Cluster Comput (2018) 21:1189-1202
https://doi.org/10.1007/s10586-017-0941-1

@ CrossMark

SearchaStore: fast and secure searchable cloud services

Wai-Kong Lee!

- Raphael C.-W. Phan? - Geong-Sen Poh® - Bok-Min Goi*

Received: 14 June 2016 / Accepted: 22 May 2017 / Published online: 4 July 2017

© Springer Science+Business Media New York 2017

Abstract The emergence of Cloud Computing is revolu-
tionizing the way we store, query, analyze and consume
data, which also bring forward other development that fun-
damentally changed our life style. For example, Industry
4.0 and Internet of Things (IoT) can improve the quality
of manufacturing and many aspects in our daily life; both
of them rely heavily on the cloud computing platform to
develop. Central to this paradigm shift is the need to keep
any common data, often held at remote outsourced locations
and usually to be accessed by different authorized parties,
secure from being leaked to unauthorized entities. When
using the cloud services, consumer may want to encrypt
sensitive data before uploading it to the cloud, but this will
also eliminate the possibility to search the data efficiently
in the cloud storage. A more practical solution to this is to
employ a searchable encryption scheme in the cloud storage,
so that user can query the encrypted data efficiently without
revealing the sensitive data to the service provider. Besides
the security and search features, performance of searchable

DI Wai-Kong Lee
dexter6855 @hotmail.com; wklee @utar.edu.my

Raphael C.-W. Phan
raphael @mmu.edu.my

Geong-Sen Poh
gspoh@mimos.my

Bok-Min Goi
goibm@utar.edu.my

Faculty of Information and Communication Technology,
Universiti Tunku Abdul Rahman, Kampar, Malaysia

Faculty of Engineering, Multimedia University, Cyberjaya,
Malaysia

3 MIMOS Berhad, Kuala Lumpur, Malaysia

Lee Kong Chian Faculty of Engineering and Science,
Universiti Tunku Abdul Rahman, Sungai Long, Malaysia

encryption schemes is also very important when it comes
to practical applications. In this paper, we propose several
techniques to accelerate the search performance of encrypted
data stored on the cloud. Notably, our techniques include
massively parallel file encryption, multi-array keyword red
black tree (KRBT) implementation, batched keyword search
and enhanced parallel search in KRBT. To the best of our
knowledge, SearchaStore is the first work that attempts to
accelerate searchable encryption using GPU technology.

Keywords Cloud service - Secure outsourcing - Keyword
Red Black Tree - Searchable symmetric encryption

1 Introduction
1.1 Problem statement

The advancement of Cloud Computing is producing sig-
nificant impact in our daily life in the past decade. Some
of the influential examples of this advanced technology are
health services [1], cloud manufacturing [2], asset tracking
[3], security [4], personalized entertainment [5] and power
grid monitoring [6]. With such massive amounts of heteroge-
neous data often comes the need for more centralized storage
hosted by organisations which have more capabilities and
resources for storage and computation, something not all
organisations can afford to set up and maintain on their own.
Therefore, outsourcing data to third party cloud storage sys-
tems to provide real time and ubiquitous access is one of the
current industrial trends. However, the collected data and the
analysis generated subsequently are sensitive information for
many organizations, which should be protected from unau-
thorized access, including the cloud storage service provider
itself. In view of this, security plays a vital role [7] in the

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-017-0941-1&domain=pdf
http://orcid.org/0000-0003-4659-8979

1190

Cluster Comput (2018) 21:1189-1202

next generation of the Cloud Computing, to protect the out-
sourced data from various malicious attacks internally and
externally. This is crucial, such that industrial secrets can be
safeguarded from competitors, or that the personal customer
related information is kept private and confidential.

One of the effective solutions to protect the sensitive data
in the cloud services is by encryption. However, with this
the user can no longer search the data in the cloud effec-
tively, since the encrypted data is already scrambled and
randomized. In contrast, searchable encryption scheme can
be employed to secure the sensitive data in the cloud and
provide the convenience to search efficiently. Hence, the per-
formance of searchable encryption is of utmost importance
for practical applications. This is true especially for cloud
storage servers which potentially service numerous clients
and therefore need to process and respond to queries without
unnecessary delay. In this paper, we present SearchaStore, a
GPU accelerated searchable encryption solution that is capa-
ble to achieve impressive search performance with 1.4 ms in
a 535MB dataset for single keyword search.

1.2 Searchable encryption

Searchable encryption schemes can enable the search ability
to be provided for cloud-based data stores without compro-
mising the confidentiality of the stored information, which
potentially could include industrial secrets or confidential
customer data. Some schemes such as searchable symmetric
encryption (SSE) are designed based on symmetric prim-
itives [10-23] for data encryption and some specific data
structures to hold the encrypted indexes.

There are some searchable encryption schemes designed
based on public-key mechanisms [24], which rely heavily
on computationally expensive number theory. Searchable
encryption schemes can also be constructed based on general
primitives such as oblivious RAM [25] and homomorphic
encryption [26]. Compared to other constructs (based on
asymmetric primitives, ORAM or homomorphic encryp-
tion), symmetric primitives are usually more light weight
and suitable for parallel implementation.

On the other hand, the GPU (graphics processing unit)
with massively parallel architecture has recently emerged
rapidly as an effective accelerator for accelerating many
computationally extensive algorithms. In view of the huge
computational power of the GPU, we are interested to investi-
gate the potential of improving SSE performance by utilizing
this cost-effective and energy-efficient platform for secure
outsourced storage.

Porting these SSE constructions to the GPU platform is
non-trivial as the GPU exhibits memory structure and execu-
tion model that are very different from the CPU platform. To
harvest the processing power of the GPU for high speed SSE,
substantial work is needed to design the implementation care-

@ Springer

fully for optimized performance. Successful application of
GPU technology to accelerate SSE could greatly improve the
practicality of searchable encryption for cloud storage, which
is also the main motivation of this work. From our experimen-
tal results, SearchaStore, the optimized GPU implementation
of SSE (based on Kamara et al. [21]) is able to achieve search
efficiency of 16.9x greater than the multi-core CPU.

1.3 Overview of searchable symmetric encryption

In this section, we introduce a generic system model of SSE
and the development of SSE to date. In general, SSE envi-
ronment consists of a group of users and a server (or storage
provider). The user has sensitive information that he wishes
to store in a remote storage. He uses a SSE scheme to encrypt
the data and build encrypted index structure, which is then
stored in the remote storage. The encrypted index structure
can be used to retrieve sensitive data securely. It may be con-
structed based on the following elements:

(i) A keyword index list.
(i) A list of document/pointer to document matching the
keyword indexes.
(iii)) A masking mechanism to preserve the privacy of the
keyword (or document) index and list.

In order to search the encrypted data, an authorized user
generates a search token based on SSE scheme. The server
upon receiving this search token, retrieves the matching
encrypted indices from the encrypted index structure and
the encrypted information based on the SSE protocol. The
overall system is illustrated in Fig. 1.

SSE scheme was first introduced by Song et al. [10] by
dividing a document into fixed or variable-length words.
These words are encrypted and masked’? by bitwise
exclusive-or (XOR) with a pseudorandom bit strings. In
order to search for a document containing certain keyword,
the keyword is encrypted and used as a search token. The
remote storage server searches matching documents using

Encrypted Indexes
Encrypted Files

Data (- n
Owner/User 2 ‘z:l}\\
r =
Search Token N
>
A Lﬁ

”T«
e/ — oy o

Server

ng.’ &

Fig. 1 Generic system model of SSE

Cluster Comput (2018) 21:1189-1202

1191

the encrypted keyword by sequentially scanning through all
documents. Due to the inefficiency in searching, index-based
search mechanisms were also suggested by them to overcome
this limitation. Later on, Goh et al. [11] proposed improved
secure indexes based on Bloom filters.

