
Cluster Comput (2018) 21:667–680
https://doi.org/10.1007/s10586-017-0971-8

A hybrid technique using binary particle swarm optimization
and decision tree pruning for network intrusion detection

Arif Jamal Malik1 · Farrukh Aslam Khan2,3

Received: 28 March 2017 / Revised: 25 May 2017 / Accepted: 1 June 2017 / Published online: 4 July 2017
© Springer Science+Business Media, LLC 2017

Abstract A major drawback of signature-based intrusion
detection systems is the inability to detect novel attacks that
do not match the known signatures already stored in the
database. Anomaly detection is a kind of intrusion detec-
tion in which the activities of a system are monitored and
these activities are classified as normal or anomalous based
on their expected behavior. Tree-based classifiers have been
successfully used to separate the abnormal behavior from
the normal one. Tree pruning is a machine learning tech-
nique used to minimize the size of a decision tree (DT) in
order to reduce the complexity of the classifier and improve
its predictive accuracy. In this paper, we attempt to prune a
DT using particle swarm optimization (PSO) algorithm and
apply it to the network intrusion detection problem. The pro-
posed technique is a hybrid approach inwhichPSO is used for
node pruning and the pruned DT is used for classification of
the network intrusions. Both single and multi-objective PSO
algorithms are used in the proposed approach. The experi-
ments are carried out on the well-knownKDD99Cup dataset.
This dataset has been widely used as a benchmark dataset
for network intrusion detection problems. The results of the
proposed technique are compared to the other state-of-the-
art classifiers and it is observed that the proposed technique
performs better than the other classifiers in terms of intrusion
detection rate, false positive rate, accuracy, and precision.

B Farrukh Aslam Khan
fakhan@ksu.edu.sa

1 Department of Software Engineering, Foundation University,
Defense Avenue, Phase-I, DHA, Islamabad, Pakistan

2 King Saud University, Riyadh 11653, Saudi Arabia

3 National University of Computer and Emerging Sciences,
Islamabad 44000, Pakistan

Keywords Intrusion detection · Decision tree · Tree
pruning · Particle swarm optimization

1 Introduction

Over the past few years, Internet technologies have grown
up to a large extent and have presented tremendous increase
in the exchange of information online. Internet has indeed
become a public platform for communication and delivery
of information. Due to this growth, the attacks over the Inter-
net are growing more rapidly and have seriously threatened
our networks. It includes attempting to destabilize a network
by making machines too busy, misuse of software, and unau-
thorized access to files and privileges. Intrusion detection
is a technology that intelligently monitors events occurring
in a computer system or a network and analyzes them for
any sign of violation of the security policies. The goal of an
intrusion detection system (IDS) is to ensure the availabil-
ity, integrity, and confidentiality of a network information
system. Network intrusion detection can be considered as a
classification problem, where the basic goal of a classifier is
to separate anomalous network traffic from the normal one.
Intrusion detection techniques fall into two main categories:
misuse detection and anomaly detection. Inmisuse detection,
the IDS analyzes the information it gathers and compares it
with large databases of attack signatures.When a novel attack
appearswhose signatures are not identified by the system, it is
treated as anormal traffic,while in anomalydetection; there is
a clear boundary between intrusive and normal traffic.When-
ever a network connection deviates from the normal behavior,
it is considered as abnormal or anomalous network connec-
tion. Anomaly detection systems can detect novel attacks but
have a high false positive rate, whereas a misuse detection
system cannot detect new attacks.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-017-0971-8&domain=pdf

668 Cluster Comput (2018) 21:667–680

A decision tree (DT) is a set of nodes that process the
given data and return a binary decision (Yes or No) on the
basis of the decision made by the condition associated with
that node. Based on the decision made, either the left or the
right child of that node is given the input vector and the asso-
ciated function is applied. This process continues until the
leaf node is encountered and the final decision is made as
Yes or No. Among various tree classifiers, a decision tree is
appreciated for its simplicity and better classification accu-
racy.ADTcan also be pruned to getmore generalized results.
Replacing some of the sub-trees of aDTwith leaves is known
as tree pruning. An un-pruned tree may lead to over-fitting
the training data, which may result in poor predictive per-
formance. Pruning is a widely used technique in the field of
machine learning. A general observation is that a pruned tree
leads to more generalized results as compared to un-pruned
trees in case of noisy data. Due to the long history and intense
interest in this approach, several surveys on decision trees are
available in the literature [1–3].

There are two main approaches towards DT pruning:
pre-pruning and post-pruning. DT pruning can be done by
following any of these approaches. In pre-pruning, the tree is
restricted not to be full grown before it perfectly classifies the
training set. Onemethod is to set up a threshold for each sam-
ple when arriving at the node; the other is to set up a threshold
and restrict each expansion if the system performance is less
than the predefined threshold. In pre-pruning, there is no need
to grow a full tree. Post-pruning has two stages: fitting and
pruning. First, the full decision tree is allowed to be grown by
over-fitting the training data. Then, this fully-grown tree is
pruned to achieve at least these two goals: (1) to improve the
general classification accuracy, and (2) to reduce the tree size.
In practice, post-pruning methods have better performance
than pre-pruning methods. Post-pruning has been used by
a number of researchers in the literature. A minimal cost
complexity pruning (MCCP) is presented in [4]. A continu-
ity correlation based binomial distribution algorithm, namely
pessimistic error pruning (PEP), is presented by Quinlan in
[5], which provides more realistic error rate instead of the
optimistic error rate in the training set. Reduced error prun-
ing (REP) technique that finds the smallest version of the
most accurate sub-tree is presented in [6], but this technique
actually over-prunes the tree. A recent approach called cost
and structural complexity (CSC) pruning is presented in [7]
that takes care of both the classification accuracy and the
structural complexity of the resulting tree.

This paper attempts to address the problem of network
intrusion detection using a combination of soft computing
techniques. The proposed technique is a hybrid approach in
which binary particle swarm optimization (PSO) algorithm
is used for the decision tree pruning, and the pruned decision
tree is then used for classification of the network intrusions.
The paper mainly focuses on the classification improvement

on the KDD99Cup dataset, because a well-pruned decision
tree results in improved classification accuracy and reduced
training time. In this work, we use post-pruning technique
for the network intrusion detection problem. We initially let
the tree to be fully-grown and then an evolutionary tech-
nique i.e., PSO, is applied to prune this tree with a focus on
reduced tree size and improved performance. Both single and
multi-objective PSO algorithms are applied and their results
are presented in the paper. We also demonstrate the results
without tree pruning. We compare our results with seven
other state-of-the-art classification techniques. Our results
demonstrate the power of the optimized tree-pruning algo-
rithm, where a set of arbitrarily selected nodes in a decision
tree results in improved accuracy and reduced false positive
rate.

The remainder of the paper is organized as follows: The
related work is discussed in Sect. 2. In Sect. 3, single and
multi-objective PSO algorithms are presented. Section 4
elaborates the proposedwork. Experimental setup alongwith
results and discussion are presented in Sect. 5. Finally, Sect.
6 concludes the paper with possible future directions.

