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Abstract Cloud services are on-demand services provided
to end-users over the Internet and hosted by cloud service
providers. A cloud service consists of a set of interacting
applications/processes running on one or more intercon-
nected VMs. Organizations are increasingly using cloud
services as a cost-effective means for outsourcing their
IT departments. However, cloud service availability is not
guaranteed by cloud service providers, especially in the
event of anomalous circumstances that spontaneously dis-
rupt availability including natural disasters, power failure,
and cybersecurity attacks. In this paper, we propose a frame-
work for developing intelligent systems that can monitor
and migrate cloud services to maximize their availability in
case of cloud disruption. The framework connects an auto-
nomic computing agent to the cloud to automatically migrate
cloud services based on anticipated cloud disruption. The
autonomic agent employs a modular design to facilitate the
incorporation of different techniques for deciding when to
migrate cloud services, what cloud services to migrate, and
where to migrate the selected cloud services. We incorpo-
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rated a virtual machine selection algorithm for deciding what
cloud services to migrate that maximizes the availability of
high priority services during migration under time and net-
work bandwidth constraints.We implemented the framework
and conducted experiments to evaluate the performance of
the underlying techniques. Based on the experiments, the use
of this framework results in less down-time due to migration,
thereby leading to reduced cloud service disruption.
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1 Introduction

Virtualization is at the core of cloud infrastructure, enabling
portability of server operating systems. Services hosted in the
cloud are typically deployed as sets of applications/processes
running on one or more virtual machines (VMs). A clus-
ter of VMs running multiple applications associated with a
single service can then be moved all together as one unit
from one subnet to another, thereby ensuring co-location of
the VMs hosting a service and minimizing latency between
VMs [1]. Virtual machine clusters also enable cloud service
orchestration through high level cloud management tools,
thereby simplifying deployment, provisioning, configura-
tion, and scalability of cloud-based services.

Live migration of VMs has been used in various tasks,
including IT maintenance [2–5] (e.g., by transparently
migrating VMs off of a host which will be brought down
for maintenance), load balancing [6–9] (e.g., by migrating
VMs off of a congested host to a machine with a lower
CPU or I/O load), power management [10–14] (e.g., by
migrating VMs from multiple servers onto fewer servers
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in order to reduce data center power consumption), and
development-to-operations support (e.g., by migrating VMs
residing in the development environment over to the test
environment, and then to the operational environment) [15].
In this paper, we consider the use of live migration as a
mechanism for improving resilience/availability of cloud
services.

We assume a cloud infrastructure as a service (IaaS)
modelwhere cloud service providersmanage virtualmachine
instances and offer them as a service to customers. When
there is an anomaly in a cloud infrastructure that can result
in disruption of the cloud (i.e., the cloud servers are no
longer functional), then VMs will need to be migrated to
preserve the availability of the services they are provid-
ing. However, migrating a large number of VMs can take
a long time, which users may not have since the cloud is
under disruption [16–18]. For instance, to migrate a 2 GB
VM from source to destination host in the same subnet with
reasonable bandwidth can take tens of seconds (Fig. 2). To
address this problem, VMs need to be selected for migra-
tion based on how valuable they are to their owner. As a
result, the priorities of cloud services should be used in deter-
mining which ones should be migrated so as to maximize
the availability of the highest priority services. Therefore,
in this work we focus on maximizing the availability of
high priority cloud services when the cloud is under dis-
ruption.

In this paper, we propose a framework for develop-
ing intelligent systems that can monitor and migrate cloud
services to maximize their availability under cloud disrup-
tion. The overall objective of this framework is to iden-
tify what cloud services should be migrated, when these
cloud services need to be migrated, and where these ser-
vices should be migrated to. This framework takes into
account time, memory, and bandwidth constraints in its deci-
sion making process. At the heart of the framework is a
VM Monitor, which keeps track of each VM’s state and
resource usage over time, and a Decision Agent, which
uses the data collected from the VM Monitor to intelli-
gently decide when to migrate cloud services, what cloud
services to migrate, and where to migrate these cloud ser-
vices.

In order to determine when to migrate, the framework
facilitates the incorporation of algorithms for automatically
detecting anomalies to trigger live migration of cloud ser-
vices. As a proof of concept, we implemented a machine
learning approach to detecting behavioral anomalies in
VM resource usage (CPU, memory, disk, and network
usage).

In order to determine what to migrate, the framework
includes a virtual machine selection algorithm that maxi-
mizes the availability of high priority services during migra-
tion under time and network bandwidth constraints.

Fig. 1 Architecture diagram

In order to determine where to migrate, the monitor pro-
vides information that can be used to determine the best
location for migration.

To simplify the discussion, we will assume that each
user’s environment is monitored and controlled by only one
instance of the AutoMigrate framework at a time, instead of
multiple concurrent instances.

We implemented the framework and conducted experi-
ments to evaluate the performance of the underlying tech-
niques. The experiments compared the performance of three
algorithmic approaches to selecting VMs for automated live
migration: basic greedy selection, standard greedy selection,
and improved greedy selection. We compared how well each
of these three algorithms preserved the availability of high
priority cloud services. The results of our comparison show
that the improved greedy selection algorithm outperforms
the standard greedy algorithm, which in turn performs better
than the basic algorithm.

This paper is organized as follows: In Sect. 2, we discuss
our proposed framework for automating live migration of
VMs under time and bandwidth constraints. In Sect. 3, we
give an overview of the decision agents used by the AutoMi-
grate framework when deciding when, what, and where to
migrate. In Sect. 4, we describe the problem of VM selec-
tion to maximize the availability of cloud services. In Sect. 5,
we present a solution to the selection problem based on the
set-union knapsack problem (SUKP). In Sect. 6, we discuss
the implementation and experimental results. In Sect. 7, we
highlight related works. Finally, in Sect. 8 we present our
conclusions and future work.

2 AutoMigrate framework overview

In this section, we describe the overall design of the AutoMi-
grate framework, focusing particularly on the different com-
ponents of the framework, and how these components inter-
act to automate the different tasks associated with the live
migration process. Figure 1 shows the overall architecture of
the framework, which is based on a modular design pattern.
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2.1 Components of AutoMigrate

TheAutoMigrate frameworkuses a client/server architecture.
The client can be deployed in the cloud or on a local machine.
The server is typically deployed in the cloud, co-located
with theVMs under observation. The client-side components
are: the VM Monitor, Anomaly Detector, CS Selector, Tar-
get Selector, and the Migration Trigger. Taken together, the
Anomaly Detector, CS Selector, and Target Selector make
up theDecision Agent within the system. Each of these com-
ponents is dynamic, continually running in the background
to determine when to trigger the migration process, to deter-
mine which VMs should be migrated at any given time to
maximize the availability of the services they are providing,
and to determine suitable destinations for the services being
migrated. The combination of these components creates an
autonomic system which is aware of the state of the VMs,
the importance of services hosted onVMs, and the dependen-
cies between services andVMs. Note that a cloud service can
consist of multiple applications/processes running on one or
moreVMs. This autonomic system can then adapt to changes
in the environment automaticallywithminimal user interven-
tion.

The VMMonitor on the client-side is used to keep track of
the behavior of each VM in the cloud. It communicates with
the server-side VM Monitor to collect and store data about
each VM running in the cloud. This includes checking the
status of the VMs (on or off), and the status of cloud services
(running or stopped). If a VM is on, it can also determine
the CPU, memory, disk, and network utilization. The VM
Monitor also facilitates the visualization of the collected data
through the web-based Cloud Management GUI.

TheAnomalyDetector is responsible for detecting anoma-
lies, automatically or manually through user inputs, when
a cloud is facing disruption. An anomaly can affect a sin-
gle VM, a single hypervisor, or an entire data center. In our
current approach, the Anomaly Detector can automatically
detect anomalies based on the VM state data presented to it
by the VMMonitor. It tries to predict what the future state of
each VM will be. The Anomaly Detector can also incorpo-
rate other techniques for detecting anomalies. For instance,
advanced intrusion detection and prevention systems (IDPS)
can be used to detect attacks based on log analysis, attacks
which can lead to anomalies. External anomalies such as
natural disasters, which could lead to the disruption of cloud
services, can also be manually provided to the framework by
users through the VM Monitor GUI.