More recent research on SSE scheme caters for improved
security notion [12], arbitrarily-structured data [13], scalable
updates [14,15], multi-user [16], privacy preservation [17]
and conjunctive Boolean search to improve on all previous
schemes that only cater for single keyword search, as pro-
posed by Cash et al. [18] and Moataz et al. [19]. Ranked
keyword search schemes over cloud data is proposed by Yu
et al. [20].

Recently, Kamara et al. [21] proposed to utilize Keyword
Red Black Tree (KRBT) for storing encrypted index, which
eventually allow keyword search to be completed within O(r
log n) in sequential time and O(r/p log n) in parallel time.
But the authors did not provide parallel implementation per-
formance, as also mentioned by Cash et al. [22]. The SSE
scheme proposed by Kamara et al. [21] can be generalized to
use other balanced tree (e.g. B-tree) for handling very large
dataset whereby indexes cannot fit into main memory. The
flexibility of this SSE scheme convinced us that it has poten-
tial for high speed SSE that support single keyword search.

Cash et al. [22] presented an interesting dynamic SSE
scheme that scales well for very large dataset with O(1/p)
parallel search time, where r is the number of files contain-
ing keyword and p is the number of processors. The proposed
scheme takes into consideration low-level space utilization
and I/O parallelism, which are not addressed in previous
research work.

Although there are many SSE schemes being proposed
recently, none of them had actually discussed the possibility
to utilize accelerator (e.g. GPU and FPGA) to speed up the
encryption/decryption and search process. In order to take
advantage of the raw processing power of accelerators, the
designed SSE schemes has to be parallelizable and uses data
structures that are optimized for memory access specific to
the hardware platform. The SSE scheme proposed by Cash
et al. [22] uses a data structure based on open-addressed
hash table with a specific array construct for multi-core CPU
implementation, in which adopting it to GPU is also a non-
trivial task and we intend to investigate this as a future work.

In this paper, we focus on designing efficient implementa-
tion of KRBT SSE [21] in GPU, and defer the generalization
to other tree structures as future work. It is more straightfor-
ward to extend the techniques developed in this work to other
balanced tree in GPU, compared to the specific index struc-
tures proposed by Cash et al. [22] and Naveed et al. [15]. Our
work may benefit other SSE constructions that utilized bal-
anced tree for efficient search [23], and subsequently benefit
the practical use of SSE in the consumer applications. We
denote the GPU based KRBT SSE [21] as SearchaStore in

subsequent discussion. KRBT relies heavily on symmetric
primitives and Red Black Tree (RBT) data structure, which
canrun efficiently in parallel platform. However, naive imple-
mentation of red-black-tree traversal in GPU usually yield
poor performance, due to a few reasons:

(i) Conventionally, RBT is implemented using pointers and
structure. Traversal from one node to another requires
multi levels pointer indirection, which leads to mas-
sively increased memory latency (un-coalesced global
memory access) in GPU.

(ii) Traditionally, traversal in RBT is implemented using
stack and recursive function call. It requires a stack
to record tree nodes being traversed so that we can
return to it later. However, recursive function call is only
supported in GPU with CUDA compute capability 3.5
and above (Dynamic Parallelism in CUDA terminol-
ogy). This feature only supports maximum 32 levels
of recursion, so it may not be suitable to use Dynamic
Parallelism when the KRBT level grows beyond 32.

(iii) To utilize the GPU as accelerator, we need to copy
the entire tree structure (in our case, the KRBT) from
CPU memory to GPU memory. The search traversal is
performed entirely in GPU to leverage the massively
parallel architecture for high speed search. However,
copying RBT implemented in nested pointers form is
a challenging task, as we need to traverse each node
to uncover the pointers of their child nodes, which is
requiring special design effort.

Several works on accelerating tree traversal in GPU exists in
the literature. Hughes et al. [27] proposed kd-jump to allow
implicitkd tree traversal can be done stacklessly. Kaczmarski
etal. [28] suggested to store key-value pairs in separate arrays
for fastimplementation of B+-tree in GPU. On the other hand,
Kim et al. [29] presented binary tree search techniques that
are sensitive to target architecture (CPU and GPU). KRBT
is not sorted according to any order, so the techniques pre-
sented in [28] and [29] are not directly applicable to KRBT.
Moreover, the structure and traversal algorithm of KRBT is
inherently different from kd tree, which in turn motivates us
to design efficient tree traversal for KRBT in GPU. As far as
we are concern, there is no published prior work on optimized
implementation of RBT in GPU platform.

We adopt the idea of using separate arrays for B+-tree
implementation in GPU [28] and construct our own data
structure for KRBT. The key difference between our work
and the one presented in [28] is that KRBT is not sorted
based on any order. Besides, the search process in B+-tree
returns only one node that contain the desired value, but
KRBT search process may traverse all possible nodes and
return multiple results. This highlights that significant effort

@ Springer

1192

Cluster Comput (2018) 21:1189-1202

is required to leverage the techniques developed from prior
works to accelerate KRBT in GPU.

1.4 GPU for cryptography

Recently, GPU emerged as one of the most promising plat-
forms in accelerating many algorithms, including sparse
matrix solver [30], artificial intelligence [31] and consumer
application [32]. The use of GPU in accelerating the imple-
mentation of advanced cryptographic algorithms is also
becoming popular in recent years. GPU is proposed as an
accelerator for symmetric [33] and asymmetric [34,35] cryp-
tographic primitives, which enjoy great success in boosting
the throughput of these algorithms. GPU can be used to
accelerate the index setup process for KRBT, which mainly
involves parallel implementation of symmetric primitives
(block ciphers). GPU can also accelerate the keyword search
process when the search traffic is huge. To fully utilize the
processing power of GPU, we need to carefully consider the
smart utilization of deep memory architecture in GPU, effi-
cient kernel code and the threads occupancy in GPU.

1.5 Contributions and limitations

In this paper, we focus on developing fast implementation
techniques for KRBT SSE in GPU platform. To the best of our
knowledge, we are not aware of any existing SSE schemes
designed based on GPU platform, so we only benchmark
our work against existing solutions in multi-core CPU. Our
contributions can be summarized as below:

(i) Accelerate the index setup phase by utilizing GPU for
parallel encryption. Generally, the number of keyword
is much lesser compare to the total files in dataset, so we
only focus on designing parallel file encryption scheme.
We proposed to operate block cipher in counter mode
(CTR) and perform file encryption using GPU. As file
encryption is the most time consuming part in index
setup phase, parallel encryption can greatly reduce the
time required to setup indexes for a large dataset.

(ii) Propose a new data structure to represent KRBT for effi-
cient GPU search traversal without recursive function
call. As mentioned in earlier section, RBT implemented
in nested pointers form is not suitable for implementa-
tion in GPU, due to architectural limitations in GPU.
Our new multi-array data structure is able to reduce the
uncoalesced memory accesses to GPU’s global mem-
ory.

(iii) Propose a new strategy to search batch of keywords in
KRBT concurrently using GPU. Kamara et al. proposed
parallel search algorithm in their original work [21], but
it does not fully utilize the parallel structure of KRBT.