2 Related work

In order to investigate the problem of network intrusion
detection, researchers have used various types of meth-
ods over the past few years. A classification rule-mining
algorithm using artificial immune systems (AIS) and fuzzy
systems is presented in [8]. An evolutionary approach using
artificial ant clustering and K-PSO clustering to network
security is presented in [9]. In [10], the authors proposed
an easy and efficient selfish cognitive radio attack detection
technique, called COOPON. A lightweight intrusion detec-
tion framework, integrated for clustered sensor networks, is
presented in [11]. The authors also provided algorithms to
minimize the triggered intrusion modules in clustered wire-
less sensor networks. In [12] and [13], authors presented two
approaches for network intrusion detection where single and
multi-objective optimization approaches are used for feature
selection, and random forests algorithm is used for attacks
classification. These approaches have the ability to find a
set of arbitrary features that cannot be found otherwise. The
set of features found this way results in improved classifica-
tion accuracy. Different attacks have different connections,
as some of the attacks have few network connections such as
U2R andR2L;whereas othersmay have hundreds of network
connections such as DoS and U2R [14]. There are different
feature values for normal and attack connections in the packet
header, and the packet contents can be used as signatures for
the intrusion detection. In [15], the KNN classifier is used to
classify the suspicious data patterns, which are grouped into
clusters to trace the anomaly. In [16], the authors propose an

123

Cluster Comput (2018) 21:667–680 669

optimal feature selection algorithm based on a local search
algorithm by applying k-means clustering algorithm to the
training data set to measure the goodness of a feature subset
as a cost function. The performance of the proposed algo-
rithm is evaluated by performing comparisons with a feature
set containing 41 features over the NSL-KDD data set using
a multi-layer perceptron neural network. In [17], a diversity-
based centroidmechanism is used for the problemof network
intrusion detection. In [18], a hybrid technique is developed
usingmulti-objective PSO andRandomForests for the detec-
tion of PROBE attacks in a network. Recently, authors in [19]
proposed fuzziness based semi-supervised learning approach
by utilizing unlabeled samples along with supervised learn-
ing algorithm to improve the performance of the classifier for
the intrusion detection problem. For this purpose, they used a
single hidden layer feed-forward neural network (SLFN) to
give a fuzzy membership vector, where the fuzzy quantity is
used for the sample categorization on unlabeled samples.

Data mining techniques have been applied for various
problems by a number of research projects [20–22]. ADAM
[20] and MADAM ID [22] employ association rule mining
algorithms. In [21], the authors proposed class-balanced or
data-balanced systems of nested dichotomies (ECBND or
EDBND). Using C4.5 as a base learner, they show that run-
time can be improved especially on problems with many
classes without compromising the classification accuracy. In
[23], the authors proposed a hybrid classifier based on deci-
sion table/naïve Bayesian and investigated a naive Bayesian
rankingmethod by combining naïveBayeswith the induction
of decision tables. At each point in the search, the algorithm
evaluates the merit of dividing the attributes into two dis-
joint subsets: one for the decision table, and the other for
naïve Bayes. A forward-selection search is used, where at
each step, selected attributes are modeled by naïve Bayes,
and the remaining are modeled by the decision table. In [24],
Jiang et al. proposed a simple, efficient, and effective dis-
criminative parameter learningmethod, called discriminative
frequency estimate (DFE). They aimed to turn the generative
parameter learningmethod i.e., frequency estimate (FE), into
a discriminative one by injecting a discriminative element
into it. DFE discriminatively computes frequencies from
data, and then estimates parameters based on the appropri-
ate frequencies. In [25], Chebrolu et al. proposed ensemble
of Bayesian networks (BN) and classification and regres-
sion trees (CART) that combines the complementary features
of the base classifiers. Their ensemble approach basically
exploits the differences in misclassification and improves the
overall performance. In [26], the authors introduced PSO for
k-nearest neighbors (k-NN) classification by making adjust-
ments to the Euclidean distance formula in the original k-NN
classification algorithm and added weight to each feature.

Decision tree is another widely used classification tech-
nique that is found effective in disciplines such as data

mining, machine learning, and pattern recognition. Decision
trees are also implemented for many real-world applica-
tions. Although there are a number of other classification
techniques available such as genetic algorithm, neural net-
works, Bayesian belief networks, support vector machines,
etc., DT is appreciated for its efficiency, accuracy, sim-
ple structure, and wide applicability on real-time problems.
Recently, different improvements have been suggested for
the DTs in [27–29]. One of the most successful methods
used in decision tree construction is pruning. In [30–34], var-
ious decision tree pruningmethods are compared. The results
indicate that some methods (such as cost-complexity prun-
ing, reduced-error pruning etc.) tend to over-prune, whereas
other methods (like error-based pruning, pessimistic-error
pruning, and minimum-error pruning) bias towards under-
pruning. A simple decision tree pruning method known as
reduced-error pruning has been suggested byQuinlan in [33].
In this method, each internal node is checked whether replac-
ing it with the most frequent class reduces the tree’s accuracy
while traversing over the internal nodes from the bottom to
the top. This procedure continues until further pruning results
in accuracy depletion. Four different methods are described
and compared on a test-bed of decision trees from different
domains.

In [35], Niblett and Bratko proposed the minimum-error
pruning algorithm. It performs bottom-up traversal of the
internal nodes. In each node, it compares the probability-
error rate estimation with and without pruning. Guaranteeing
optimality algorithm, called optimal pruning (OPT), was
introduced by Bohanec and Bratko in [36]. They found
the optimal pruning based on dynamic programming. An
improvement ofOPT calledOPT-2was proposed byAlmual-
lim [37], which also performed optimal pruning using
dynamic programming. Since the pruned tree is habitually
much smaller than the initial tree and the number of internal
nodes is smaller than the number of leaves, OPT-2 is usually
more efficient than OPT in terms of computational complex-
ity. Rissanen [38], Quinlan and Rivest [39], and Mehta et al.
[40] used the minimum description length (MDL) for evalu-
ating the generalized accuracy of a node. In this method, the
size of the decision tree is measured by the number of bits
required to encode the tree. The decision tree encoded with
fewer bits is preferred by MDL.

All the above tree-pruning algorithms have an intrinsic
limitation of not analyzing an arbitrary combination of tree
nodes (either branch or leaves) while performing the prun-
ing steps. They all follow some kind of linear node pruning
methodology (pruning single node at a time) on the basis of
some quality measure, which stops further pruning the tree
when the performance (in terms of classification accuracy)
starts to deteriorate.

In this study, we propose an optimized tree-pruning algo-
rithm to overcome the limitations of already implemented

123

670 Cluster Comput (2018) 21:667–680

tree pruning algorithms. Instead of using a kind of greedy
approach used by the previous tree pruning techniques, the
proposed algorithm being an optimization technique, tries
the arbitrary combinations of branch nodes and in this way,
creates a smaller tree (lesser nodes) with better classification
accuracy. The proposed algorithm being a swarm-based opti-
mization technique can be easily parallelized so as to achieve
better performance in a reasonable time.

3 Binary particle swarm optimization

PSO was originally developed by Kennedy and Eberhart to
solve the real-valued optimization problems. Later on, to
extend the real-valued version of PSO to a binary/discrete
space, they proposed a binary PSO (BPSO) method [41],
because many optimization problems are discrete in nature
and have qualitative distinctions between variables and levels
of variables.