The Cloud Service (CS) Selector automatically selects
candidate VMs for migration based on the priority of the
services hosted across those VMs. Based on a comparison
of the resource capacity of the available destination hosts,
the Target Selector automatically determines an appropriate
destination host for the migration of each selected VM.

TheMigration Trigger takes the list ofVMs to bemigrated
and the selected destination host and initiates the migration
process for thoseVMs. It also provides amechanism for users
to manually initiate a migration in response to potential dis-
ruption of cloud services (e.g., a natural disaster impacting
the cloud).

The server-side components are: the VMMonitor and the
VM Migrator. The VM Monitor continuously monitors the
state of each VM and the overall state of the cloud services.
The client-sideVMMonitor continuously pulls the data from
the server-side VM Monitor, which is used by the Anomaly
Detector and the Target Selector to analyze the data. The VM
Migrator initiates migration of the specified VMs based on
input from the client-side Migration Trigger. It also keeps
track of the state of the migration process. If a VM fails to
migrate, it can attempt to reinitiate the migration.

2.2 Operational view

In this section, we provide an end-to-end description of how
the different components of AutoMigrate interact to auto-
nomically perform live migration of VMs to preserve cloud
service availability. This preservationmay require livemigra-
tion of multiple, interacting VMs. Migration operations are
performed on individual VMs as supported by the underly-
ing hypervisor. This means that a cloud service will not be
available until after the last supporting VM has completed
migration. If one of the VMs supporting a cloud service fails
to migrate, then the service will not be fully available on the
destination host. Applications are individual programs that
run on VMs and each cloud service is composed of one or
more applications. AutoMigrate uses applications to define
the relationship between VMs and services. Note that any
applications that are not part of any service still contribute
to the memory footprint of a VM, but AutoMigrate does not
need to address these applications individually.

We assume that the VMs are globally addressable and can
be accessed via the Internet, whichminimizes downtime. The
client has an interface which a user can use to perform VM
management tasks, including system initialization, configu-
ration, and manual triggering of VM migration. From this
user interface, the user can define the priority level of each
cloud service as well as the mapping of cloud services across
VMs. The user can also provide a list of available clouds
and the preferred destination host for migration of VMs. For
simplification, we assume that only one client is allowed to
manage a set of VMs at a time.

Below is the operational workflow of AutoMigrate.

1. The user logs into the cloud management interface and
starts up the AutoMigrate service, which consists of the
server-side VM Monitor and VM Migrator.
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2. The client-side VM Monitor connects to the server-side
VMMonitor and initiates a request to pull VM state data.

3. The client-side VM Monitor stores the data in the VM
State DB and makes it available to the user interface.

4. Periodically, the Anomaly Detector reads the VM State
DB and performs behavioral analysis to detect the pres-
ence of anomalies. When an anomaly is detected, the
Anomaly Detector sends a signal to the Migration Trig-
ger to initiate the migration process.

5. The CS Selector takes as input the cloud parameters
(set of VMs, set of cloud services, and the dependen-
cies between them) from the Cloud Params DB and runs
the VM selection algorithm to determine which VMs to
migrate. The list of selected VMs is passed to theMigra-
tion Trigger.

6. The Target Selector takes as input theVM state and cloud
parameters and determines the ideal destination host for
themigratedVMs, which is passed to theMigration Trig-
ger.

7. TheMigration Trigger sends migration commands to the
server-side VMMigrator. The list of VMs to be migrated
and the destination host are sent alongwith the command.

8. During the migration process, the Anomaly Detector
must disable itself in order to prevent any race conditions
that could result from initiating redundant migrations of
VMs. Oncemigration is complete, the Anomaly Detector
resumes normal operations.

3 Decision agents overview

The Decision Agent consists of the Anomaly Detector, CS
Selector, and Target Selector, which need to coordinate to
achieve the AutoMigrate’s goal of migrating cloud services
at the right time, with the right cloud services, and the right
destination, to maximize availability. As mentioned previ-
ously, the Anomaly Detector is responsible for automatically
determining when to initiate a migration of cloud services.
The CS Selector is responsible for automatically selecting
which cloud services to migrate once the decision to migrate
has been made. The Target Selector is then responsible for
automatically determining the destination hosts where the
selected cloud services will be migrated to. These com-
ponents rely on the metrics collected by the VM Monitor
component to decide when, what, and where to migrate,
respectively. These components need to be implemented
using automated techniques in order to make these deci-
sions. In this section, we describe the techniques that can
be used by the Anomaly Detector and Target Selector. The
remaining sections of the paper focus on the technique we
propose for theCSSelector,which represents themain contri-
bution of AutoMigrate. Before summarizing the techniques

the Anomaly Detector and Target Selector, we first describe
the VM Monitor in more details.

3.1 VM monitor

The state of a VM is a collection of metrics that characterize
the utilization of theVM.Themetrics includeCPU,Memory,
disk usage, and network usage. The OS running on the VM
keeps track of all of thesemetrics. For instance, inUnix based
OSes, the “top” Task Manager program monitors a number
of metrics such as the CPU utilization, memory usage, and
running state of each process running on themachine, as well
as their aggregates for the whole machine. Our approach to
collectingVMstatemetrics is through the use of amonitoring
agent, called the VM Monitor, which continuously collects
the metrics for each VM.

The VM Monitor supports two deployment models. The
first deployment model makes use of an agent running on
each VM in the cloud. The agent interacts directly with the
OS to collect the metrics and reports them to the VM Moni-
tor. This approach requires an agent to be deployed on each
VM running in the cloud, which requires increased commu-
nication and coordination amongst the VMs.

The second model makes use of an agent running in the
hypervisor. The hypervisor collects the metrics on the behalf
of theVMMonitor and reports them to theVMmonitor. Since
a hypervisor can collect metrics on each of its underlying
VMs, only one agent needs to be deployed on each hypervisor
in the cloud, making this approach more lightweight than the
first deployment model.

In our implementation, wemake use of the second deploy-
ment model with a tool called “xentop”, which collects per
VM metrics within the Xen hypervisor.

3.2 Deciding when to migrate

Given the metrics of the VM, the anomaly detector needs
to detect anomalous behavior. Machine Learning techniques
can be used to detect anomalous behavior on the VMs run-
ning in the cloud based on the VM metrics. Below we
describe three of such machine learning based techniques we
researched with the objective of selecting the right solution
for AutoMigrate.

The k-means clustering algorithm (KMeans) clusters data
into a number of distinct groups using a distance measure.
Using this algorithm, we first learn the normal behavior of
each VM using the metrics collected from the VM. Then,
using this historical data for each VM, data clusters are
formed. As new data for the VM is collected, we can identify
whether or not the VM is exhibiting anomalous behavior by
comparing the current data to the historical data clusters. In
the AutoMigrate anomaly detector, we use the k-means clus-
tering to separate out the VM data into two groups—normal
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behavior and anomalous behavior. There are many different
libraries that implement this algorithm, making it easy to
incorporate into AutoMigrate. However, since AutoMigrate
can run many different types of services and different sizes
of VMs, there may not be an easy way to get a good training
set to train an algorithm to lead to accurate predictions.

Another anomaly detection library we looked at was the
Twitter Anomaly Detection, developed by Twitter and writ-
ten inR. It has an underlying algorithmcalled seasonal hybrid
extreme studentized deviate (ESD). This library takes the
underlying ESD algorithm and adapts it to detect anomalies
on seasonal data. Twitter used this library to detect anomalies
in number of tweets per day. The librarywaswritten such that
it analyzes whole sets of data at once. To use this library, we
would need to break up the data into discrete time chunks and
run the algorithm over it. As a system that should be mon-
itoring the VMs constantly this may not be ideal since we
would need to wait for enough data to process it. However,
since the library is open source we could modify the library
to work using incremental data entry.