@ Springer

We proposed to divide the KRBT into multiple sub-tree,
then assign each sub-tree to a thread in GPU. Multiple
threads can traverse the KRBT sub-tree concurrently
as they are not dependent on each other. In addition to
it, we also utilize the GPU to perform batch keyword
search, which is an extension to the original search algo-
rithm proposed by Kamara et al [21]. This is especially
useful when there are many users attempt to perform
secure search on the same dataset [12] hosted in the
cloud storage. These improvements can only be done
after implementing the KRBT in multi-array structure.

(iv) Design a mechanism to automatically select the suit-
able KRBT search accelerator (multi-core CPU or GPU)
based on search traffic. Utilizing GPU as an effective
co-processor does incurs some overhead, so we design
amechanism to select an initial threshold level based on
the hardware resource available, then schedule CPU or
GPU to perform the keyword search based on the traffic.
Our proposed techniques only focus on the static con-
struction at the moment. We do not implement the
dynamic update function offered by the KRBT SSE
proposed in [21] as we believe that improving search
efficiency of current SSE schemes are more important
to practical use.

2 Keyword red black tree

RBT is a self-balancing binary search tree commonly used in
computer science. Since RBT is a balanced tree, the insertion,
search and deletion guarantee to complete in O(log n) time,
with n represent the number of elements in tree. Kamara et al.
[21] introduced the concept of KRBT that build around the
conventional RBT. The proposed KRBT SSE is divided into
four phases: build index, encrypt index, search and update
(insert or delete).

We first briefly describe the build index process based on
KRBT, follow by the index encryption and search process.
The update process is not described in this paper as we are
only focusing on the static version of KRBT SSE. Interested
reader can refer to the original work by Kamara et al [21].

KRBT SSE make use of a private-key encryption scheme
consists of three algorithms € = (Gen, Enc, Dec). Specif-
ically, Gen(1%; r) is a probabilistic polynomial-time (PPT)
algorithm that takes a security parameter k and randomness
r and returns a secretkey K. Enc(K, msg) is PPT algorithm
that takes akey K and a message msg and returns a ciphertext
c. Dec(K, c) is a deterministic algorithm that takes a key K
and a ciphertext ¢ and returns msg if K was the correct key
that produces c.

KRBT is constructed from a set of files f = (f;,, ..., fi,)
with identifier i = (i1, ..., i,,), and a universe of keyword w =
(wi, ..., Wy,). The data structure is constructed in three steps:

Cluster Comput (2018) 21:1189-1202

1193

Fig. 2 Keyword red black tree

data v ENIEN

©

@ Bitwise Boolean OR@ @
data | I EIENED cata

Data Keyword
(m=3)

data_| nnn

User data:

1 fy A
2 f, w3
3 fs Wy, Wy
4 fs Wy, W3

i) With a set of files f, build a KRBT, T on top of the
identifier i. The leaves of T stores the pointers to the
appropriate files, and the files f are stored separately
(e.g. hard disk, SSD).

ii) Construct an m-bit wide vector data, in each internal
node u. The i-th item of data, represents the keyword
w; fori=1, ..., m. Specifically, if data,[i] = 1, then one
or more path from u to the leaves store some identifier
J» with f; contain keyword w;.

iii) For every leaf [storing identifier j, set datq;[i] = 1 if
the file f; contains keyword w;. Proceed a level up the
tree, with u be the internal node of tree T, with left child
v and right child z. data, is constructed recursively up
to the root, by using the formula below:

data, = data, + data; (D
The operation + is bitwise boolean OR operation.

With this construction, the KRBT can be searched in this
way. Assume that we are searching a keyword with posi-
tion i in the keyword universe w. Starting from the root
node, we check datay,[i] = 1 to examine if the children
(left, right or both) contain the keyword we are looking for.
When the traversal is over, return all the leaves that were
reached.

Figure 2 shows an example of KRBT with only four files
and three keywords. Assume that we are searching for key-
word wy, we first traverse through root node and found that
data,[2] = 1, indicating both paths may contain this key-
word. We then traverse to u1; and found that data,[2] =0,
so we stop traversal for this sub-tree. We continue our traver-

O, DE o

OX

BB oata

G)

NS N N
NS '@Q N,

fa f f3 fa

sal to 12 and found that data,[2] = 1, so we proceed to both
of the children nodes. Finally, the keyword w, is found in f3
and fa.

Let f = (fi,, ..., fi,) be the set of files and w be the uni-
verse of keyword. Three cryptographic primitives are used
to encrypt the KRBT:

1) pseudo-random function
G : {0, 1}F x {wy, ..., wp} — {0, 1}5;
2) Another pseudo-random function
P {0, 1}% x {wy, ..., wp)} — {0, 1}¥;
3) A random oracle H : {0, l}k x {0, 1} = {0, 1};

The processes to build index are described in detail in the
following paragraphs.

Algorithm K <« Gen(1%): This is a process to generate
keys. First generate three random k-bit strings K, K, and r.
Then instantiate a private key CPA-secure encryption algo-
rithm €. Generate K3 by calling K3 <« e.Gen(lk; r). K3 is
used for encrypting files. Set K:=(K1, K2, K3).

Algorithm (y,c¢) < Enc(K,§, f):§ bethe KRBT from the
build index process.

1) Instantiate another private key CPA-secure encryption
algorithm R. For each keyword w; derive a secret key
SK; = R.Gen(1%; Gk, (w;)), fori = 1,....m.

2) For 1 < j < n, Encrypt the files to generate ciphertexts
¢i; < €.Enc(K3, fi;). Store this ciphertexts ¢ on disk
and delete f.

3) For every node v in KRBT, T that has identifier id(v),
do the following:

@ Springer

1194

Cluster Comput (2018) 21:1189-1202

Fig. 3 Search token for
keyword w.

N
&

Three keys, K = (K,, Ky, K3)

SK, = R.Gen(1¥; Gy,(w,))
Pya(w,)

— Construct two keyword hash tables, A1, and Aqy.
Store both A1, and g, at node v;

— For i =1,...m, compute a bit value
b= H(Pk, (w;), id(v)), where data, is the vector at
node v in T. Set
Abu[Pk, (w;)] <= R.Enc(SK;, data,[i]) with the b
generated. This process is equivalent to picking one
of the two hash tables to store the actual entry for
keyword w;, based on the bit value b.

— Store a random value at Ajj_py[Pk, (w;)]

4) Delete vector datay,.
5) Output y :=T and ¢ :=(c;, ..., ¢i,)

The encrypted index can be stored in cloud server for search
and update.

Algorithm 13 < SrchToken(K, w;): Output the secret key
SK; = R.Gen(1; Gk, (w;)) and generate search token 7, =
(Pg,(w;), SK;);

Algorithm i,, < Search(y,c, 15): Parse 73 as (11, 12).
Search the KRBT from root node. Let v and z be the left and
right child of a node u. Algorithm search(u) is recursively
called to perform the following steps:

1) Output a bit b = H(r1,id(#)) and compute a =
R.Dec(ta, ApulT1]);

2) If a=0. return;

3) Ifuisaleaf, set ¢y, :=¢y, Uc,, where ¢, is the ciphertext
corresponding to file identifier u and stored at node u(we
have found the file containing keyword searched). Else
call search(v) and search(z).

The output of this algorithm is ¢,, correspond to the cipher-
texs of files containing the keyword being searched (Fig. 3).

Algorithm f; < Dec(K,c;): This process outputs the
plaintext f; = €.Dec(K3, c;)

@ Springer

. 5 T@[k(@@ 5 Pialw,)
S

SK, = R.Gen(1¥; G,,(w,))

>

3 Overview of the target platform
3.1 CUDA heterogeneous programming model

Compute Unified Device Architecture (CUDA) is developed
by NVIDIA to facilitate the use of GPU for generic com-
putations. CUDA API is able to reduce the complexity to
program GPU for general purpose computing. However, a
deeper knowledge of the GPU’s architecture, particularly
memory, threads and blocks, is crucial in order to harness
its great computational power.