In BPSO, the position of each particle is represented by
Xp = {Xp1, Xp2, . . . ,Xpn} (where n is the number of parti-
cles) in the binary string form and is randomly generated; the
bit values 0 and 1 represent a non-selected and selected fea-
ture, respectively. The velocity of each particle is represented
by Vp = {Vp1,Vp2, . . . ,Vpn}. The initial velocities in the
particles are probability limited to a range of {0.0∼1.0}. In
BPSO, once the adaptive values pbest and gbest are obtained,
the features of the respective particles can be tracked with
regard to their position and velocity. Each particle is updated
according to the following equations:

V new
pd = w ∗ V old

pd + c1 ∗ rand1(pbestpd − Xold
pd)

+c2 ∗ rand2(gbestpd − Xold
pd) (1)

i f V new
pd /∈ (Vmin, Vmax) thenV

new
pd

= max
(
min

(
Vmax , V

new
pd

)
, Vmin

)
(2)

S(V new
pd) = 1/(1 + e−V new

pd) (3)

i f (rand < S(V new
pd))then(Xnew

pd = 1)else(Xnew
pd = 0) (4)

Equation (1) is the velocity update equation in which new
velocity for a particle is calculated by adding three factors;
current velocity, local best position of the particle so far, and
the global best position of the swarm. In case ofw∗V old

pd , the
particle’s current velocity is multiplied by the inertia weight
that is linearly decreasing so as to reduce the particle’s veloc-
ity over time. In the expression c1∗rand1(pbestpd − Xold

pd),
the particle’s current position is subtracted from the local
best position in order to attract it towards its best ever

position. In case of c2 ∗ rand2(gbestpd − Xold
pd), the par-

ticle’s current position is subtracted from the global best
position so as to attract it towards the swarm’s best ever
position. In Eq. (1), w is the inertia weight; c1 and c2
are acceleration parameters; and rand, rand1, and rand2
are the three independent random numbers between [0, 1].
V new
pd and V old

pd are the new and old velocities of the par-
ticles respectively. Xnew

pd is the particle’s updated position;

whereas Xold
pd is the particle’s old position. In Eq. (2), par-

ticle velocities of each dimension are tried to a maximum
velocity Vmax. If the sum of accelerations causes the veloc-
ity of that dimension to exceed Vmax, then the velocity
of that dimension is limited to Vmax. The updated fea-

tures are calculated by the function S
(
V new
pd

)
in Eq. (3).

If S
(
V new
pd

)
is larger than a randomly generated number

that is within {0.0∼1.0}, then its position value is repre-
sented by 1 (which means that this feature is selected as a

required feature for the next update). If S
(
V new
pd

)
is smaller

than a randomly generated number that is within {0.0∼1.0},
then its position value is represented by 0 (which means that
this feature is not selected as a required feature for the next
update).

3.1 Multi-objective particle swarm optimization

In single-objectivePSO, the global best particle is determined
easily by selecting the particle with the best position. Eqs.
(1), (2), (3), and (4) are used to update a particle’s veloc-
ity, calculate its bit value using sigmoid function, and update
its position respectively. Since multi-objective optimization
problems (MOPs) yield not a single optimal solution but a
set of Pareto optimal solutions in which one objective cannot
be improved without sacrificing the other objectives; there-
fore, for the practical implementation, one solution must
be selected among the set of Pareto optimal solutions. In
this case, a compromised solution (one that satisfies differ-
ent goals to some extent) can be the best candidate for the
selection. The Pareto based approach utilizes the concepts
of Pareto dominance in determining the set of solutions [42].
Pareto concepts allow for the determination of a set of optimal
solutions in MOPs. Since MOPs have a possibly uncount-
able set of solutions, which when evaluated, produce vectors
whose components represent trade-offs in the decision space;
a key Pareto concept, Pareto dominance, is defined mathe-
matically as presented in [43].

3.2 Pareto dominance for the minimization problem

A vector u is said to dominate another vector v if and only if
u is partially less than v; i.e., ∀i ∈ {1, . . . , k}, ui ≤ vi

∧ ∃i ∈
{1, . . . , k}: ui < vi. A set of solutions within the search space

123

Cluster Comput (2018) 21:667–680 671

whose corresponding objective vector components cannot be
improvedwithout sacrificing any objective vector component
of any other solution, is said to be a Pareto optimal set. A
non-dominated solution is one that performs better than all
the other solutions in at least one objective.

4 Proposed technique

In this paper, we present a decision tree pruning technique
using PSO algorithm for the network intrusion detection
problem. We use a binary particle to select branches of the
tree that are not to be pruned. Both the single-objective opti-
mized decision-tree pruning (SO-DTP) and multi-objective
optimized decision-tree pruning (MO-DTP) approaches are
used.

Initially, a full tree is allowed to be grown, and then PSO
is applied to prune this tree. In this technique, a competition
among the branch nodes of the tree is established. The root
node and the leaves are not part of the competition. The ini-
tial swarm of the PSO algorithm is a random binary bit-string
of 1’s and 0’s. The number of 1’s and 0’s in every particle
is equal to the number of branch nodes in the UDT. A sepa-
rate pruned decision tree is created against every particle in
the swarm. The binary value 1 means that the branch node
is selected, whereas binary 0 in the bit-string means that the
respective branch node will not be selected for the resulting
tree. In this way, most of the decision trees created by the
particle’s population will have some missing branch nodes
as compared to the UDT. The tree with missing branch nodes
is considered as a pruned tree and is used for the classifica-
tion of KDD99Cup network intrusions dataset. The intrusion
detection rate (IDR) and false positive rate (FPR) are the two
objectives that are to be optimized by the PSO algorithm.
We propose two approaches i.e., SO-DTP and MO-DTP to
optimize single and two objectives respectively.

In case of SO-DTP, IDR is the only objective to be
achieved. IDR is defined as the rate at which the classi-
fier correctly classifies the intrusive records. So, higher the
IDR, betterwould the performance of the classifier.MO-DTP
algorithm deals with more than one objective function simul-
taneously. IDR and FPR are the two competing objectives,
whichweattempt to optimize usingMO-DTPalgorithm. IDR
is the rate of correctly classified attacks whereas FPR is the
rate atwhich attacks aremisclassified as normal traffic. These
two objectives are inversely proportional to each other in
nature and therefore, improvement in the performance of one
objective function may result in decline in the performance
of the other objective function. However, the MO-DTP algo-
rithm tries to balance both the objectives in a sense that both
the objectives are satisfied to some extent and one objective
function is not optimized by completely ignoring the other
objective function.

4.1 Structure of a decision tree

In case of SO-DTP, we create a single swarm of n particles
with the dimensions of each particle equal to the number
of branch nodes in the initial decision tree. The initial deci-
sion tree is created from the training dataset without pruning.
We call this initial decision tree the un-pruned decision tree
(UDT), as shown in Fig. 1. In case of MO-DTP, we create
two swarms with n particles in each swarm with dimensions
of each particle equal to the number of branch nodes in the
initial decision tree.

4.2 Tree pruning

Tree pruning can be well understood with the help of an
example. Consider an unpruned tree. From top to bottom,
we mark every branch node of the tree with a numeric value.
We now store these numbers in a list, which we call branch
node list (BNL), as shown in Fig. 2.

BNL is a vector, which helps in creating the particles of
PSO. The number of branch nodes in BNL decides the length
of every particle, which is 36 in our case. Consider a binary
particle whose bit string is shown in Fig. 3. The value 1 at
any position means that the respective branch node from the
BNL is selected, whereas 0 at any position means that the
respective node from the BNL is not selected. For example,
in this case, 0 in first, fourth, sixth, and seventh position etc.,
means that the branch nodes 2, 7, 9, 12 and so on, are not
selected, as shown in Fig. 4. (Compare Figs. 2, 4).

The structure of a typical decision tree (DT) during the
pruning process is shown in Fig. 5, where x represents an
attribute; for example, x23 represents 23rd attribute in the
dataset, which is the root node of this tree.