The last anomaly detection method we looked at is based
on a Kalman Filter. This method was shown to take the data
point we need (CPU, memory, etc.) and find anomalies in a
time series of that data. The algorithm is iterative meaning
that it processes the data points one at a time, not requiring
entire sets of data. This algorithm converges to the correct
answer so the algorithm learns from the VM and will pro-
vide accurate anomalies over time. There are a number of
libraries that implement anomaly detection using theKalman
Filtering. In our initial attempt of implementing the anomaly
detection in the anomaly detector, we extended the open
source python module, pykalman [19]. The module imple-
ments two algorithms for tracking: the Kalman Filter and
Kalman Smoother. From our preliminary findings, anomaly
detection algorithms based on Kalman Filtering seem to be
more promising in detecting accurately anomalies in VMs.
Currently, we are performing more investigation on these
algorithms to better understand their performance in terms
of anomaly detection.

3.3 Deciding where to migrate

At the minimum, deciding where to migrate a set of selected
cloud services requires taking into account the load of the
cloud services in the source host as well as the availability
of resources in the destination host. Ideally, the destination
host needs to have enoughmemory to efficiently run theVMs
hosting the cloud services, without compromising the avail-
ability of the cloud services. In addition, the availability of
resources should be relatively stable. Otherwise, the proba-
bility of migrating the cloud services again in the near future
may be high, which can lead to the degradation of availability
due to frequent migration.

One basic technique for deciding where to migrate cloud
services is to assess the resources of the available destina-
tion hosts after deciding what cloud services to migrate, and
select the one that has the highest available resources. This
is the technique we implemented with the current version of
AutoMigrate. If all the destination hosts are less suscepti-
ble to anomalies and have constant resource usage, then this
technique can result in a good performance. Migrating cloud
services would be less frequent.

In order to improve this basic approach, techniques need to
take into account the overall behavior of the destination hosts
overtime. Automated techniques based on machine learning,
which learn and predict the behavior of cloud hosts in the
future will be necessary to guarantee maximum performance
and availability of cloud services. Similar to the anomaly
detection, we investigated a number of such techniques.

The first technique we considered is the autonomic man-
agement system (AMS). The AMS makes use of multiple
managers to dynamically evaluate each system under man-
agement by collectingmetrics such asworkload, andmemory
usage. The AMS technique can be extended so that, in addi-
tion to getting global viewof all theVMs in a given host, it can
keep track of the historical view of the states of the VMs. In
this case, a technique based on machine learning can be used
to accurately predict the resource availability of the hosts for
an extended period of time in the future. The prediction will
be significant in making a better decision when choosing
a destination host for migration. For instance, if snapshots
of the states of all hosts are taken, one host may appear to
have the highest resource available. But, when considering
a period of time, the host might have the lowest available
resource on average.

The second technique we investigated is the VM place-
ment in a cloud infrastructure [20]. The VM placement
techniques seeks the best physical machines that can host
VMs to achieve desired factors affecting the data centers
such as performance, resource utilization, and power con-
sumption. In AutoMigrate, the goal of the Target Selector
component is to maximize the cloud services availability
after placing the VMs in the destination host. The proposed
VM placment techniques are mainly based on the concepts
of “First Fit”, “Next Fit”, “Random Fit”, “Least full first”,
and “Most Full First”. Different VM placement schemes
based on these concepts such as integer programming-based,
constraint programming-based, and graph theory-based VM
placement, have been proposed. These schemes can be clas-
sified as traffic-aware, energy-aware, cost-aware, resource-
aware, and cost-aware [20]. The resource-aware schemes are
more tailored to achieve the goal of the Target Selector in
AutoMigrate. As a case study, we looked at the applicability
of the backward speculative placement (BSP) VM place-
ment algorithm proposed in [15]. In this schema, a monitor
is used to collect historical demand traces of the deployed
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VMs on a source host, and then the algorithm predicts the
future behavior of a VM on a target host. This algorithm can
potentially be used by the Target Selector of AutoMigrate to
make the right decision in choosing where to migrate cloud
services.

4 VM selection as a knapsack problem

Managing the live migration of cloud services involves iden-
tifying which set of VMs to migrate, when a migration is
needed, and where to migrate VMs. The AutoMigrate frame-
work addresses these concerns through a modular design as
described in Sect. 2. The focus of the remainder of this paper
will be the underlying functionality of CS Selector.

TheCSSelector componentwithinAutoMigrate is respon-
sible for selecting a set of cloud services for migration
according to the memory budget. A live migration is trig-
gered when the Anomaly Detector detects anomalies on the
host machines. The type of the anomalies detected will place
a limit on the time available for the migration process. The
exact time-to-failure is unknown, but failure is possible that
it will occur before all of the machines can be migrated. In
fact, the migration of a single VM may take tens to hun-
dreds of seconds on a network with reasonable bandwidth
[17,21]. With a set of cloud services that uses a large number
of VMs, the migration process may take a long time, which
might not be feasible under time and bandwidth constraints.
For instance, systems that depend on satellite communica-
tions have very low bandwidth compared to systems using
land-based networks. Therefore, to address this concern, we
propose a pre-defined time bound that a user will provide for
the migration process. This time limit can be translated into a
threshold on migratable memory, or memory budget, which
is the total amount ofmemory that can bemigratedwithin the
time limit, using the known bandwidth of the environment.

4.1 Terminology and assumptions

We consider a cloud infrastructure as a service (IaaS) model
where cloud service providers manage VM instances and
offer them to customers, who can then use the VMs to deploy
cloud services. We assume that each service provider owns
one or more hypervisors for generating and managing vir-
tual machines on demand. We consider a set of cloud service
providers, where each service provider uses hypervisors that
are compatible in terms of migration in such a way that the
VMs can be migrated between the different hypervisors. We
assume that customers can acquire VMs from multiple ser-
vice providers to deploy their services. The terminology used
throughout the paper is summarized in Table 1.

Table 1 Terminology

Variable Description

S Set of all cloud services

Si A particular cloud service

S∗ Set of selected cloud services

S+ Set of cloud services ordered by BCR

V Set of all VMs

Vj A particular VM

V ∗ Set of selected VMs

V
′

Set of candidate VMs

C(Vj ) Cost of individual VM, defined by memory
footprint

P(Si ) Priority level of a single cloud service (1–10)

P(S∗) Priority value of selected cloud services

C(Si ) Cost of individual cloud service

C(S∗) Cost of selected cloud services

M Total memory budget

BCR(Si ) Benefit cost ratio of a given cloud service

F(Vj ) Frequency of a particular VM

CF (Si ) Frequency adjusted cost of a cloud service

Cloud servicesWe define a cloud service as a set of applica-
tions that make use of one or more VMs that are hosted in
the cloud with a given cloud service provider. For instance,
an accounting application may have the payroll managed in
a database in one virtual machine, and the web server in
another virtual machine. A Hadoop-based cloud service can
usemultiple virtualmachines to distribute theHadoop nodes.
On the other hand, a VMmay have multiple services running
on it, which leads to a many-to-many relationship between
cloud services and VMs.

Definition 1 Dependent VMs: Let us denote S, a set of n
cloud services, S = {S1, S2, …, Sn}, and V a set of m virtual
machines, V = {V1, V2, …, Vm}. Let us denote V

′
a subset

of V , V
′ ⊆ V . Then, we say that Si depends on V

′
if and

only if all the VMs in V
′
are used to deploy Si .