In general case, CPU and GPU have their own memory
space, referred to as host memory and device memory respec-
tively. CUDA program usually follows the steps below:

(i) Allocate host and device memory respectively.

(i) Copy data from host memory to device memory.

(iii) Start kernel execution. The pointer(s) for the device
memory and some other parameters are passed to the
kernel.

(iv) Copy data from device memory back to the host when
all GPU executions are completed.

3.2 Memory hierachy

The memory hierarchy in GPU is different from the generic
CPU, due to its deep memory architecture. GPU memory
can be divided into on-chip memory and off-chip memory
with vast difference in bandwidth. Global memory is oft-chip
memory with largest capacity, but it is also the slowest. It is
used to store the data transferred from the host, accessible
by all threads in all SM. Access to Global memory needs to
be done in coalesced manner (128 bytes) in order to achieve
high performance.

Shared memory is accessible by all threads within the same
thread block. It is commonly used to hold temporal data so
that threads within the same block can exchange data.

Registers are the fastest memory in GPU, and only acces-
sible locally by each thread. There are limited register inside
a GPU, so the use of register can affect the maximum threads
that can run simultaneously.

Cluster Comput (2018) 21:1189-1202

1195

3.3 GTX980

GTX980 is a device with Maxwell architecture and compute
capability 5.2. It has 16 SMs, each of the SMs consists of
128 cores, so the total cores available are 2048. Each SM is
running at 1126Mhz. It is equipped with 4GB global mem-
ory, 64KB register file and 96KB shared memory per SM.
GTX980 also supports Dynamic Parallelism, warp shuffle
and Hyper-Q features available in Kepler (earlier genera-
tion) GPU. In this paper, GTX980 is used as a co-processor
to perform the computationally intensive computation.

4 SearchaStore implementation techniques

In this section, we provide the implementation details of
SearchaStore in heterogeneous platform consists of multi-
core CPU and many-core GPU. GPU is used as an accelerator
for certain computationally intensive algorithms. The overall
work flow of SearchaStore is described below.

Client Side:

(i) Build KRBT for a set of files, f.
(i) Encrypt KRBT and f.
(iii) Upload the encrypted KRBT and encrypted files, ¢ to
server.

Server Side:

(i) Receive the encrypted KRBT and ¢ from client.
(i) Construct multiple arrays based on the encrypted KRBT
and copy it to GPU global memory.
(iii) Accept search token from client.
(iv) Decide to search keywords with CPU or GPU based on
the proposed mechanism.
(v) Search keywords with CPU or GPU.
(vi) Return ciphertexts containing the keywords.

4.1 Build index

RBT can be implemented using record (i.e. struct) structure.
An example of RBT node structure is shown Fig. 4.

KRBT is constructed based on RBT, hence the natural
choice of implementing KRBT is to build a similar struc-
ture that allow convenient coding effort. We first construct a
KRBT with amount of leafs equals to the amount of files in
the dataset. Each leaf store the pointer to a file in the dataset.
As the construction of RBT is inherently serial, the process
does not benefit from GPU acceleration. Even though there
are some parallel RBT algorithms proposed in the literature
[43],itinvolves a lot of expensive memory operations. If GPU
is used to construct RBT, the tree structure should resides

struct rbtree_node {
struct rbtree_node *left, *right;
struct rbtree_node *parent;
enum rbcolor color;
uint64_t key;
char *data;
bool traversed;

}s

Fig. 4 Red black tree node structure.

in global memory as shared memory has very limited size
(16-96KB). The insertion and re-balancing of RBT will then
involves a lot of global memory access, which is the most
expensive operation in GPU. Moreover, the tree structure is
going to be transferred from CPU to GPU memory through
the slow PCle bus, but the construction of KRBT index only
involves very little computation. This implies that the entire
RBT build process in GPU is bound by the slow PCle bus
and global memory in GPU. In view of this, we proposed to
build index using CPU only.

4.2 Encrypt index

We generate the three master keys, K1, K> and K3 based on
the Gen algorithm in Sect. 2. Then with K, we generate a
series of secret key (SK) for each keyword (w;), as described
in Enc algorithm, step 1. This process is done in parallel
in CPU, as the number of keyword is usually much smaller
compared to the number of files in dataset, so this process is
not very computationally intensive.

However, encrypting the entire dataset (Enc, step 2) is a
time consuming process, so we propose to utilize the GPU to
accelerate this process. Firstly, we generate a random number
from PRNG in CPU as nonce; then we instantiate large pool
of GPU threads, each thread encrypting a counter block based
on the generated random number. Thread ID in each thread
is concatenated with the nonce to form the counter value
(refer to Fig.5). From the work proposed by Kamara et al.
[21], the encryption algorithm used can be any CPA-secure
block cipher (we use AES in this paper) operating in counter
mode (CTR). These encrypted counter blocks are XOR-ed
with plaintext to encrypt the entire dataset. Since block cipher
encryption in counter mode can run in parallel, it will benefit
from the massively parallel architecture in GPU [39].

Block cipher operating in CTR mode can also be used
to generate pseudo-random number. In this paper, we use
Camelia and SEED operating in CTR mode to represent the
pseudo-random function G and P. The operation to random-
ize the keyword location (Pg, (w;)) and encrypt the data,
with secret key (SK) can run in parallel as well. However,
these operations are not suitable to run in GPU, as we need

@ Springer

1196

Cluster Comput (2018) 21:1189-1202

Random
Number N
(From
PRNG in Block Block Block
CPU) Cipher Cipher Cipher
Encrypted ‘ ‘ Encrypted ‘ Encrypted
| Counter Block Counter Block ‘ | Counter Block

Plaintext

Database)

Fig. 5 CTR mode parallel encryption

to move part of the KRBT to and from GPU, which deteri-
orates the overall performance gain. Hence, we proposed to
implement this part (Enc, step 3) entirely in CPU.

4.3 Search

The random oracle H can be implemented by using HMAC,
and we use SHA-2 to generate this HMAC. It is used to
determine the bit value b.

When the dataset is getting larger, the depth of KRBT is
also increasing, which in turn caused the slower search speed.
The server may also have problem to handle huge number
of requests to search keywords simultaneously. Hence, we
propose to utilize GPU as a co-processor to accelerate the
search process.

State of the art GPU is only able to support recursive func-
tion call up to 32 levels [41], so it is not possible to implement
KRBT in pointer form in GPU when the tree level grows
beyond 32. This implies that conventional way to implement
RBT in pointer-structure form (as explained in Sect.4) in
GPU, can only work for small dataset.

To overcome this limitation, we propose to redesign
the conventional implementation of RBT by using multiple
arrays instead of pointer-structure. We proposed to store the
KRBT data structure to multiple 1-D arrays, with each array
representing one field in the original KRBT node structure.
The data representation of proposed array based KRBT is
shown in Fig. 6.

Nodel D is essentially the ‘key’ of each node. Parent,
Child_L and Child_R are used to store the location of par-
ent, left child and right child of current node. If current node
is root, the ‘parent’ field will be masked with a tag value to
indicate there is no parent node available. Similarly, if cur-
rent node is leaf node or it does not have left or right child,
the corresponding field will be masked with a tag value. Ag
and X1 are the keyword hash table used for search traversal.
History is used to keep track a traversed node.

By representing the KRBT in multiple arrays, we can per-
form traversal without using stack and recursive function call.