Unlike other tree pruning techniques, our algorithm does
not prune in top-down or bottom-up fashion or prune a single
node at a time.Rather, it prunes a set of arbitrary branch nodes
at a time and checks whether it can improve the classifica-
tion accuracy in this way. Every binary particle is initialized
randomly based on the number of branch nodes in the BNL.
If there are n branch nodes in the BNL, then every particle
will have n binary values. The binary value 1 at a certain
position in a particle’s position vector means that the respec-
tive branch node of the BNL is not pruned, whereas 0 means
pruning of the respective branch node of the BNL. To evalu-
ate a particle’s fitness, a temporary tree is created by copying
the UDT but excluding those branch nodes whose respec-
tive binary value is 0 in the particle. This temporary tree will
have the root node plus those selected branch nodes whose
respective binary value is 1 in the particle, plus the leaf nodes
associated with selected branch nodes. This pruned decision
tree will most probably be having less number of branch
nodes as compared to the UDT or at most, they will be equal.
The root node and the leaf nodes are not part of the branch

123

672 Cluster Comput (2018) 21:667–680

Decision tree for classification
 1 if x23<44.5 then node 2 elseif x23>=44.5 then node 3 else attack
 2 if x39<0.225 then node 4 elseif x39>=0.225 then node 5 else normal
 3 if x6<2 then node 6 elseif x6>=2 then node 7 else attack
 4 if x5<44053 then node 8 elseif x5>=44053 then node 9 else normal
 5 class = attack
 6 class = attack
 7 if x3<46 then node 10 elseif x3>=46 then node 11 else normal
 8 if x37<0.47 then node 12 elseif x37>=0.47 then node 13 else normal
 9 if x3<21.5 then node 14 elseif x3>=21.5 then node 15 else attack
10 class = normal
11 class = attack
12 if x8<0.5 then node 16 elseif x8>=0.5 then node 17 else normal
13 if x6<20.5 then node 18 elseif x6>=20.5 then node 19 else attack
14 class = normal
15 class = attack
16 if x35<0.92 then node 20 elseif x35>=0.92 then node 21 else normal
17 class = attack
18 if x40<0.97 then node 22 elseif x40>=0.97 then node 23 else attack
19 class = normal
20 if x10<25 then node 24 elseif x10>=25 then node 25 else normal
21 if x3<48.5 then node 26 elseif x3>=48.5 then node 27 else attack
22 class = attack
23 class = normal
24 if x36<0.995 then node 28 elseif x36>=0.995 then node 29 else normal
25 if x1<17 then node 30 elseif x1>=17 then node 31 else attack
26 class = attack
27 class = normal
28 if x1<35051 then node 32 elseif x1>=35051 then node 33 else normal
29 if x5<333 then node 34 elseif x5>=333 then node 35 else normal
30 class = attack
31 class = normal
32 if x29<0.125 then node 36 elseif x29>=0.125 then node 37 else normal
33 class = attack
34 if x5<24 then node 38 elseif x5>=24 then node 39 else normal
35 if x23<3 then node 40 elseif x23>=3 then node 41 else attack
36 class = attack
37 if x11<0.5 then node 42 elseif x11>=0.5 then node 43 else normal

38 if x4<3.5 then node 44 elseif x4>=3.5 then node 45 else normal
39 if x37<0.115 then node 46 elseif x37>=0.115 then node 47 else normal
40 if x6<163 then node 48 elseif x6>=163 then node 49 else attack
41 class = normal
42 if x17<0.5 then node 50 elseif x17>=0.5 then node 51 else normal
43 class = attack
44 if x3<21.5 then node 52 elseif x3>=21.5 then node 53 else normal
45 class = attack
46 if x38<0.09 then node 54 elseif x38>=0.09 then node 55 else normal
47 class = attack
48 class = attack
49 class = normal
50 if x1<14847.5 then node 56 elseif x1>=14847.5 then node 57 else normal
51 if x33<6 then node 58 elseif x33>=6 then node 59 else normal
52 class = attack
53 class = normal
54 class = normal
55 class = attack
56 if x33<6.5 then node 60 elseif x33>=6.5 then node 61 else normal
57 class = normal
58 class = attack
59 class = normal
60 if x40<0.11 then node 62 elseif x40>=0.11 then node 63 else normal
61 if x36<0.825 then node 64 elseif x36>=0.825 then node 65 else normal
62 if x5<6.5 then node 66 elseif x5>=6.5 then node 67 else normal
63 class = attack
64 if x36<0.315 then node 68 elseif x36>=0.315 then node 69 else normal
65 class = normal
66 class = normal
67 if x5<320.5 then node 70 elseif x5>=320.5 then node 71 else normal
68 class = normal
69 if x34<0.295 then node 72 elseif x34>=0.295 then node 73 else normal
70 class = normal
71 if x5<450.5 then node 74 elseif x5>=450.5 then node 75 else normal
72 class = attack
73 class = normal
74 class = attack
75 class = normal

Fig. 1 Textual representation of a completely unpruned decision tree

Fig. 2 Branch node list of the UDT

Fig. 3 Position of 1’s and 0’s in a binary particle

Fig. 4 Selected branch nodes

node selection competition. If, by chance, a branch node is
not selected (dropped) in the resultant (pruned) tree, then all
of its descendent nodes are also dropped. Now this pruned
temporary decision tree is used to classify the records. The
structure of a final pruned tree is shown in Fig. 6.

The fitness of every particle in the PSO algorithm is cal-
culated by classifying the test dataset using the pruned tree
created by that particle. The evaluation is carried out on the
basis of IDR in case of SO-DTP, and IDR and FPR in case
of MO-DTP approaches. In this way, the evolution of par-
ticles continues until a stopping condition is met. To deal
with multi-objective optimization problem, we use vector

evaluated particle swarm optimization (VEPSO) technique
proposed by Parsopoulos and Vrahatis [44] based on vector
evaluated genetic algorithm (VEGA) developed by Schaffer
[45]. As there are two separate swarms where each swarm
tries to optimize a single objective function, there are two
global best particles, one from each swarm. Our proposed
multi-objective PSO algorithm involves the steps shown in
Fig. 7.

We use sigmoid function to calculate the presence of a
particular branch node in the resulting tree. If the value
of S(V new

pd) is greater than a randomly generated number
between 0 and 1, then it is set to 1, which means that
the respective branch node is selected. And if the value of
S(V new

pd) is less than the randomly generated number, then
it is set to 0, which means that this particular branch node is
not selected. The flowchart of the algorithm is shown in Fig.
8.

4.3 Fitness function

Two functions are used to evaluate the fitness in the proposed
algorithm. In SO-DTP technique, the only objective is IDR,
whereas in MO-DTP, the two objectives are IDR and FPR.

123

Cluster Comput (2018) 21:667–680 673

Fig. 5 A decision tree in the
middle of pruning process a
Textual representation and b
Graphical representation

1 if x23<47.5 then node 2 elseif x23>=47.5 then node 3 else attack
 2 if x38<0.085 then node 4 elseif x38>=0.085 then node 5 else normal
 3 if x6<2 then node 6 elseif x6>=2 then node 7 else attack
 4 if x10<0.5 then node 8 elseif x10>=0.5 then node 9 else normal
 5 if x33<204.5 then node 10 elseif x33>=204.5 then node 11 else attack
 6 if x32<83 then node 12 elseif x32>=83 then node 13 else attack
 7 class = normal
 8 if x36<0.995 then node 14 elseif x36>=0.995 then node 15 else normal
 9 if x5<1067 then node 16 elseif x5>=1067 then node 17 else attack
10 class = attack
11 class = normal
12 class = normal
13 class = attack
14 if x8<0.5 then node 18 elseif x8>=0.5 then node 19 else normal
15 class = normal
16 if x5<137 then node 20 elseif x5>=137 then node 21 else normal
17 class = attack
18 if x35<0.98 then node 22 elseif x35>=0.98 then node 23 else normal
19 class = attack
20 class = attack
21 class = normal
22 class = normal

(a)

(b)

IDR and FPR are calculated according to the assumptions
[46], as given in Eqs. (5) and (6) respectively.

Intrusion Detection Rate (IDR) = (TP / (TP + FN)) ∗ 100

(5)

False Positive Rate (FPR) = (FP / (FP + TN)) ∗ 100 (6)

where,
True Positive (TP) = truly classified attacks
False Positive (FP) = normal records misclassified as

attacks
True Negative (TN) = truly classified normal records

False Negative (FN) = attacks misclassified as normal
records

IDR is the number of successfully detected intrusive
records from the total number of intrusive records, whereas
FPR is the number of misclassified normal records as attacks
from the total number of normal records. An intrusion is
detected by the classifier whenever a network connection
deviates from the normal behavior.