Live migration of cloud services to preserve their avail-
ability Live migration is the process of moving a virtual
machine from one physical host to another without interrupt-
ing the processes running in memory on the virtual machine.
Cloud service migration involves moving a cluster of virtual
machines. A cloud service is fully migrated if and only if
all of its dependent VMs are successfully migrated. A cloud
service is only partially migrated if some, but not all, of its
dependent VMs are successfully migrated, thereby leading
to the cloud service not being fully available on the desti-
nation host. If a host in the source cloud fails, any services
provided by VMs resident on that host that have not already
been migrated will not be available.
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4.2 VM selection as a set-union knapsack problem

The VM selection problem can be directly mapped to
the set-union knapsack problem (SUKP) [22]. For a given
cloud service provider, let S denote a set of cloud ser-
vices S = {S1, S2, . . . , Sn} and V a set of virtual machines
V = {V1, V2, . . . , Vm}. Each Si is a subset of elements of
V . Each cloud service Si has a nonnegative priority given by
P(Si ) : S → Z+ and each virtual machine Vj has a nonneg-
ative cost given by C(Vj ) : V → Z+. The cost of each Vj

is the total memory used by the virtual machine. The goal is
to find a subset of the services S∗ ⊆ S such that the prior-
ity of S∗, P(S∗), is maximized and the cost of S∗, C(S∗), is
bounded by M . Achieving this goal leads to prioritized cloud
service migration.

4.3 Maximizing cloud service availability

In order to maximize cloud service availability using the Set-
Union Knapsack problem, we need to define a number of
concepts that will be needed by the algorithm to solve this
problem. These concepts are the building blocks used in con-
structing the algorithm.

4.3.1 Benefit

The benefit is defined in terms of priorities of the different
cloud services. APriority Level is an integer value associated
with each cloud service, which determines the importance of
the service as defined by the user. The Priority Level is a
user defined value and corresponds to the value added by the
service in the overall user environment. The Priority Value
is an integer value associated with a set of cloud services. It
is calculated by summing the Priority Level of the individual
services in the set. The Priority Value is formally defined as
follows:

Definition 2 Priority value: The priority value, P(S
′′
), of

a set S
′′ ⊆ S, of cloud services is the total of all service

priorities within the set, given by:

P(S
′′
) =

∑

Si∈S′′
P(Si )

4.3.2 Cost

We define the cost of migrating a single cloud service as the
memory used by its dependent VMs, which is proportional to
the migration time of the VMs. Other metrics can be used to
determine themigration costs ofVMs such asVMdowntime,
response time, and power consumption [17].

Definition 3 Cloud service cost: The cost of a particular
cloud service, Si , is obtained by taking the sum of the costs
for all dependent VMs. Formally:

C(Si ) =
∑

Vj∈Si
C(Vj )

Definition 4 Cloud service set cost: The cost of a set of cloud
services is defined by taking the sum of all the costs of all
services in the set. Formally:

C(S
′′
) =

∑

Si∈S′′
C(Si )

The frequency adjusted cost takes into account the cost of
a VM that is shared by multiple cloud services.

Definition 5 Frequency adjusted cost (FAC): The frequency
adjusted cost of a cloud service is calculated as:

CF (Si ) =
∑

Vj∈Si

C(Vj )

F(Vj )

The frequency, F(Vj ), of a VM is the number of cloud ser-
vices making use of that VM.

4.3.3 Benefit-cost ratio

The benefit-cost ratio of a service is used to decide which set
of high priority cloud services to migrate.

Definition 6 Benefit-cost ratio: The benefit-cost ratio,
BCR(Si ), is calculated as the ratio of the priority value of
the cloud service to its cost. Formally:

BCR(Si ) = P(Si )

C(Si )

4.3.4 Preserving service availability

The overall objective is to preserve the availability of cloud
services with high priority through the use of live migration.
This objective can be reduced to the problem of maximizing
the priority of migrated cloud services under the constraint
of a memory budget. The set of cloud services covers the set
of VMs.

Definition 7 Maximizing priority of migrated cloud ser-
vices:

maximize
∑

Si∈S
P(Si ) · yi ,

subject to
∑

C(Vj ) · x j ≤ M

yi ∈ {0, 1}, where yi = 1 indicates an available service.
x j ∈ {0, 1}, where x j = 1 indicates a migrated VM.
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5 Service availability through optimization of
cloud service selection

Our problem of selecting cloud services to migrate is directly
mapped to the set-union knapsack problem. However, the
set-union knapsack problem is an NP-hard problem. Due
to the computational complexity associated with NP-hard
problems, solving it efficiently requires a heuristic based
approach. There are a number of approximation approaches
which attempt to reduce the complexity of solving the prob-
lem [22,23], including approaches using a greedy algorithm.
In this section, we describe our solution based on the greedy
algorithm proposed in [22]. The greedy algorithm uses the
benefit-to-cost ratio of all cloud services as a heuristic to
minimize the amount of computation. We have implemented
two versions of the greedy algorithm, a standard greedy algo-
rithm (StandardGreedy), and an improved greedy algorithm
(ImprovedGreedy). We also implemented a basic greedy
algorithm (BasicGreedy) as a baseline for assessing the per-
formance of the proposed greedy algorithms.

5.1 Greedy algorithms

Our implementation of the three greedy algorithms takes as
input a set of services mapped onto a set of VMs and the
memory footprint of each VM. BasicGreedy simply selects
the services with the highest priority that fit within the
memory budget. StandardGreedy sorts the set of services
in descending order of their BCR, calculated as BCR =
priori t y
Cost , and iterates over this set, selecting services (and

their corresponding VMs) which fit into the memory budget.
Once calculated, the BCR values are fixed throughout the
iterations of the algorithm. ImprovedGreedy follows theStan-
dardGreedy approach, except it computes the BCR using the
FAC instead of theCost (BCR = priori t y

FAC ). In addition, the
BCR values are re-calculated in each iteration after removing
the selected service for migration. In the following section,
we describe the details of ImprovedGreedy.

ImprovedGreedyalgorithm: This algorithmsorts the cloud
services in descending order of their BCR, and iterates over
this set, selecting services (and their corresponding VMs)
which fit into the memory budget. After a service is selected
in each iteration, the BCR is re-computed to account for
shared VMs between services to avoid the duplication of
cost of such VMs.

An outline of ImprovedGreedy is as follows:

– Copy the set of services into the set of remaining services
– While the set of remaining services is not empty and there
is still a service that can be selected within the budget
– For each remaining service determine the benefit cost
ratio (BCR)

– Sort the set of services in descending order of BCR

– Iterate through the sorted set
• Compute the cost of the current service
• If the running cost of the selected services plus
the cost of the current service is less than or equal
to the budget, then:

· Add the cost of the current service to the
running cost of the selected services

· Add the current service to the set of selected
services

· Remove the current service from the remain-
ing set of services

· Add the VMs of the current service to the
list of selected VMs

· Set the cost of the VMs of the selected ser-
vice to zero in the set of remaining services

· Re-compute the BCR on the remaining ser-
vices

· Sort the set of remaining services in descend-
ing order of BCR

– Compare the total priority of the set of selected services
against that of the individual service with the largest pri-
ority

– Return whichever of these has the greatest priority.

The ImprovedGreedy algorithmkeeps track of the selected
cloud services (S∗) as well as the list of selected VMs (V ∗).
The pseudocode for the algorithm appears below:

ImprovedGreedy (S, V,M){
Sremain = S /*Set of remaining services*/
S∗ = ∅ /*Selected services*/
V ∗ = ∅ /*Selected VMs*/
Cprevious = -1 /*Previous costs*/
Ccurrent = 0 /*Current costs*/
while (Sremain �= ∅ & Ccurrent �= Cprevious)

Cprevious = Ccurrent

calculateBCR(Sremain)
S+ = sortServicesByBCR(Sremain)
size = getNumberOfServices(S+)
for (i=1 to size) (S+

i ∈ S+)
C(S+

i ) = CalculateCost(S+
i )

if (Ccurrent + C(S+
i ) ≤ M)

Ccurrent = Ccurrent + C(S+
i )

S∗ = S∗ ∪ {S+
i }

V
′
= GetListV Ms(S+

i )
Sremain = S+ \ {S+

i }
insertSelectedVMs(V ∗, V

′
, Sremain)

BREAK
end if

end for
end while
Return S∗

}
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The subroutine calculateBCR(Sremain) computes the
BCR for each service Si in Sremain . The subroutine
sort ServicesByBCR(Sremain) sorts the set of the remain-
ing cloud services Sremain in descending order based on the
BCR of each cloud service.