@ Springer

Node0 Nodel Node2 Node3 Noded

(Neded [0 [T [2 3 T[4]

[Child L | | I l | |

[Child R | | | I | |

[Parent | | | I | |

N | | | | |
b | | | | |

[History | | | | | |

Fig. 6 Data representation for multiple array KRBT

This enables us to use GPU as co-processor to accelerate the
keyword search. The new search algorithm is described in
Algorithm 1. We omit the notations of original KRBT SSE
Search in order to present the new search algorithm in array
based KRBT more clearly.

Assume w; is a keyword in a dictionary of m keywords,
with i = 1,...,m. To search for a keyword w;, the index i is
passed as input to the search module. The search process
starts from the root node and perform depth first traversal to
the left side of KRBT, until it reaches the left most leaf node
or stops when it detects the keyword does not exists in any
of the leaf nodes. Each visited node is marked as “traversed”
by setting the history bit to ‘1’. The search continues by
moving a level up, traverse to right child and continue the
depth first search for this sub-tree. This process continues
until all the nodes in left half of KRBT is checked for the
existence of w;. The search process then continues with the
right half of KRBT with the same traversal pattern. Note that
the search algorithm may not visit every nodes in KRBT to
search for wy;; it only visits the child node if the keyword
exists in one of the leaf nodes under this sub-tree. With this
search algorithm, the root node is visited for three times only.
First time when the search process starts; second time when it
finishes searching left half of KRBT, it will traverse through
the root node and visit right half of KRBT; third time when
both left and right half of KRBT are being searched. When
this condition is met, the search algorithm terminates and
return the search result(s).

The original KRBT search algorithm supports parallel
search which executed as follow. Assume there are p proces-
sors, processor 0 queries the root of KRBT 7 for a specific
keyword. If the search is to be continued on both sub-tree
T, and T,, processor 0 will continue with one sub-tree and
assign another sub-tree to processor 1. The same mechanism

Cluster Comput (2018) 21:1189-1202

1197

Algorithm 1 Search Algorithm for Array Based KRBT

Input:
Index i of keyword w; to be searched.

Output:
Indexes pointing to the files that contain searched keyword.

visitRootCount = 0;
while visitRootCount <3 do
if node=rootAdata,[i]=0 then
return
end if
if node=root then
visitRootCount++
end if
while node_left!=NULL do
if datay[i]=1 then
Mark node traversed
node=node_left
if node_left=NULLAnode_right=NULL
Adatay[i] = 1 then
Found keyword in leaf node
Save index of current node.
else
if node=left child of parent node then
Mark node not traversed.
end if
end if
end if
end while
node=node_parent
if node=root then
visitRootCount++
end if
while node_right not traversed
AvisitRootCount<4 do
Mark node_right not traversed
if node_parent!=NULL then
node=parent
end if
if node=root then visitRootCount++
end if
end while
if visitRootCount<3 then
node=node_right
Mark node traversed
if node_left=NULLAnode_right=NULL
Adatayli] = 1 then
Found keyword in leaf node
Save node index.
end if
end if
end while

> Exit condition
> root node and
> no keyword

> Left child is not null
> Depth first search

> Reach leaf node

> Finished depth first search
> Move a level up

Fig. 7 Enhanced parallel
Search in SearchaStore

is applied to both nodes u and v recursively. When there are
no more available processors (i.e. all processors are working
actively), the current processor selects one of the children to
continue, mark the other child ¢ as “unexplored” and push ¢
into local stack. After all p processors finished the first round
execution, each processor starts over second round by pop-
ping a node ¢ from the local stack. This process repeats until
all files containing the keyword being search are retrieved.
In this paper, we enhanced the search algorithm to map
better to multi-processor architecture. Again, we assume that
there are p processors available, but we do not start searching
from the root of KRBT. Instead, we start traversal at level ,/p
from the root, by breaking the KRBT 7 into multiple sub-tree
T; with i = 1,....p. Each processor p is assigned a sub-tree T;,
so they can search with their own sub-tree in parallel.
Figure 7 illustrates the enhanced parallel search algorithm.
Assume that there are four available processors (p = 4), the
search process starts at level 2 (,/p = 2) from the root. Sub-
tree 121, 122, 123 and r24 are assigned to one of the four
processors respectively, and the search can run in parallel.
This algorithm only suitable for array based KRBT, as the
data of relevant node can be obtained before traversal starts
by calculating the corresponding index. As for conventional
pointer-structure approach, the tree traversal must start from
the root node in order to reach a particular node.
Implementing KRBT in multiple arrays also helps in opti-
mizing the memory access throughput. Since we are using
multiple threads to search a keyword, each thread within a
warp (32-threads) access the adjacent memory locations to
read required data concurrently, so the global memory traffic
is optimized. Refer to Fig. 8 for an illustrated example, thread
Ty to Ty access Nodel D stored in contiguous memory loca-
tion, resulting coalesced memory access. This technique only

To Ta T2 Tn
[NodeD J[O |1 [2 [[N]
[Child L [156 [189 [356 | X |
[Child R [157 [190 [357 | | X+1 |

Fig. 8 Coalesced memory access in SearchaStore

Root

Assssns erssnns . T

seadesnnsns . T Terrsnns .

D r22
gr34 QrSS ~)36 9r37 9r38

@ Springer

1198

Cluster Comput (2018) 21:1189-1202

works for initial stage of the KRBT tree traversal. When the
traversal process continues, this effect diminishes slowly,
as the child of each node points to various locations that
might not be adjacent to each other. However, this tech-
nique is able to improve the global memory access pattern
compare to implementing KRBT in single array, whereby
coalesced global memory access is almost impossible to
obtain.

We implemented the new search algorithm in CPU
(OpenMP) and GPU (CUDA). For implementation in CPU,
each OpenMP thread represents one processor and assigned
a sub-tree. Multiple threads traverse the sub-tree in parallel to
search for a keyword, and the result is returned immediately
after all threads finished their search. Assume that there are N
keyword search requests in the queue; the proposed parallel
search is repeated N times to ensure all the keywords in the
queue is searched.

For implementation in GPU, we designed the system to
handle batch keyword search. CUDA required the program-
mer to organize the thread pool in blocks and threads. For
GPU with compute capability 5.2, the maximum allowable
thread within a block is 1024, so we assign each block to con-
tain 1024 threads; each thread is assigned a sub-tree to search
in parallel. In addition, we also launch multiple blocks and
assign one keyword to each block. With this arrangement, the
GPU can search multiple keywords simultaneously, which is
an improvement to the original search algorithm proposed
in [21]. To implement this, we need to insert multiple His-
tory arrays (refer Fig.6) into the KRBT data structure for
every node. This introduces insignificant memory overhead
to the original data structure. For search algorithm in GPU,
the result of keywords search will be returned only when all
blocks had finished searching keywords, which is different
compare to CPU version.

In general, we need to load the GPU with sufficient tasks in
order to fully utilize its processing power. Moreover, trans-
ferring the encrypted KRBT to GPU memory is also time
consuming. Considering this limitation, we only utilize GPU
for fast parallel search when the traffic of keyword search is
heavy. When the traffic is low, we proposed to search the
keyword with multi-core CPU only. This also corresponds to
the typical industrial scenario whereby the query traffic may
differ between various applications [8,9] and changes from
time to time.

The overall execution steps for SearchaStore are illus-
trated in Fig. 9.