The velocity and position of each particle in the proposed
multi-objective PSO algorithm is updated by the following
equations:

S1.vi j (t + 1) = wS1.vi j (t) + c1r1 j (t)(S1.yi j (t)

−S1.xi j (t)) + c2r2 j (t)(S2.
�
yi (t) − S1.xi j (t)) (7)

123

674 Cluster Comput (2018) 21:667–680

Fig. 6 A decision tree after
pruning a Textual representation
and b Graphical representation

1 if x23<47.5 then node 2 elseif x23>=47.5 then node 3 else attack
 2 if x38<0.085 then node 4 elseif x38>=0.085 then node 5 else normal
 3 if x6<2 then node 6 elseif x6>=2 then node 7 else attack
 4 class = normal
 5 if x33<204.5 then node 8 elseif x33>=204.5 then node 9 else attack
 6 if x32<83 then node 10 elseif x32>=83 then node 11 else attack
 7 class = normal
 8 class = attack
 9 class = normal
10 class = normal
11 class = attack

(a)

(b)

Fig. 7 Algorithm of the
proposed technique 1. Specify the input parameters and the upper and lower boundaries of each variable.

2. Initialize position and velocity of each particle randomly.
3. Based on the position of 1’s in a particle’s position vector, select the branch nodes from un-

pruned DT to be a part of the resultant DT.
4. Test the pruned DT on test dataset.
5. Update the particle’s velocity for particles of swarm 1 and 2 according to the equations 1

and 2 respectively. Also update their position vectors according to equation 4.
6. Update local best and global best values for both swarms.
7. Increment the iteration counter i = i+1.
8. If stopping criteria met then go to step 9 else go to step 3.
9. Return non-dominated particles along with fitness parameter values.

S2.vi j (t + 1) = wS2.vi j (t) + c1r1 j (t)(S2.yi j (t)

−S2.xi j (t)) + c2r2 j (t)(S1.
�
y j (t) − S2.xi j (t)) (8)

Sk(vi j) = 1/(1 + e−vi j) (9)

i f (rand < Sk(vi j))then(Xi j = 1)else(Xi j = 0) (10)

We use sigmoid function to calculate the presence of a partic-
ular branch node in the resulting tree. If the value of S(V new

pd)

is greater than a randomly generated number between 0 and
1, then it is set to 1, which means that the respective branch

node is selected, and if the value of S(V new
pd) is less than the

randomly generated number, then it is set to 0, which means
that this particular branch node is not selected. The various
PSO parameters are explained in Table 1.

5 Experimental setup and results

For our experiments, the classification results of CBND [47],
DTNB [23], DMNBtext [24], CART-BN [25], CART [4], J48
(C4.5) [5], and REPTree [48] are obtained by using Weka
[49], which is a data mining tool, whereas the decision tree
pruning using single and multi-objective PSO algorithms is

123

Cluster Comput (2018) 21:667–680 675

Randomly ini�alize binary swarm
equal to branch nodes in DT

Select respec�ve branch node
having 1 in par�cle binary vector

Create a pruned decision tree
based on selected branch nodes

Train pruned tree on training data

Test pruned tree on test data and
calculate fitness

Update par�cle’s velocity and
posi�on vectors

Return non-dominated par�cles
that represent pruned decision tree

Fitness increased?

Termina�on
condi�on met?

Yes

Yes

No

No

Fig. 8 Flow chart for decision tree pruning

Table 1 PSO parameters

Parameters Description

S1, S2 Swarm 1 and 2 respectively

Sk Current swarm 1 or 2

vi j Velocity of particle i in dimension j

t Current iteration

w Inertia weight

c1,c2 Cognitive and social acceleration constants
for local and global exploration
respectively

r1, r2 Random numbers between 0 and 1

xi j Current position of particle i in dimension j

Xi j New position of particle i in dimension j

yi j Local best position of particle i in
dimension j

yi Global best position

implemented using MATLAB on 1.73 GHz Core 2 PC. On
all optimization runs, the population size is set to 40 for each
swarm and maximum number of iterations is set to 100.

5.1 Dataset

The dataset used in our experiments is KDD99Cup 10%
labeled dataset. This dataset consists of separate training
and test datasets. Training set consists of 494,021 records,
whereas test dataset contains 311,029 records. There are 41
attributes and one class label in both the datasets. A sample
packet level information is shown in Table 2.

5.2 Preprocessing

Training dataset contains 23 types of records, where 1 is
normal and the rest are 22 types of attacks, whereas test
dataset contains 38 types of records, where 1 is normal and
the rest are 37 types of attacks, as shown in Table 3. Test
dataset contains more attacks as compared to the training
dataset. The records in both datasets are then assigned to two
major classes (Normal and Attack).

5.3 Sampling

Thirty random samples of the datasets are selected from 10%
KDD99Cup training and test datasets. The number of records
in each training and test datasets are 24000 and 12000 respec-
tively. The distribution of normal records and attacks in each
random dataset are shown in Table 4.

5.4 Results

Thirty random datasets are used to evaluate the performance
of different tree classifiers. The results are shown in Tables
5 and 6. The results are calculated for the following per-
formance parameters like IDR, FPR, classification accuracy,
precision, tree nodes count (tree size), time consumed during
classification (in seconds), and cost of classifying attacks.

We used IDR and FPR for the optimization of a deci-
sion tree in case of MO-DTP. We compared our results with
seven other classification techniques including some state-
of-the-art ensemble and tree classifiers that also involve the
tree-pruning step. DTNB and DMNBtext being rule-based
classifiers, do not create the trees, and therefore, have no
node count values, as shown in Tables 5 and 6.

To see the improvement in classification accuracy by
involving the pruning step, we also mention the results
without involving the tree pruning step, which we call No-
Pruning. Here, we discuss the performance of the above
techniques on the basis of best and average results separately.

123

676 Cluster Comput (2018) 21:667–680

Table 2 Sample packet level information

Serial no. Data attribute Data samples Serial no. Data attribute Data samples

1 2 1 2

1 duration 0 0 22 is_guest_login 0 0

2 protocol_type Tcp Icmp 23 count 6 511

3 service http ecr_i 24 srv_count 32 511

4 flag SF SF 25 serror_rate 0.00 0.00

5 src_bytes 296 1032 26 srv_serror_rate 0.00 0.00

6 dst_bytes 402 0 27 rerror_rate 0.00 0.00

7 land 0 0 28 srv_rerror_rate 0.00 0.00

8 wrong_fragment 0 0 29 same_srv_rate 1.00 1.00

9 urgent 0 0 30 diff_srv_rate 0.00 0.00

10 hot 0 0 31 srv_diff_host_rate 0.12 0.00

11 num_failed_logins 0 0 32 dst_host_count 26 255

12 logged_in 1 0 33 dst_host_srv_count 255 255

13 num_compromised 0 0 34 dst_host_same_srv_rate 1.00 1.00

14 root_shell 0 0 35 dst_host_diff_srv_rate 0.00 0.00

15 su_attempted 0 0 36 dst_host_same_src_port_rate 0.04 1.00

16 num_root 0 0 37 dst_host_srv_diff_host_rate 0.03 0.00

17 num_file_creations 0 0 38 dst_host_serror_rate 0.00 0.00

18 num_shells 0 0 39 dst_host_srv_serror_rate 0.00 0.00

19 num_access_files 0 0 40 dst_host_rerror_rate 0.00 0.00

20 num_outbound_cmds 0 0 41 dst_host_srv_rerror_rate 0.00 0.00

21 is_host_login 0 0 42 Class normal attack

Table 3 Attacks in the dataset

Dataset Attack type

Training Back, land, Neptune, pod, smurf, teardrop, Ipsweep,
nmap, portsweep, satan, Buffer_overflow, loadmodule,
perl, rootkit, F8tp_write, guess_passwd, imap,
multihop, phf, spy, warezclient, warezmaster