Calculating CostThe cost associated with each cloud service
Si is calculated as follows:

CalculateCost (Si){
Ctotal(Si) = 0 /*Initializes the cost of Si*/
V

′
= getListV Ms(Si) /*Get the list of VMs in

Si*/
for each (V

′
j ∈ V

′
)

Ctotal(Si) = Ctotal(Si) + C(V
′
j )

end for each
Return Ctotal(Si)

}

The subroutine get ListV Ms(Si ) gets the list of VMs
associated with the cloud service Si .

Adding Candidate VMs to the List of Selected VMs The fol-
lowing subroutine inserts the candidate VMs from the newly
selected cloud service into the list of selected VMs. In addi-
tion, it sets the cost of each VM from the selected Si to zero
(C(Vj ) = 0) in all remaining services. This prevents dupli-
cation of the cost of a VM shared by multiple services.

InsertSelectedVMs (V ∗, V
′
, Sremain){

for each (V
′
j ∈ V

′
)

V ∗ = V ∗ ∪ V
′
j /*Add VM to selected VMs*/

for each (Si ∈ Sremain)
V = getListV Ms(Si) /*Get list of VMs*/
for each (Vj ∈ V )

if (Vj = V
′
j )

C(Vj) = 0 /*Set cost VM to zero*/
end if

end for each
end for each

end for each
Return V ∗

}

5.2 Illustrative example

In order to demonstrate the differences between the algo-
rithms described above, we show a simple example. In
this example, there are five services utilizing four virtual
machines, constrained with a budget M = 7 GB. The param-
eters used can be seen in Tables 2 and 3. Table 3 shows the
mapping of services to VMs, where each VM used by a ser-
vice is indicated by a non-zero cost in the table. For example,

Table 2 List of VMs

VM Cost Frequency Frequency adjusted cost

V1 2 2 1.00

V2 5 1 5.00

V3 7 1 7.00

V4 4 2 2.00

S4 uses V1 and V4, which both have non-zero costs under the
S4 column. TheBasicGreedy algorithm uses only the priority
when determining which VMs to migrate. S1 is the highest
priority service, with priority 10, so it is selected first. S1 has a
cost of 7, which equals the budget. Since no other service can
be selectedwhile still keeping the total costwithin the budget,
S1 is the only service selected for migration. The total pri-
ority preserved by this algorithm is 10. The StandardGreedy
algorithm sorts the services in order of BCR, using the actual
memory usages of the VMs comprising each service as the
total cost for that service. The services with highest BCR are
S2 and S3, with a BCR of 4.00 and 1.20, respectively. The
total cost of S2 and S3 is 7.0 GB. Since adding any additional
services would lead to a total cost exceeding the budget, no
other services can be selected formigration. The total priority
preserved by this algorithm is 14. The ImprovedGreedy algo-
rithm also sorts the services in order ofBCR, but uses theFAC
in place of the actual memory used when calculating the cost
of each service. The serviceswith highestBCR are S2, S4, and
S5, with aBCR of 8.00, 2.33, and 2.00, respectively. The total
cost of S2, S4, and S5 is 7.0 GB. Since adding any additional
services would lead to a total cost exceeding the budget, no
other services can be selected formigration. The total priority
preserved by this algorithm is 19,which is optimal. TheFACs
for each of the StandardGreedy and the ImprovedGreedy
algorithms are calculated without and with the VM fre-
quencies, respectively. The reason that the ImprovedGreedy
algorithm has better performance than the StandardGreedy
algorithm is that it incorporates frequencies which elimi-
nate the duplicate costs of VMs shared by multiple services.
Also, during each iteration of the ImprovedGreedy algorithm,
the remaining services are re-ordered based on the services
already selected for migration.

6 Implementation and experiments

In this section, we summarize the implementation of the
AutoMigrate framework and describe the experiments we
performed to analyze its performance.

6.1 Implementation

We implemented theAutoMigrate framework, depicted in the
architecture diagram in Fig. 1, using a modular design pat-
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Table 3 Comparison of the three algorithms

Cloud 1 Services S1 S2 S3 S4 S5

VMs Priority 10 8 6 7 4

V1 Cost 0.00 2.00 0.00 2.00 0.00

FAC 0.00 1.00 0.00 1.00 0.00

V2 Cost 0.00 0.00 5.00 0.00 0.00

FAC 0.00 0.00 5.00 0.00 0.00

V3 Cost 7.00 0.00 0.00 0.00 0.00

FAC 7.00 0.00 0.00 0.00 0.00

V4 Cost 0.00 0.00 0.00 4.00 4.00

FAC 0.00 0.00 0.00 2.00 2.00

Basic Cost 7.00 2.00 5.00 6.00 4.00

Order 10 8 6 7 4

Selection
√

Standard Cost 7.00 2.00 5.00 4.00 4.00

BCR 1.43 4.00 1.20 1.17 1.00

Selection
√ √

Improved FAC 7.00 1.00 5.00 3.00 2.00

BCR 1.43 8.00 1.20 2.33 2.00

Selection
√ √ √

Costs and FACs are measured in GB of memory

tern. With this design pattern, each of the components can be
replaced with a different implementation without changing
the overall framework. We use Xen [24] as the underly-
ing hypervisor for the VM management in the cloud. When
migrating a VM, Xen uses a pre-copy live migration algo-
rithm [2], which copies all memory pages from the source
host to the destination host. Then, theVM is suspended on the
source host and resumed on the destination host. With rea-
sonable bandwidth, this algorithm achieves live migration
with minimal downtime. We use the Thrift [25] framework
to abstract away the client/server communication between
the VM Monitor, the Migration Trigger, and the VM Migra-
tor components. For ease of administration, the web-based
dashboard provides a GUI through which the end user can
configure and control the system.The dashboard is connected
to the client-side VMMonitor. We used the Thrift framework
to connect the VMMonitor and the VMMigrator to the Xen
hypervisor, which enables the creation/instantiation/deletion
of VMs, the collection of metrics from VMs, and the initia-
tion of the live migration process. For our initial approach to
anomaly detection,we implemented a simplisticNaiveBayes
machine learning algorithm using the Python Scikit-learn
library [26]. The algorithm takes as input VM historical state
data (CPU, memory, disk, and network utilisation), and tries
to detect anomalies with the VMs. Note that this algorithm is
just for building a proof of concept for the framework. Other
advanced techniques for detecting anomalies in systems and
networks can be used, including intrusion detection and pre-

Fig. 2 Live migration performance

vention systems (IDPS), to enhance the anomaly detection
process.

6.2 Experiments

We performed a number of experiments to analyze the per-
formance of our proposed VM selection algorithms. In each
experiment, we compared our proposed algorithms, Stan-
dardGreedy and ImprovedGreedy, to the priority-only based
VM selection algorithm, BasicGreedy. Note that we have not
found any other approaches,which attempt to solve this prob-
lem of VM selection under time and bandwidth constraints,
to compare against.

Before going into the details of our experiments for the
algorithms, let us first look at the complexity of migrating
virtual machines between hosts.

6.2.1 Memory size and network bandwidth impact on
migration

We experimentally analyzed how the network bandwidth and
memory used by virtual machines can impact the perfor-
mance of live migration. In the first set of experiments, we
analyzed the live migration performance of the Xen hyper-
visor using two laptops with 16 GB total memory running a
Ubuntu 12.04 OS. Figure 2 shows the time it takes to migrate
a VM as a function of the memory used by the VM. The
memory used ranges from 2 GB to 12 GB. The diagram
illustrates that the migration time increases exponentially as
the memory used increases. Migration of a 2 GB VM takes
more than 200 s on average over a connection with 1 Gbps
bandwidth.

