SLA requirements. Moreover, MAJS not only
prioritizes the uniprocessor jobs but also prioritizes multi-
processor jobs dynamically. After prioritizing, the jobs are
optimally processed with the help of ARP which provides
resources depending upon the utilization of the system and
requirements of jobs to stabilize the system load. Further, the
ARP approach scales up the number of VMs when the exist-
ing VMs in VMM are not able to process and complete the
jobs within their deadline. Moreover, ARP integrates back-
filling algorithm to boost the resource utilization. Moreover,
the VMs are deployed in a two-tier VM architecture to utilize
the idle processing speed of the VMs. The VM switcher allo-
cates the jobs among foreground and background VM based
on the priority of the jobs. The SHARP approach supports for
both homogeneous as well as heterogeneous environment.

The SHARP approach outperforms other existing algo-
rithms by mitigating the number of jobs violating their dead-
line to improve user satisfaction and by boosting resource
utilization with the aid of elastic resource provisioning that
stabilizes system load.Moreover, the SHARP approach min-
imizes the number of active VMs to process the incoming
jobs and reduces the waiting time of the jobs. In future, this
work can be extended to develop an efficient scheduler by
taking into consideration data transfer time for processing
both dependent and independent jobs. Further, the proposed
SHARP approach can be integrated with e-learning systems
to optimally schedule and manage the e-learning workloads
in a cloud environment.
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