Test Apache2, back, land, mailbomb, neptune, pod,
processtable, smurf, teardrop, udpstorm, Ipsweep,
mscan, nmap, portsweep, saint, satan,
Buffer_overflow, loadmodule, perl, ps, sqlattack,
rootkit, xterm, Ftp_write, guess_passwd, httptunnel,
imap, multihop, named, phf, sendmail, snmpgetattack,
snmpguess, warezmaster, worm, xlock, xsnoop

5.4.1 Best results

Best results achieved by the different classifiers are shown
in Table 5. IDR is the rate at which the attacks are cor-
rectly classified. If a classifier achieves a high IDR, it means
that it is detecting more attacks correctly. The highest IDR
achieved by the SO-DTP is 92.71%, whereas MO-DTP
stands at 2nd position with 92.6% IDR. IDR achieved by the
non-evolutionary algorithms remain below 92%. Due to the
stochastic search capability, both the SO-DTP and MO-DTP
algorithms achieve the highest IDR and therefore, the ratio

of the difference between evolutionary and non-evolutionary
classifiers is almost 1:6.

FPR is the rate at which normal records are misclassi-
fied as attacks. Therefore, if an algorithm achieves low FPR,
it means that it classifies the normal network traffic more
accurately. In our case,MO-DTP algorithm achieves 0.136%
FPR,which is the lowest, whereasDTNB (a decision tree and
naïve Bayesian hybrid classifier) achieves 2nd lowest FPR,
which is 0.2%. The SO-DTP algorithm achieves 0.819%
FPR, which is very high as compared to the FPR achieved
by MO-DTP algorithm. This is because the SO-DTP algo-
rithm only optimizes the single objective that is IDR, so it
completely ignores the FPR. DMNBtext algorithm has good
IDR but on the other hand, it has the highest FPR, i.e., 7.6%,
which is more than 10 times higher than any other classi-
fier.

Accuracy of an algorithm is calculated by dividing the
correctly classified data items with the total data items clas-
sified.MO-DTP algorithm achieves the highest classification
accuracy that is 96.65%.REPTree algorithmachieves the 2nd
highest accuracy, which is 93.36%. Precision is the propor-
tion of the true positives against all the positive results. In our
case, it is the amount of correctly classified attacks divided by
the total attacks classified. Almost all the classifiers achieved
above 99%precision, except DMNBtext classifier, which has

123

Cluster Comput (2018) 21:667–680 677

Table 4 Records distribution in
training and test datasets

Random datasets Training dataset Test dataset

Normal records Attack records Normal records Attack records

1 4782 19218 2369 9631

2 4831 19169 2320 9680

3 4606 19394 2274 9726

4 4738 19262 2266 9734

5 4795 19205 2292 9708

6 4637 19363 2337 9663

7 4881 19119 2359 9641

8 4973 19027 2273 9727

9 4692 19308 2361 9639

10 4730 19270 2250 9750

11 5269 18731 2318 9682

12 4662 19338 2276 9724

13 4893 19107 2252 9748

14 4537 19463 2391 9609

15 4705 19295 2365 9635

16 4998 19002 2279 9721

17 4687 19313 2259 9741

18 4721 19279 2386 9614

19 4904 19096 2270 9730

20 4789 19211 2292 9708

21 4738 19262 2384 9616

22 4978 19022 2468 9532

23 4623 19377 2242 9758

24 4840 19160 2388 9612

25 4761 19239 2372 9628

26 5037 18963 2154 9846

27 4874 19126 2337 9663

28 4754 19246 2243 9757

29 4792 19208 2256 9744

30 4680 19320 2487 9513

Table 5 Best performance of
the classifiers

Classifier IDR% FPR% Accuracy% Precision% Node count Time (s) Class. cost

CBND 91.3 0.5 92.87 99.90 29 2.95 0.071

DTNB 91.2 0.2 92.77 99.90 – 568.59 0.072

DMNBtext 91.9 7.6 91.7 98.10 – 0.15 0.083

CART-BN 91.7 0.3 93.2 99.90 14 12.32 0.068

J48(C4.5) 91.3 0.5 92.87 99.90 17 2.56 0.0774

CART 91.8 0.3 93.22 99.90 27 9.14 0.0818

REPTree 92 0.5 93.36 99.90 23 0.78 0.0794

No-Pruning 91.81 0.457 93.25 99.88 47 0.702 0.0675

SO-DTP 92.713 0.819 91.94 99.89 26 128.93 0.081

MO-DTP 92.6 0.136 96.65 99.98 8 383.58 0.033

Bold values indicate the best performance (results) by the classifiers

123

678 Cluster Comput (2018) 21:667–680

Table 6 Average performance
by the classifiers

Classifier IDR% FPR% Accuracy% Precision% Node count Time(s) Class. cost

CBND 91.02 0.8 92.596 99.78 39.4 3.46 0.074

DTNB 90.6 0.46 92.346 99.88 – 629.75 0.077

DMNBtext 91.46 8.9 91.394 97.73 – 0.172 0.086

CART-BN 90.97 0.64 92.594 99.81 31.9 14.672 0.073

J48(C4.5) 91.02 0.8 92.591 99.78 37.8 2.959 0.0741

CART 90.94 0.62 92.572 99.83 35.4 10.265 0.0743

REPTree 91.16 0.77 92.716 99.81 28.8 0.84 0.0728

No-Pruning 91.17 0.821 92.724 99.78 56.2 0.9672 0.073

SO-DTP 91.765 2.7429 91.69 99.83 42.1 196.53 0.083

MO-DTP 91.563 0.201 93.53 99.957 10.8 408.154 0.065

Bold values indicate the best performance (results) by the classifiers

the lowest precision value, i.e., 98.10%. The proposed MO-
DTP algorithm is very precise in classifying the attacks with
a precision value of 99.98%.

Node count represents the size of the tree. Higher node
count means a bigger tree and lower node count value means
a smaller tree. The classification time taken by a smaller tree
is less than the classification time taken by a bigger tree. The
smallest node count of the proposed MO-DTP algorithm is
8 nodes, which is almost half of the least node count value
obtained by any other classifier.

The total time taken by a classifier in training and test-
ing the dataset is measured in terms of seconds. DMNBtext,
a naïve Bayesian classifier, consumed the shortest time
i.e., 0.15 seconds in training and testing the dataset. The
proposed (SO-DTP and MO-DTP) algorithms, being evo-
lutionary techniques, took a long time to train and test. The
classification cost in our case is the cost associated with clas-
sifying the attacks. Less classification cost means the better
classifier. The classification cost associatedwith the proposed
MO-DTP approach is least and is 0.033, whereas the 2nd
least classification cost that is 0.0675, which is achieved by
the decision tree with no-pruning.

From the above experimental results, we conclude that the
proposedMO-DTPapproach performedbest in 5 out of 7 per-
formancemeasures. Althoughwe did not attempt to optimize
all the performance measures, it was the better search capa-
bility of the PSO algorithm and the multi-objective approach
that took care of more than one objective function simulta-
neously.

5.4.2 Average results

The average performance of the classifiers is shown in Table
6. On average, all the classifiers achieved above 90% IDR but
SO-DTP algorithm achieved the highest IDR i.e., 91.76%,
whereasMO-DTPalgorithmstands next to theSO-DTPalgo-
rithm with 91.56% IDR.