In the second set of experiments, we analyzed how the
performance of live migration is impacted by network con-
gestion, which reduces the bandwidth. Figure 3 shows the
results of the experiment, which compared the time it takes to
migrate a VM with and without network congestion. As can
be observed, the network congestion increases the migration
time. This result is disappointing, as network congestion can
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Fig. 3 Live migration performance as a function of VM base memory
with respect to network congestion.

be difficult to predict, especially if many users are sharing the
same cloud service resources as typically happens in a multi-
tenant cloud environment. These two sets of experiments
highlight the need for intelligent live migration management
systems, systems which take into account memory used and
network bandwidth available when decidingwhat, when, and
where to migrate VMs.

6.2.2 Experimental setup for the algorithms

We deployed a Xen based cloud infrastructure and integrated
our AutoMigrate framework into it. We performed simple
experiments to analyze the feasibility of the framework and
the proposed algorithms. Additionally, in order to scale up
the size of the experiments, we auto-generated the input data,
which enables us to perform a better analysis of our pro-
posed approach. This data set includes service priority, VM
memory footprint, and the relationships between VMs and
services.

The priority level of a cloud service is represented as an
integer from 1 to 10, where 1 is the lowest priority and 10 is
the highest priority. Each VM is assigned a random memory
footprint between 2 and 12 GB. In different runs, we vary
the total number of VMs and total number of cloud services
on each source host from 100 to 500 to 1000. All of the
experimental results are an average over 100 iterations.

The metrics used to determine the performance of the
algorithms are the utility (U) and availability (A) of the

cloud services. Utility is defined as U = P(S
′
)

P(S) , where P(S′)
is the sum of all the priorities of the completely migrated
services and P(S) is the sum of the priorities of all of the ser-

vices in the experiment. Availability is defined as A = |S′ |
|S| ,

where S′ is the number of completely migrated cloud ser-
vices and S is the total number of cloud services in the
experiment.

Table 4 Experiment 1—utility (U) and availability (A) percentages
when varying number of VMs and memory budget

VMs M Basic Standard Improved

U(%) A(%) U(%) A(%) U(%) A(%)

100 200 2.97 1.64 8.88 6.25 10.65 7.33

400 5.43 3.00 14.03 10.25 16.51 12.11

600 7.63 4.21 17.81 12.91 20.00 16.16

800 10.07 5.56 21.10 15.35 21.76 19.93

1000 12.98 7.14 25.47 18.79 21.57 20.20

500 200 2.38 1.31 5.46 3.51 14.24 9.82

400 4.51 2.50 9.12 5.92 26.10 18.48

600 6.56 3.60 12.57 8.22 35.42 25.57

800 8.67 4.79 15.60 10.35 43.36 31.45

1000 10.58 5.82 18.20 12.17 50.00 36.57

1000 200 2.00 1.12 3.69 2.29 6.06 3.91

400 3.82 2.11 6.69 4.15 12.32 7.93

600 5.66 3.12 9.30 5.83 17.73 11.54

800 7.57 4.18 11.95 7.53 22.57 14.77

1000 9.19 5.06 14.05 8.92 26.95 17.73

6.2.3 Experiment 1: algorithm comparison under varying
memory budget and varying number of VMs

In this experiment, we compare the three algorithms, Basic-
Greedy, StandardGreedy, and ImprovedGreedy, by varying
the memory budget over {200, 400, 600, 800, 1000} GB
and varying the number of VMs over {100, 500, 1000}. We
fixed the number of cloud services to 500 and the maximum
number of VMs per service to 10. For this experiment, we
expected to see improvements in the utility as a result of our
proposed two algorithms.

Table 4 shows the results of all three algorithms when
varying the memory budget from 200 to 1000 GB and vary-
ing the number of VMs from 100 to 500 to 1000. We show
only the graph for 1000 VMs, which can be seen in Fig. 4.
Note that all of the experiments exhibit similar performance
characteristics. As can be seen, the two proposed algorithms
perform significantly better than the basic greedy selection
algorithm. FromTable 4, one can see that increasing the num-
ber of VMs decreases the utility of the migrated services
for BasicGreedy and StandardGreedy. However, Improved-
Greedy performs best when the number of VMs is equal to
the number of cloud services.

6.2.4 Experiment 2: algorithm comparison under varying
memory budget and varying number of cloud services

In this experiment, we compare the three algorithms, Basic-
Greedy, StandardGreedy, ImprovedGreedy, by varying the
budget over {200, 400, 600, 800, 1000} GB and varying the

123



2006 Cluster Comput (2017) 20:1995–2012

Fig. 4 Experiment 1 Results: utility as a function of memory budget
when the number of VMs is fixed to 1000 and the number of CSs is
fixed to 500.

Table 5 Experiment 2—utility (U) and availability (A) percentages
when varying number of cloud services (CSs) and memory budget

CSs M Basic Standard Improved

U(%) A(%) U(%) A(%) U(%) A(%)

100 200 6.15 3.40 7.82 4.66 9.33 5.68

400 12.54 6.99 14.64 8.86 18.47 11.36

600 18.95 10.61 21.25 12.97 27.33 16.90

800 24.58 13.99 27.01 16.73 35.19 22.16

1000 30.72 17.76 33.10 20.67 42.85 27.25

500 200 2.27 1.26 5.23 3.37 14.07 9.70

400 4.48 2.48 9.21 5.98 26.39 18.67

600 6.47 3.56 12.53 8.27 35.29 25.45

800 8.78 4.82 15.70 10.41 43.06 31.35

1000 10.63 5.87 18.50 12.50 49.76 36.60

1000 200 1.45 0.80 4.98 3.41 7.87 5.10

400 2.55 1.41 7.79 5.46 13.88 9.54

600 3.63 2.01 10.00 7.03 18.46 12.96

800 4.67 2.58 12.02 8.44 22.36 16.03

1000 6.00 3.31 14.35 10.12 25.82 18.59

number of cloud services over {100, 500, 1000}. We fixed
the number of VMs to 500 and themaximum number of VMs
per service to 10. As the number of services increases, the
expectation is that the utility will improve.

Table 5 shows the results of all three algorithms when
varying the memory budget from 200 to 1000 GB and vary-
ing the number of services from 100 to 500 to 1000. The
results of this experiment show similar performance charac-
teristics to the results of the previous experiment. Table 5
shows that as the number of services is increased from 100
to 1000, the total utility decreases for the BasicGreedy and
StandardGreedy algorithms. As expected, the utility of the
algorithms decreases as the number of services is increased.
However, ImprovedGreedy performs best when the number
of VMs is equal to the number of cloud services. The results
of this experiment can be seen in Fig. 5 when fixing the num-

Fig. 5 Experiment 2 Results: utility as a function of memory budget
when the number of VMs is fixed to 500 and the number of CSs is fixed
to 1000.

Table 6 Experiment 3—utility (U) and availability (A) percentages
when varying the maximum number of VMs assigned to a cloud service

Max Basic Standard Improved

VMs U(%) A(%) U(%) A(%) U(%) A(%)

1 23.16 13.15 32.79 23.67 32.79 23.67

2 11.43 6.37 20.11 8.74 31.71 23.00

3 10.79 5.99 14.71 9.41 31.43 22.92

4 9.70 5.44 13.62 8.84 29.30 22.00

5 9.36 5.29 13.43 8.82 28.28 21.26

6 8.68 4.87 13.07 8.63 27.69 20.63

7 7.48 4.23 11.79 7.77 26.21 19.66

8 7.08 4.03 11.11 7.38 24.49 18.71

9 6.72 3.81 11.18 7.56 22.71 17.37

10 6.46 3.70 10.97 7.54 21.53 16.39

ber of services to 1000.Notice also that as thememory budget
is increased, the utility of the services increases.