We proposed a mechanism to automatically select CPU
or GPU for keyword search, based on the search traffic. Ini-
tially, we pick a threshold level R, based on the hardware
resources available in the computing platform (number of
CPU hardware threads). When R < R, the software selects
CPU to perform keyword search; else it will perform key-
word search in GPU. This simple mechanism may not work

@ Springer

Yo
Parallel Search /Determlne Rc\ f

(OpenMP) /
Check if R>R¢
Single Keyword, ‘ |

\
Iterative Search. \ /
\

Copy Encrypted
KRBT to GPU.

Copy SK: and Pyi(w;)
to GPU

Multiple Keywords,
Parallel Search
(CUDA)

Copy Search Result
\ ToCPU
N

4

Fig. 9 Execution steps in SearchaStore

for all conditions, as the overhead of using GPU (moving data
between CPU and GPU) is potentially affected by the traffic
of PCI-e bus. If the PCI-e bus is occupied by other peripher-
als at the time we move data between CPU and GPU, it will
limit the performance of keyword search in GPU; searching
keywords with CPU may yield better performance in this
situation. To resolve this issue, R. can be calculated on-line
based on Algorithm 2.

Algorithm 2 Accelerator Selection Mechanism for Searcha-

Store
Input:
R.: Threshold level
Ryep: Threshold adjusting step
R: Number of keyword search request
T,p: Time interval to update R,
Variable:
Teyr: Current counter
Tgpu: Time taken for GPU to complete keyword search
Tepu: Time taken for CPU to complete keyword search

R, = number of CPU hardware threads
Tewr =0
if 7oy < T, then
if R < R. then
Perform parallel keyword search in CPU
else
Perform parallel keyword search in GPU
end if
Teur = Teur + 1 > Increase counter
else > Update R,
Perform parallel keyword search in GPU
Perform parallel keyword search in CPU
Calculate Ty, and T, respectively.
if Tepy < Tgpy then > CPU search faster, increase R,
R. =R, + Rstep

> Within time interval

else > GPU search faster, decrease R,
R.=R. - Rstep
end if
Tewr =0 > Reset counter

end if

Cluster Comput (2018) 21:1189-1202

1199

Initially, R, is assigned to a value equivalent to the number
of CPU hardware threads. Ryep and T, are set to a default
value based on user’s preference. The system selects acceler-
ator to perform keyword search based on the traffic input R
and threshold R.. The system performs a performance check
for every Ty, elapsed to evaluate which accelerator (CPU or
GPU) is performing better, based on current threshold R,
and adjusting R. accordingly. The value for 7, should not
be too small as it will affect the overall search performance by
performing updates too frequently. At the same time, Ryep
needs to be chosen appropriately so that R, does not get
changed too fast or too slow.

5 Results and discussion
5.1 Experimental setup and dataset

We present SearchaStore with the proposed techniques to
accelerate KRBT using C language in Windows 8.1. We
used CUDA SDK 7.5 for GPU computing and OpenSSL
for general purpose cryptographic computation (HMAC).
The experiments run on a workstation equipped with Intel
Core(TM) i7-4790K (4.0 GHz) which has 4 cores and sup-
ports 8 parallel threads, 32GB RAM and 4TB SATA Hard
Disk. The GPU used is NVIDIA GTX980 with compute
capability 5.2.

We use the latest Enron email dataset [36] with 517,452
files and 1.32 GB in size. We extracted a subset of emails
(256,000 files, 535 MB in size) containing total 16,770,000
unique file/keyword pairs.

SearchaStore utilizes the GPU’s massively parallel archi-
tecture for fast index encryption and highly parallel keyword
search. We do not consider the communication cost (upload
encrypted index and search tokens) involved as we believed
it is very much affected by the local network speed. All the
client side and server side computations are executed within
the same workstation. However, in actual usage the client
side (build index, encrypt index and search token generation)
and server side (search keywords) are executed in separate
machines.

5.2 Index construction

Index construction includes the steps to build and encrypt
index. In this experiment, the index is build using CPU and
encrypt using GPU to utilize its massively parallel archi-
tecture for fast computation. Fig. 10 shows the time taken
to build and encrypt index for SearchaStore, expressed as
the cost per file/keyword pair. The lower file/keyword pair
leads to higher cost of index construction, as the cost is not
amortized over as many pairs in this case. The index construc-

300

200

100

Time per file/keyword pair (us)

32e+3 128e+3 512e+3 2e+6 Be+6

Dataset Size (file/keyword pair)

Fig. 10 Time taken for index construction (build and encrypt index)

100 [T T T T T T]
—@— CPU Only (Recursive)
—F— CPU Only (Iterative)
80 - —— GPU Search (Iterative) —
—o—

SearchaStore

60 -

Time (s)

40 +

I I I
2 8 32 128 512 2048
Number of keyword search request (R)

Fig. 11 Time taken for batch keywords search (linear scale)

tion cost decreases to 9.41us per file/keyword pair when the
file/keyword pair is large enough.

5.3 Search

Based on the techniques proposed in Sect.5, the keyword
search can be executed in CPU as well as GPU. In our
experiment, we implemented both versions to compare the
performance, and the results are shown in Figs. 11, 12 and
Table 1. We performed the experiments with batch key-
word searches ranging from 2 to 2048. In order to simulate
the worst case scenario, we search common keywords that
should appear in almost all documents (e.g. the, this and is).
For search performance, we use the largest subset of Enron
email that we have with 16,770,000 unique file/keyword
pairs. We do not benchmark the search token generation as

@ Springer

Cluster Comput (2018) 21:1189-1202

1200
T T T T T T T T T T T T T T T
100 | —@— CPUOnly (Recursive) E
E —F— CPU Only (Iterative) E
[—%— GPU Search (Iterative) T
[—O— SearchaStore 1
10| E
— .]
0
~ [N
]
g 1 .
= = .
= r]
0.1F E
0.01 Lol Lol Lol -

1 10 100 1,000
Number of keyword search request (R)

Fig. 12 Time taken for batch keywords search (logarithmic scale)

Table 1 Performance comparison for CPU and GPU search

Time (s)

R CPU CPU GPU Sear- Key- Speed-
only only only cha- word up
recurs. iterat. iterat. store found

2048 93.64 48.52 2.96 2.93 5821321 16.4

1024 54.90 26.92 1.59 1.61 4982146 16.9

512 36.21 16.25 1.01 1.05 3601423 16.1

256 7.01 3.61 0.31 0.33
128 2.58 1.31 0.19 0.17

2428648 11.7
1934862 6.9

64 1.52 0.79 0.14 0.15 1349653 5.6
32 0.60 032 0.11 0.12 1086333 2.9
16 0.26 0.14 0.09 0.09 972365 1.6
8 0.15 0.08 0.09 0.08 782169 0.9
0.06 0.03 0.08 0.03 329135 0.4
0.05 0.02 0.08 0.02 178296 0.3

it is a lightweight process compared to other computations.
Moreover, the secret key SK; and random string Pk, (w;) are
pre-computed in index encryption (Enc) process. However,
we do consider the time taken for data transfer between CPU
and GPU during the keyword search process.

We first compare the performance of searching keywords
in CPU with conventional recursive KRBT and iterative
KRBT. Table 1 shows that iterative KRBT is performing bet-
ter in CPU compared to the recursive version.

The keyword search using CPU and GPU takes almost
same amount of time to complete when the number of search
requests (R) are small (R < 8). When R increases, GPU
performance starts to overtake CPU, and the speed up satu-
rate at certain level (R > 1024). This is due to the fact that
when R is small, GPU is not fully loaded, hence its search

@ Springer

performance tends to be slower compare to CPU as most of
the cores in GPU are idle. Moreover, GPU search requires
two memory transfer operations: copy the encrypted KRBT
to GPU and copy the search results from GPU to CPU. This
introduces some overhead to the GPU search, which explain
why GPU performs poorly in this situation. However, when R
increases, GPU is loaded with more work to perform simul-
taneous keywords search. Although the overhead to copy
results from GPU to CPU also increases in this situation, the
overall performance of GPU search is still superior to CPU
search.