The average FPR achieved by the MO-DTP algorithm is
0.201%,which is the lowest, whereasDTNB classifier stands
2nd by achieving 0.46% average FPR. Two classifiers; SO-
DTP and DMNBtext, show high average FPR, i.e., 2.74 and
8.9 respectively. The average classification accuracy of all
the classifiers ranges from 91 to 93% but the proposed MO-
DTP approach achieved the highest average classification
accuracy i.e., 93.53%.

The highest precision on average is achieved by the MO-
DTP approach, i.e., 99.95%, whereas rest of the classifiers
managed to achieve the precision between 99.78 and 99.88%
on average except DMNBtext that has 97.73% average pre-
cision.

On average, the MO-DTP algorithm has the least node
count value of 10.8, which is almost 3 times less than any
other classifier’s node count. The decision tree with no prun-
ing grows the full tree and does not prune it; therefore, it has
the highest average node count of 56.2. The average classi-
fication times (including training and testing) of the DTNB
classifier and the proposed (SO-DTP and MO-DTP) clas-
sifiers are very high as compared to rest of the classifiers.
The classification cost of the MO-DTP algorithm to classify
attacks is least on average, which means that the MO-DTP
algorithm classifies the normal traffic with highest accuracy.
The average performance trend of the proposed MO-DTP
algorithm is same as that of the best performance trend. It
achieved the highest performance on average for the same
parameters for which it achieved the best performance.

6 Conclusion

In this paper, we used the standard particle swarm opti-
mization (PSO) algorithm with single and multi-objective
perspectives to prune a decision tree. This pruned decision
tree classifier is then used for the detection of anomalous net-
work connections. Ten classifiers from different categories

123

Cluster Comput (2018) 21:667–680 679

like tree-based, rule-based, evolutionary, and Bayesian are
used for this purpose including the proposed approaches.
From the results, we conclude that multi-objective optimized
decision tree pruning (MO-DTP) approach suits best formin-
imizing the overall tree size. On average, it reduced the tree
size up to three times as compared to any other tree classi-
fier used. In addition to the minimum tree size, the MO-DTP
approach also achieved minimum false positive rate (FPR)
with lower classification cost, whereas it maximized the
intrusion detection rate (IDR), classification accuracy, and
the precision. The single-objective optimized decision tree
pruning (SO-DTP) approach achieved highest IDR at the
expense of the 2nd highest FPR, which means that it has
a high rate of misclassification of the normal traffic. The pro-
posed MO-DTP approach did not increase or decrease any
objective at the cost of the other objective, whereas it cre-
ated a balance among the goals to be achieved; therefore,
it stood best in most of the performance measures. Because
of the arbitrary node selection capability of the proposed
approaches, the tree is very well pruned such that it avoided
over-fitting and resulted in more generalized trees. By using
these generalized trees for classifying attacks, a significant
improvement in the performance is observed.

Acknowledgements The authors would like to extend their sincere
appreciation to the Deanship of Scientific Research at King Saud Uni-
versity for its funding of this research through the Research Group
Project no. RGP-214.

References

1. Safavin, S.R., Landgrebe, D.: A survey of decision tree classi-
fier methodology. IEEE Trans. Syst. Man Cybern. 21(3), 660–674
(1991)

2. Murthy, S.K.: Automatic construction of decision trees from data:
a multidisciplinary survey. Data Min. Knowl. Disc. 2(4), 345–389
(1998)

3. Kohavi,R.,Quinlan, J.R.:Decision-tree discovery, In:Handbookof
DataMining andKnowledgeDiscovery,Klosgen,W., Zytkow, J.M.
(eds.),ch. 16.1.3, pp. 267–276. Oxford University Press, London,
UK (2002)

4. Breiman, L., Friedman, J., Olshan, R., Stone, C.: Classification and
Regression Trees. Wadsworth International, California (1984)

5. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers, Inc, California (1993)

6. Quinlan, J.R.: Simplifying decision trees. Int. J. Man-Mach. Stud.
27, 221–234 (1987)

7. Wei, J.M., Wang, S.Q., Yu, G., Gu, L., Wang, G.Y., Yuan, X.J.:
A Novel method for pruning decision tree. In: Proceedings of the
Eighth International Conference on Machine Learning and Cyber-
netics, Baoding, 12–15 July 2009

8. Alves, R.T., Delgado, M.R.B.S., Lopes, H.S., Freitas, A.A.: An
Artificial Immune System for Fuzzy-rule Induction in Data Min-
ing. Lecture Notes in Computer Science, pp. 1011–1020. Springer,
Berlin (2004)

9. Srinoy, S., Kurutach, W.: Combination Artificial Ant Clustering
and K-PSO Clustering Approach to Network Security Model. In:

IEEE International Conference on Hybrid Information Technology
(ICHIT’06) (2006)

10. Jo, M., Han, L., Kim, D., In, H.P.: Selfish attacks and detection in
cognitive radio ad-hoc networks. IEEE Netw. 27(3), 46–50 (2013)

11. Hai, T.H., Huh, E.N., Jo, M.: A lightweight intrusion detection
framework for wireless sensor networks. Wirel. Commun. Mob.
Comput. 10(4), 559–572 (2010)

12. Malik, A.J., Shahzad, W., Khan, F.A.: Binary PSO and random
forests algorithm for PROBE attacks detection in a network. In:
IEEE Congress on Evolutionary Computation (CEC 2011), New
Orleans, USA, pp. 662–668, 5–8 June 2011

13. Malik, A.J., Shahzad, W., Khan, F.A.: Network intrusion detec-
tion using hybrid binary PSO and random forests algorithm. Secur.
Commun. Netw. 8(16), 2646–2660 (2015)

14. Guo, L. et al.: Robust Prediction of Fault-Proneness by Random
Forests. In: Proceedings of the 15th International Symposium on
Software Reliability Engineering (ISSRE’04), pp. 417–428, Brit-
tany, France, November (2004)

15. Punithavathani, D.S., Sujatha, K., Jain, J.M.: Surveillance of
anomaly and misuse in critical networks to counter insider threats
using computational intelligence. Clust. Comput. 18(1), 435–451
(2015)

16. Kang, S., Kim, K.J.: A feature selection approach to find optimal
feature subsets for the network intrusion detection system. Clust.
Comput. 19(1), 325–333 (2016)

17. Gondal, M.S., Malik, A.J., Khan, F.A.: Network Intrusion Detec-
tion using Diversity-based Centroid Mechanism. In: 12th Interna-
tional Conference on Information Technology: New Generations
(ITNG 2015), Las Vegas, Nevada, USA, 13–15 April 2015

18. Malik, A.J., Khan, F.A.: AHybrid Technique usingMulti-objective
Particle Swarm Optimization and Random Forests for PROBE
Attacks Detection in a Network. In: IEEE Conference on Systems,
Man, and Cybernetics (SMC 2013), Manchester, UK, 13–16 Octo-
ber 2013

19. Ashfaq, R.A.R., Wang, X., Huang, J.Z., Abbas, H., He, Y.:
Fuzziness based semi-supervised learning approach for intrusion
detection system. Inf. Sci. 378, 484–497 (2017)

20. Barbarra, D., Couto, J., Jajodia, S., Popyack, L., Wu, N.: ADAM:
Detecting Intrusions by Data Mining. In: Proceedings of the 2001
IEEE, Workshop on Information Assurance and Security T1A3
1100 United States Military Academy, West Point, NY, June 2001

21. Random Forests: http://www.stat.berkeley.edu/~breiman/Random
Forests/

22. Lee, W., Stolfo, S.J.: A framework for constructing features and
models for intrusion detection systems. ACM Trans. Inf. Syst.
Secur. 3(4), 227–261 (2000)

23. Hall, M., Frank, E.: Combining Naive Bayes and Decision Tables.
In: Proceedings of Twenty-First International Florida Artificial
Intelligence Research Society Conference, AAAI Press, Coconut
Grove, Florida, USA , pp. 318–319 15–17 May 2008