6.2.5 Experiment 3: analyzing the impact of VM
distribution across services

In this experiment, we vary the maximum number of VMs
used to deploy a service, and we compare the utility of the
three algorithms. The number of VMs assigned to a service
is randomly selected from a range of 1 to the assigned max-
imum. This maximum value is varied from 1 to 10 in this
experiment. Both the number of VMs and the number of
services are fixed to 100 and the memory budget is fixed to
1000 GB. We note that each service is assigned to at least
one VM, and each VM supports at least one cloud service.
The expectation is that the algorithms will improve over the
basic greedy selection as services are distributed across an
increasing number of VMs.

Table 6 highlights the results of all three algorithms when
varying the maximum number of VMs per service from
1 to 10. These results can also be seen in Fig. 6. As the
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Fig. 6 Experiment 3 Results: utility as a function of the maximum
number of VMs per CS when fixing both the number of VMs and the
number of CSs to 100.

number of VMs assigned to a service is increased, the per-
formance of the two proposed algorithms is better than the
basic greedy selection. Note that the utility of each of the
proposed algorithms is significantly larger than that of the
basic greedy selection. As the the number of VMs assigned
to a service is increased, the utility decreases for all three
algorithms when the number of VMs and cloud services are
fixed. The rationale for this behavior is that as services are
more widely distributed across VMs, the larger the poten-
tial cost for migrating a complete service. This will result
in a decreased ability to migrate complete services, thereby
driving down the total priority value of selected services.

6.2.6 Experiment 4: comparison of algorithm running time

In this experiment, we analyze the performance of the three
algorithms in terms of their running times. We calculate the
average running time of each algorithm over 100 runs.

Table 7 shows the results of this experiment when varying
the number of cloud services from 200 to 1000 and vary-
ing the number of VMs from 100 to 1000 while keeping the
memory budget fixed at 1000 GB. In this table, all running
times are expressed in milliseconds. From the table, one can
see that the running time of the ImprovedGreedy algorithm
is higher than that of the other two algorithms. This is the
performance tradeoff for the higher utility and availability
generated by the ImprovedGreedy algorithm. Nonetheless,
the ImprovedGreedy algorithm takes only about 1 s to run
in the worst case when using the largest input parameters in
the experiment. The StandardGreedy algorithm has signifi-
cantly better utility than the BasicGreedy algorithm, yet its
running time is comparable to that of BasicGreedy. Figure
7 shows the running times of the three algorithms on a log-
scale graph when varying the number of cloud services from
200 to 1000, and fixing the number of VMs to 1000 and the
memory budget to 1000 GB. From this figure, it is clear that
the running time of the StandardGreedy algorithm is almost

Table 7 Experiment 4—running time of the algorithms when varying
the number of cloud services (CSs) and VMs, and fixing the memory
budget to 1000 GB

VMs CSs Basic Standard Improved

100 200 0.326 0.343 89.772

400 0.545 0.587 200.237

600 0.738 0.804 311.410

800 1.001 1.142 436.117

1000 1.483 1.615 533.685

500 200 0.389 0.402 101.464

400 0.776 0.800 334.696

600 0.922 0.979 593.332

800 1.127 1.188 844.289

1000 1.335 1.430 1063.041

1000 200 0.538 0.617 94.468

400 0.799 0.826 271.558

600 1.022 1.050 590.802

800 1.234 1.264 987.971

1000 1.448 1.552 1408.885

The running time is expressed in milliseconds

Fig. 7 Experiment 4 Results: running time of the algorithms as a func-
tion of the number of cloud services when fixing the number of VMs to
500, and the memory budget to 1000 GB. Note that the vertical axis is
log-scale.

identical to the running time of the BasicGreedy algorithm
while the utility of StandardGreedy is higher than that of
BasicGreedy.

7 Related work

Ahmad et al. [21] conducted a survey on VM migration
and open research questions. While the majority of their
survey covers migration of single VMs, the live migration
of multiple VMs is only briefly considered. The bulk of
the migration schemes surveyed do not assign dedicated
resources for migration because of the increased computa-
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tional cost to the cloud data center. VMmigration granularity
determines whether single or multiple VMs are migrated.
This affects degradation duration, service downtime, and co-
hosted applications quality of service. Moreover, VMs are
migrated in a predefined order and the totalmigration time for
each VM is increased due to queuing delay at the sender side.
In this solution, only some information is required for each
managed entity with respect to the desired system manage-
ment goals. This approach differs from ours in that we only
consider one instance of AutoMigrate controlling and man-
aging a user cloud environment. Therefore, conflicts cannot
occur.

Vedhanayagam et al. [27], developed metrics to study
queuing systems and handle VM service disruptions. This
model recommends standing up a second VM to redeem the
original VM when service interruption is likely. However,
thismodel accounts for single VM resiliencewhile cloud ser-
vices often require the support of multiple correlated VMs.
Moreover, the replacement VMs are on the same data center
servers as the original VM, so this model cannot be applied
to situations where cloud services must be maintained while
migrating between physically distant data centers.

7.1 When to migrate

Cloud data centers host increasingly large and diverse
workloads, which poses extraordinary challenges to their
hardware infrastructure and software stacks. Consequently,
disruptions to, and degradation of service are frequent occur-
rences. Efforts to combat the degradation and disruption of
cloud-based services fall under anomaly detection methods,
which trigger VM migrations. Anomaly detection is either
log-based or system metrics-based [28].

VM migration may be triggered for reasons other than
anomalies. Mhedheb and Streit [29] describe VM schedul-
ing for energy efficiency in data centers. They developed a
thermal aware scheduler (ThaS), which inspects the change
of load and temperature on host machines, triggering VM
migration to avoid critical overheating or overloading sce-
narios.

7.1.1 Log-based anomaly detection

Tools for log-based anomaly detection extract information
from logs and usemachine learning techniques to build mod-
els that automatically detect system anomalies [30,31]. Lou
et al. [30] developed machine learning-based log analysis
tools which processes log message parameters to discover
invariants. This detection process matches the invariants
from new input logs with already learned invariants. Mis-
matches among invariants constitute anomalies. Xu et al.
[31], designed and implemented a method of mining console
logs to automatically detect system errors and anomalies.

Feature vectors were created from the logs and a principal
component analysis (PCA) algorithm was applied, detect-
ing anomalies. These techniques are characterized by the
use of log parsers which mine console logs, creating models
for detecting anomalies. These parsers require application
source code, which may not always be available, for recov-
ering log syntax. Moreover, log-based anomaly detectors
typically do not give meaningful explanations of detected
problems [28].

7.1.2 System metrics-based anomaly detection

System metrics-based anomaly detection methods account
for the elasticity of cloud environments [28]. While imple-
menting them in a larger cloud environment is extremely
complex, the tools must be configured for multiple lay-
ers of data monitoring and analysis, system metrics-based
anomaly detection tools do provide more effective and accu-
rate detection. Because they use application-level in anomaly
detection, system metrics-based detection tools generate
immense volumes of data in large-scale cloud environments,
which poses difficulties for effective processing.