By performing a simple analysis on Table 1, we found that
the search performance in GPU overtakes CPU when R > 8.
Since we are using a four cores CPU with eight threads,
theoretically it is capable to run eight keyword searches in
parallel. When R > 8, the CPU search takes relatively longer
time to complete as the parallel processes are always lim-
ited to eight only. From this, we are able to conclude that
CPU search alone is sufficient to handle small number of
keyword searches, and GPU can be used as an accelerator
when the search traffic is huge. As a result, SearchaStore
combine these two approaches: when the number of search
requests is small, keyword search will be done in CPU; oth-
erwise the search will run in GPU for better performance.
The SearchaStore version is able to provide most optimized
search performance in all scenario. Compare to CPU only
iterative search, SearchaStore is 16.9x faster when R =1024.

5.4 Results from related work

To the best of our knowledge, this paper is the first work
that discusses on the implementation performance of SSE
based on GPU, hence we are unable to benchmark with any
existing work. This is also the first work that presents the
implementation performance for the work in [21] in CPU. In
this section, we present some results from Kamara et al. [14],
Naveed et al. [15] and Cash et al. [22] and that implemented
SSE in CPU.

For index construction, we are able to achieve 9.41us per
file/keyword pair when the file/keyword pair is large enough.
For the same operation, SSE scheme proposed by Kamara et
al. [14] required 35 s. On the other hand, the SSE scheme pro-
posed by Cash et al. [22] and Naveed et al. [15] only takes
3s and 1.58s per file/keyword pair for index construction. In
terms of single keyword search, we are able to achieve good
performance with 1.4 ms in 535 MB dataset. This is compara-
ble to the work presented by Naveed et al. [15] (5 ms in 4MB
dataset), Cash et al. [22] (7 ms in 65 GB dataset) and Kamara
et al. [14] (17 ms in 4MB dataset). SearchaStore is able to
perform batch keyword search, which is not achievable by
the work presented in [14,15,21,22].

We are aware that it is not fair to compare our work with
the other three research works, as the experimental platform,

Cluster Comput (2018) 21:1189-1202

1201

dataset, software libraries and algorithms used by different
researchers are vastly diverse. We do not intend to sh ow
that SearchaStore is superior to other existing SSE work, but
rather to show that GPU can be utilized as an efficient plat-
form to accelerate SSE computation. The results presented in
Sect. 5 shows that GPU can accelerate the index encryption
and keyword search process effectively.

6 Conclusion and future work

In this paper, we proposed SearchaStore with several tech-
niques to accelerate KRBT SSE in a heterogeneous computer
system consist of multi-core CPU and many-core GPU. The
results show that GPU is efficient in accelerating SSE scheme
when the keyword search traffic is huge (16.9x faster than
CPU version), which is a common scenario for organizations
that host their data in the cloud. The index encryption is accel-
erated by GPU to achieve high encryption speed. Besides, we
also enhanced parallel search algorithm allows batch key-
word search and shows superior performance compare to the
original algorithm presented by Kamara et al. [21].

Currently, we are only focusing on the static construction
of KRBT SSE, whereby the dataset is fixed and does not allow
real time update (add or delete). The dynamic construction
of KRBT SSE is useful when there is demand for frequent
update on the dataset, which is an interesting aspect for future
expansion based on our current work. We are also interested
to extend the GPU implementation to other SSE schemes that
support ranked multi-keyword search [23].

Acknowledgements This work was supported partially by Univer-
siti Tunku Abdul Rahman Research Fund (UTARRF) under Grant
IPSR/RMC/UTARRF/2016-C1/G1.

References

1. Yang, G., Xie, L., Mantysalo, M., Zhou, X., Walter, S.K., Chen, Q.,
Zheng, L.: A healthcare information sharing scheme in distributed
cloud networks. J. Clust. Comput. 18(4), 1405-1410 (2015)

2. Tao, F, Zuo, Y., Xu, L.D., Zhang, L.: IoT-based intelligent
perception and access of manufacturing resource toward cloud
manufacturing. [EEE Trans. Ind. Inf. 10(2), 1547-1557 (2014)

3. A.Mhlaba, M. Masinde.: Implementation of Middleware for Inter-
net of Things in Asset Tracking Applications: In-lining Approach.
IEEE International Conference on Industrial Informatics, INDIN,
pp- 460-469, 2015

4. Mhlaba, A., Masinde, M.: Secure outsourcing of modular exponen-
tiations in cloud and cluster computing. J. Clust. Comput. 19(2),
460-469 (2015)

5. Lee, S.G., Lee,D., Lee, S.: Personalized DTV program recommen-
dation system under a cloud computing environment. IEEE Trans.
Consum. Electron. 56(2), 1034-1042 (2010)

6. Kim, Y., Ko,J., Shin, D., Kim, C., Park, C.: A frequency monitoring
system development for wide-area power grid protection. J. Clust.
Comput. 16(2), 209-219 (2013)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

. Park, S., Park, E., Seo, J., Li, G.: Factors affecting the continuous

use of cloud service-focused on security risks. J. Clust. Comput.
19(1), 485-495 (2015)

. Fang, S., Xu, L., Pei, H., Liu, Y.: An integrated approach to

snowmelt flood forecasting in water resource management. IEEE
Trans. Ind. Inf. 10(1), 548558 (2014)

. Xu, L.: Introduction: Systems science in industrial sectors. Syst.

Res. Behav. Sci. 30(3), 211213 (2013)

Song, X., Wagner, D., Perrig, A.: Practical techniques for searches
on encrypted data. SP 00: Proceedings of the IEEE Symposium on
Security and Privacy, pp. 44, (2000)

Goh, E.J.: Secure indexes. Cryptology ePrint Archive. Report
2003/216. http://eprint.iacr.org/2003/216/

Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable
Symmetric Encryption: Improved Definitions and Efficient Con-
structions. ACM Conference on Computer and Communications
Security, CCS, pp. 7988. (2006)

Chase, M., Kamara, S.: Structured Encryption and Controlled Dis-
closure. ASIACRYPT, Lecture Notes in Computer Science. 6477,
pp. 577594. Springer, Heidelberg(2010)

Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable
symmetric encryption. ACM Conference on Computer and Com-
munications Security. pp. 965976. (2012)

Naveed, M., Prabhakaran, M., Gunter, C.A.: Dynamic searchable
encryption via blind storage. Proceedings of the IEEE Symposium
on Security and Privacy, pp. 639-654. (2014)

Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable
symmetric encryption: improved definitions and efficient construc-
tions. J. Comput. Secur. 19(5), 895-934 (2011)

Moataz, T., Justus, B., Ray, I., Cuppens-Boulahia, N., Cuppens, F.,
Ray, L.: Privacy-preserving multiple keyword search on outsourced
data in the clouds. Lect. Notes Comput. Sci. 8566(2014), 66-81
(2014)

Cash, D, Jarecki, S., Jutla, C.S., Krawczyk, H., Rosu, M., Steiner,
M.: Highly-scalable searchable symmetric encryption with support
for Boolean queries. Advances in Cryptology. Lecture Notes in
Computer Science, vol. 8042, pp. 353—373. Springer, Berlin (2013)
Moataz, T., Shikfa, A.: Boolean symmetric searchable encryption.
8th ACM Symposium on Information, Computer and Communi-
cations Security, ASIA CCS, pp. 265276. (2013)