24. Su, J., Zhang,H., Ling, C.X.,Matwin, S.: Discriminative Parameter
Learning for Bayesian Networks. In: Proceedings of the 25th inter-
national conference on Machine learning, pp. 1016–1023. New
York, USA (2008)

25. Chebrolu, S., Abraham, A., Thomas, J.P.: Feature deduction and
ensemble design of intrusion detection systems. Int. J. Comput.
Secur. 24, 295–307 (2005)

26. Wu, Q., Liu, H., Yan, X.: Multi-label classification algorithm
research based on swarm intelligence. Clust. Comput. 19(4), 2075–
2085 (2016)

27. Mahmood, A.M., Rao, K.M., Reddi, K.K.: A novel algorithm for
scaling up the accuracy of decision trees. Int. J. Comput. Sci. Eng.
2(2), 126–131 (2010)

28. Jin, C., De-lin, L., Xiang, M.F.: An Improved ID3 Decision Tree
Algorithm. In: Proceedings of 4th International Conference on
Computer Science & Education, pp. 127–130 (2009)

123

http://www.stat.berkeley.edu/~breiman/RandomForests/
http://www.stat.berkeley.edu/~breiman/RandomForests/

680 Cluster Comput (2018) 21:667–680

29. Tsang, S., Kao, B., Yip, K.Y., Ho, W.S., Lee, S.D.: Decision trees
for uncertain data. IEEE Trans. Data Eng. 23(1), 441–444 (2009)

30. Esposito, F., Malerba, D., Semeraro, G.: A comparative analysis
of methods for pruning decision trees. IEEE Trans. Pattern Anal.
Mach. Intell. 19(5), 476–492 (1997)

31. Breslow, L.A., Aha, D.W.: Simplifying decision trees: a survey.
Knowl. Eng. Rev. 12(1), 1–40 (1997)

32. Xizhao, W., Ziying, Y.: A brief survey of methods for decision tree
simplification. Comput. Eng. Appl. 40(27), 66–69 (2004)

33. Quinlan, J.R.: Simplifying decision trees. Int. J. Man-Mach. Stud.
27, 221–234 (1987)

34. Mingers, J.: An empirical comparison of pruningmethods for deci-
sion tree induction. Mach. Learn. 4(2), 227–243 (1989)

35. Niblett, T., Bratko, I.: Learning decision rules in noisy domains, in
Expert Systems. Cambridge Univ. Press, Cambridge, MA (1986)

36. Bratko, I., Bohanec,M.: Trading accuracy for simplicity in decision
trees. Mach. Learn. 15, 223–250 (1994)

37. Almuallim, H.: An efficient algorithm for optimal pruning of deci-
sion trees. Artif. Intell. 83(2), 347–362 (1996)

38. Rissanen, J.: Stochastic Complexity and Statistical Inquiry. World
Scientific, Singapore (1989)

39. Quinlan, J.R., Rivest, R.L.: Inferring decision trees using the mini-
mumdescription length principle. Inf. Comput.80, 227–248 (1989)

40. Mehta, R.L., Rissanen, J., Agrawal, R.: Mdl-based decision tree
pruning. In: Proc. 1st Int. Conf. Knowledge Discovery and Data
Mining, pp. 216–221 (1995)

41. Kennedy, J., Eberhart, R.C.:Adiscrete binary version of the particle
swarm algorithm. IEEE Int. Conf. Syst.ManCybern. 5, 4104–4108
(1997)

42. Fonseca, C.M., Fleming, P.J.: Multiobjective Optimization. In:
Evolutionary Computation 2 Advanced Algorithms and Operators,
Back, T., Fogel, D.B., Michalewicz, Z. (eds.) 2, pp. 25–37 (2000)

43. Veldhuizen, D.A.V.: Multiobjective Evolutionary Algorithms:
Classifications, Analyses, and New Innovations, Ph.D. thesis,
Department of Electrical and Computer Engineering. Graduate
School of Engineering. Air Force Institute of Technology, Wright-
Patterson AFB, Ohio (1999)

44. Parsopoulos, K.E., Vrahatis, M.N.: Particle Swarm Optimization
Method in Multiobjective Problems. In: Proceedings of the ACM
Symposium on Applied Computing, pp. 603–607 (2002)

45. Schaffer, J.D.:Multiple Objective Optimizationwith Vector Evalu-
ated Genetic Algorithms. In: Proceedings of the First International
Conference on Genetic Algorithms, pp. 93–100 (1985)

46. Sarasama, S.T., Zhu, Q.A., Huff, J.: Hierarchical Kohonen net for
anomaly detection in network security. IEEE Trans. Syst. Man
Cybern. Part B 35(2), 302–312 (2005)

47. Dong, L., Frank, E., Kramer, S.: Ensembles of Balanced Nested
Dichotomies for Multi-class Problems. In: PKDD, pp. 84–95
(2005)

48. Witten, I.H., Frank, E., Hall,M.A.:DataMining: PracticalMachine
Learning Tools and Techniques, 3rd edn. Morgan Kaufmann, San
Francisco (2011)

49. WEKA Data Mining Software: http://www.cs.waikato.ac.nz/~l/
weka/

Arif Jamal Malik is cur-
rently working as an Assis-
tant Professor at the Depart-
ment of Software Engineering,
Foundation University, Islam-
abad, Pakistan. He did his M.S.
and Ph.D. in Computer Sci-
ence from National University
of Computer and Emerging Sci-
ences, Islamabad, Pakistan, in
2008 and 2014 respectively. His
research interests include Evo-
lutionary Computation, Swarm
Intelligence, Network Security,
and Machine Learning. He has

several publications in prestigious international journals and confer-
ences.

Farrukh Aslam Khan is an
Associate Professor at the Cen-
ter of Excellence in Information
Assurance (CoEIA), King Saud
University, Riyadh, Saudi Ara-
bia. He did his M.S. in Com-
puter System Engineering from
GIK Institute of Engineering Sci-
ences and Technology, Pakistan,
andPh.D. inComputerEngineer-
ing from Jeju National Univer-
sity, South Korea, in 2003 and
2007 respectively. He has also
done professional trainings from
Massachusetts Institute of Tech-

nology (MIT), New York University, IBM, and other professional
organizations. He has over 70 publications in refereed international
journals and conferences. His research interests include Cyber Secu-
rity, Body Sensor Networks, E-health, Bio-inspired and Evolutionary
Computing, and Internet of Things (IoT). Dr. Khan is the founding
director of Wireless Networking and Security (WiNGS) research group
at National University of Computer and Emerging Sciences (NUCES),
Islamabad, Pakistan. He has successfully supervised two Ph.D. students
and sixteen M.S. theses students. Several Ph.D. students are currently
working under his supervision. He has served asAssociate Editor, Guest
Editor, and Reviewer for various reputed international journals. He has
also served as co-organizer and TPCmember of numerous international
conferences and workshops. He is a Senior Member of the IEEE.

123

http://www.cs.waikato.ac.nz/~l/weka/
http://www.cs.waikato.ac.nz/~l/weka/

	A hybrid technique using binary particle swarm optimization and decision tree pruning for network intrusion detection
	Abstract
	1 Introduction
	2 Related work
	3 Binary particle swarm optimization
	3.1 Multi-objective particle swarm optimization
	3.2 Pareto dominance for the minimization problem

	4 Proposed technique
	4.1 Structure of a decision tree
	4.2 Tree pruning
	4.3 Fitness function

	5 Experimental setup and results
	5.1 Dataset
	5.2 Preprocessing
	5.3 Sampling
	5.4 Results
	5.4.1 Best results
	5.4.2 Average results

	6 Conclusion
	Acknowledgements
	References