Wang [32] created an online tool for detecting anoma-
lies that utilized a distribution of metrics, entropy time series
construction and processing across multiple layers of mon-
itoring. Specifically, Wang uses an entropy-based anomaly
detection scheme measuring and analyzing the concentra-
tion and dispersal of distributions across the cloud stack
to form entropy time-series. Then a collection of tools,
including spike detection, signal processing, and subspace
methods to detect anomalies in the entropy time-series.
Kang et al. [33], use a canonical correlation analysis (CCA)
technique to extract the correlations between multiple appli-
cation instances, where attributes of the instances are system
resource metrics—e.g., CPU utilization, memory utilization,
network traffic—and raises an alarm to announce anomalies
when some correlations drop significantly. This method is
capable of detecting application-level or VM-level anoma-
lies because, but it requires large-scale statistical analysis
and knowledge of hosted applications. Barbhuiya, et al. [28],
develop a lightweight anomaly detection tool (LADT) which
monitors system-level and virtual machine (VM)-level met-
rics in Cloud data centers to detect node-level anomalies
using simple metrics and correlation analysis. LADT works
on the hypothesis that, in an anomaly-free Cloud data cen-
ter, there is a strong correlation between the node level
and VM-level performance metrics and that this correlation
diminishes significantly in the case of abnormal behaviour
at the node-level. The LADT algorithm raises an anomaly
alarm when the correlation coefficient value between the
node-level and VM-level metrics drops below a threshold
level.
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7.2 What to migrate

Ye et al. [34], conducted early work onmultiple machine live
migration. They considered the impact of resource reserva-
tion on migration efficiency as well as analyzing parallel
and workload-aware migration strategies. They determined
that several optimization techniques could improve migra-
tion efficiency. Adjusting memory and CPU resources in the
VM, or migrating VMs with smaller memory first, were sug-
gested optimizationmethods. It was also determined thatVM
migration decisions should be made accounting for work-
load characteristics of the target machine. However, this
work does not consider the case where migration is con-
strained by time and bandwidth considerations. Deshpande
et al. [35] propose a live gang migration scheme in LAN
environments. Their scheme de-duplicates page- and sub-
page-level among co-located VMs and provides differential
compression of nearly identical content. They refer to the
simultaneous migration of multiple active VMs from one
physical host to another as gang migration. Improvements
in migration efficiency were made by offline and sub-page
deduplication, re-hashing, and transferring only the differ-
ences between nearly identical pages. Their work did not
consider WAN environments, nor did they prioritize applica-
tions and services.

Sun et al. [36], propose an improved serial migration strat-
egy with a post-copy scheme integrated. They then propose
a m mixed migration strategy based on the improved serial
migration strategy and complemented by a parallel migration
strategy with the goal of satisfying the maximum downtime
constraint and minimizing the total migration time. First, m
VMs are parallel migrated by a pre-copy migration strat-
egy. When the m VMs stop running, the rest of the VMs
are stopped and serially migrated by a post-copy strategy.
Song et al. [37], also proposed PMigrate, which leverages
data parallelism and pipeline parallelism to parallelize the
live migration operation. These approaches focus only on
accelerating the live migration process itself, not on filtering
VMs for migration based on priorities.

Liu and He [38] detail VMBuddies, a system that attempts
to optimize the livemigration of correlatedVMs thatmake up
multi-tiered web applications. Multi-tiered web architecture
is typical of internet applications, with each tier providing a
specific functionality. Most multi-tier applications consist of
three layers: a presentation layer (web tier), business logic
layer (app tier), and a data access layer (DB tier). Each layer
will be run on different VMs, each having different memory
access patterns. The VMs are called correlated because they
must all be migrated to another server in order to completely
and efficiently serve requests in that data center. Correlated
VM migrations can cause considerable performance degra-
dation for multi-tiered applications because, if the VMs are
not migrated together, communication and data access traf-

fic must be routed to the new servers. VMBuddies addresses
the challenges of correlated VM migration with a synchro-
nization protocol to assure that correlated VMs complete
their migration simultaneously, thus avoiding data exchange
across data centers. The scenarios where multiple VMs have
the same function as well as where applications have difficult
topologies andmultiple VMs have different functions.While
this approach does show significant improvement in response
times, the authors do not prioritize multi-tiered applications
for migration management.

7.3 Where to migrate

Berthier et al. [39] give an in-depth discussion of AMS coor-
dination problems and provide a new design methodology
that addresses them. Autonomic managers react to one or
more aspects of themanagement task, andmultiplemanagers
make up an AMS. Different managers within the AMS may
issue contradictory instructions. Coordination of managers
to avoid contradiction is an example of a entity-level coor-
dination problem. Managers must be coordinated to avoid
contradictory instructions. Managers within a system may
require “glue code” or special rules to operate, both of which
are slowanderror prone.Global consistency issuesmayarise,
where managers issuing instructions for one set of events
cause ramifications for other managers (for instance, due
to workload dependencies). A solution is presented which
allows the AMS to implement, maintain, and interpret a reg-
istry of “global knowledge” about the managed system.

Deshpande and Keahey [40] recently proposed a traffic-
sensitive approach to VM migration that mitigates network
contention between VM migration and VM application traf-
fic. When host and destination servers are equipped with 1
gigabit Network Interface Cards, 1Gpbs per second band-
width is available in each direction. There is no conflict when
traffic flows in opposite directions, but when migration and
application traffic flow in the same direction both must con-
tend for bandwidth. In our work, we analyzed the impact of
network congestion on the time taken to perform live migra-
tion. Rybina et al. [41], have investigated the influence of
workload as well as interference effects on multiple VMs,
showing that migration time is proportional to the volume
of memory copied between the source and the destination
machines. Experimentation was conducted on underutilized
servers as well as heterogeneous servers, and interference
effects were caused by co-locating VMs on the same server.
Experimental results suggested that top candidates for live
migration are VMs running CPU intensive tasks, rather than
VMs running memory intensive tasks. Using our approach, a
high priority level can be assigned to services running inten-
sive CPU tasks, which increases their likelihood of being
selected for migration.
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Mhedheb and Steit’s ThaS [29] decides during runtime
which VMs will be allocated to which hosts, targeting VM
migration towards hosts with more favorable load and tem-
perature statistics. Dong and Herbert [42] likewise propose
a forecast-based VM placement algorithm which reduces
power consumption and prevents Service Level Agree-
ment violation. This model utilized cloud-based R servers
which built forecast models for each VM and made predic-
tions about their future CPU resource requirements, which
then informed VM placement decisions. Traffic-Aware VM
grouping partitions VM into sets of VM groups in order to
minimize the overall inter-group traffic volume while the
overall intra-group traffic is maximized. Fang et al. [43],
implemented a cloud migration strategy that placed VMs in
traffic aware groups, optimally assignedVMgroups to server
racks to the total inter-traffic loads in the network, as well as
move and aggregate network traffic onto fewer paths for data
center energy efficiency.

8 Conclusion

In this paper, we presented a novel framework for maxi-
mizing cloud service availability in response to the threat of
cloud service disruption. The framework preserves cloud ser-
vice availability through live migration of virtual machines,
thereby leading to enhanced cloud resiliency. This frame-
work identifieswhat cloud services should bemigrated,when
these cloud services need to bemigrated, andwhere these ser-
vices should be migrated to. Systems developed using this
framework are able to autonomously manage the migration
of VMs so as to minimize cloud disruption due to anomalous
events. As part of the framework, we developed two greedy
algorithms for selecting cloud services to migrate in order
to maximize the availability of high priority cloud services
under time and bandwidth constraints. We deployed a cloud
and integrated the framework with the two algorithms. We
performed experiments to analyze the performance of the
two algorithms. The experimental results show that the two
algorithms significantly outperform a basic greedy selection
algorithm. These algorithms could be used to decide how to
distribute a cloud service workload across the VMs in a data
center.

One avenue for future work will be investigating alterna-
tive cyber threat detection technologies which can be used
to strengthen the anomaly detector component within the
framework. Such cyber threat detection technologies include
intrusion detection systems, intrusion prevention systems,
and cyber indicators of compromise. Automatic schemes for
assigning service priorities and choosing budgets, which can
be learned from the system instead of being chosen manu-
ally as is done in this AutoMigrate framework, is a natural
extension of this work. Another direction of future work will

be integrating the AutoMigrate framework with commer-
cial cloud service providers. In our previous work on data
security and privacy in the cloud, we proposed the Nomad
framework [44,45]. An interesting research avenue will be
to integrate the Nomad and AutoMigrate frameworks, which
will enable both data privacy controls and self-managing
cloud services, to ensure privacy and availability in the cloud.
Docker basedmigration of cloud services has the potential for
further improving the availability of cloud services.Reducing
the migration workload by shutting down low priority appli-
cations running on VMs, can be added to the AutoMigrate
framework, to further improve the availability of services
with higher priority.
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