Yu,J.,Lu, P., Zhu, Y., Xue, G., Li, M.: Toward secure multikeyword
top-k retrieval over encrypted cloud data. IEEE Trans. Dependable
Secur. Comput. 10(4), 239-250 (2013)

Kamara, S., Papamanthou, C.: Parallel and Dynamic Search-
able Symmetric Encryption. Financial Cryptography, pp. 258-274.
Springer, Berlin (2013)

Cash, D., Jaeger, J., Jarecki, S., Jutla, C., Krawczyk, H., Rosu,
M.C., Steiner, M.: Dynamic Searchable Encryption in Very-Large
Databases: Data Structures and Implementation. Network and Dis-
tributed System Security Symposium, NDSS (2014)

Xia, Z., Wang, X., Sun, X., Wang, Q.: A secure and dynamic multi-
keyword ranked search scheme over outsourced cloud data. IEEE
Trans. Parallel Distrib.Syst. 27(2), 1-13 (2015)

Boneh, D., Kushilevitz, E., Ostrovsky, R., Skeith, W.E. III.: Public
key encryption that allows PIR queries. CRYPTO, Lecture Notes
in Computer Science. 4622, pp. 5067. Springer, Heidelberg. (2007)
Stefanov, E., Shi, E.: ObliviStore: High Performance Oblivious
Cloud Storage. Proceedings of the IEEE Symposium on Security
and Privacy, pp. 253-267. (2013)

Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption
with polylog overhead. Advances in Cryptology—EUROCRYPT,
Lecture Notes in Computer Science, vol. 7237, pp. 465-482.
Springer, Berlin (2012)

Hughes, D.M., Lim, 1.S.: Kd-jump: a path-preserving stackless
traversal for faster isosurface raytracing on GPUs. IEEE Trans.
Vis. Comput. Graph. 15(6), 1555-1562 (2009)

@ Springer

http://eprint.iacr.org/2003/216/

1202

Cluster Comput (2018) 21:1189-1202

28. Kaczmarski, K.: B+-tree optimized for GPGPU. Lect. Notes Com-
put. Sci. 7566, 843-854 (2012)

29. C. Kim, J., Chhugani, N., Satish, E., Sedlar, A., Nguyen, D.,
Kaldewey, T., Lee, V.W,, Brandt, S.A., Dubey, P.: FAST: fast
architecture sensitive tree search on modern CPUs and GPUs. Pro-
ceedings of the 2010 ACM SIGMOD International Conference on
Management of data, pp. 339-350. (2010)

30. Chen, X., Ren, L., Wang, Y., Yang, H.: GPU-accelerated sparse
LU factorization for circuit simulation with performance modeling.
IEEE Trans. Parallel Distrib. Syst. 26(3), 786—795 (2015)

31. Mei, S., He, M., Shen, Z.: Optimizing Hopfield Neural Network
for Spectral Mixture Unmixing on GPU Platform. IEEE Geosci.
Remote Sens. Lett. 11(4), 818-822 (2014)

32. Hu, L., Nooshabadi, S., Mladenov, T.: Forward error correction
with Raptor GF(2) and GF(256) codes on GPU. IEEE Trans. Con-
sum. Electron. 59(1), 273-280 (2013)

33. Lee, W.K., Cheong, H.S., Phan, Raphael C.-W., Goi, B.M.: Fast
implementation of block ciphers and PRNGs in Maxwell GPU
architecture. J. Clust. Comput. 19(1), 335-347 (2016)

34. Yang, Y., Guan, Z., Sun, H., Chen, Z.: Accelerating RSA with
fine-grained parallelism using GPU. Information Security Practice
and Experience, Lecture Notes in Computer Science, vol 9065, pp.
454-468. (2015)

35. Park, H., Park, K.: Parallel algorithms for redblack trees. Theor.
Comput. Sci. 262(12), 415435 (2001)

36. Enron Dataset. https://www.cs.cmu.edu/enron/. (2015)

Wai-Kong Lee was born in
Malaysia in 1982. He received
the B.Eng. in Electronics and
M.Sc. degree from Multimedia
University in 2006 and 2009
respectively. He is now a PhD
candidate with the Faculty of
Engineering and Science, Uni-
versity Tunku Abdul Rahman,
Malaysia. His research interests
are in the areas of cryptogra-
phy, GPU computing, embedded
system design and energy har-
vesting.

Raphael C.-W. Phan received
his B.Eng, M.Eng.Sc and PhD
degrees from Multimedia Uni-
versity (MMU), Malaysia in
1999, 2001 and 2005, respec-
tively. He is currently a profes-
sor in Faculty of Engineering
(FOE), Multimedia University,
Malaysia. He is General Chair of
Mycrypt "05 and Asiacrypt "07,
Program Chair of Mycrypt 2016,
and Publicity Co-Chair for IEEE
Symposium on Trust, Security
& Privacy for Emerging Appli-
cations (TSP ’10). He annually
serves in various technical program committees of cryptology and
security conferences. He researches on diverse aspects of security and
privacy, including cryptology, protocol security, network security and
system security. He is also one of the authors for BLAKE hash function.
BLAKE was selected as one of the five finalists for SHA-3 competition
by NIST.

@ Springer

Geong-Sen Poh has a Bach-
elor (Hon.) degree and a Mas-
ter degree in Computer Science
from Universiti Sains Malaysia,
and a PhD degree in Informa-
tion Security from Royal Hol-
loway, University of London,
UK. He was an Assistant Pro-
fessor and Dean of Centre for
Research and Industrial Col-
laboration at UniMy, Malaysia.
e 4 He is now a staff researcher
in MIMOS Berhad. His main
‘ \ ‘ research interests include cryp-
tographic schemes for computa-
tions in the encrypted domain such as searchable encryption, protocols
for distributed systems and multimedia security. He currently serves as
a committee member in the ISO standard cryptography working group
(Malaysia chapter), and committee members for various international
conferences. He has published in the field of searchable symmetric
encryption, watermarking and information security.

Bok-Min Goi received his
B.Eng degree from Univer-
sity of Malaya (UM) in 1998,
and the M.Eng.Sc and PhD
degrees from Multimedia Uni-
versity (MMU), Malaysia in
2002 and 2006, respectively. He
is now the Deputy Dean (Aca-
demic Development & Under-
graduate Programmes) and a pro-
fessor in the Faculty of Engi-
neering and Science, Universiti
Tunku Abdul Rahman (UTAR),
Malaysia. Prof. Goi is the Chair-
person for Centre for Healthcare
Science & Technology, UTAR. He was also the General Chair for
ProvSec 2010 and CANS 2010, Programme Chair for IEEE-STUDENT
2012, and the PC members for many crypto/security conferences. His
research interests include cryptology, security protocols, information
security, digital watermarking, computer networking and embedded
systems design.

https://www.cs.cmu.edu/enron/

	SearchaStore: fast and secure searchable cloud services
	Abstract
	1 Introduction
	1.1 Problem statement
	1.2 Searchable encryption
	1.3 Overview of searchable symmetric encryption
	1.4 GPU for cryptography
	1.5 Contributions and limitations

	2 Keyword red black tree
	3 Overview of the target platform
	3.1 CUDA heterogeneous programming model
	3.2 Memory hierachy
	3.3 GTX980

	4 SearchaStore implementation techniques
	4.1 Build index
	4.2 Encrypt index
	4.3 Search

	5 Results and discussion
	5.1 Experimental setup and dataset
	5.2 Index construction
	5.3 Search
	5.4 Results from related work

	6 Conclusion and future work
	Acknowledgements
	References

