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Abstract There are many approaches available for extract-
ing clusters. A few are based on the partitioning of the
data and others rely on extracting hierarchical structures.
Graphs provide a convenient representation of entities having
relationships. Clusters can be extracted from a graph-based
structure using minimum spanning trees (MSTs). This work
focuses on optimizing the MST-based extracted clusters
using Evolution Strategy (ES). A graph may have multiple
MSTs causing varying cluster formations based on differ-
ent MST selection. This work uses (1+1)-ES to obtain the
optimalMST-based clustering. The Davies–Bouldin Index is
utilized as fitness function to evaluate the quality of the clus-
ters formed by the ES population. The proposed approach is
evaluated using eleven benchmark datasets. Seven of these
are based on microarray and the rest are taken from the UCI
machine learning repository. Both, external and internal clus-
ter validation indices are used to evaluate the results. The
performance of the proposed approach is compared with two
state-of-the-artMST-based clustering algorithms. The results
support promising performance of the proposed approach in
terms of time and cluster validity indices.
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1 Introduction

Clustering is a key machine learning and data mining task
used for extracting useful patterns in diverse fields. Over the
period of decades, various clustering techniques have been
proposed [1]. Connectivity-based clustering, centroid-based
clustering, distribution-based clustering, and density-based
clustering are a few of the most commonly used approaches
for cluster analysis. Clustering has many real-world applica-
tions. A few cases in point are extracting coherent groups
from a protein–protein interaction network, wireless sen-
sor network with uncertain edges, and social networking.
Depending on the problem domain, cluster analysis is
also focused on finding non-spherical clusters. Traditional
partitioning-based clustering methods, like k-means and k-
medoids fail to find non-spherical clusters [2]. Graph-based
approaches have shown promising results for this task. Gen-
erally, the goal of clustering is to extract strongly connected,
coherent groups from the underlying data. Graphs provide a
convenient representation of items having a direct or indirect
relation. Where related items in a graph are represented by
an edge between nodes or a series of edges among scattered
nodes. Spanning trees represent a structure that completely
covers the graph having a path to every node.Minimum span-
ning trees (MSTs) are similar to the spanning tree, however,
the overall sum of edges’ weight in the MST is minimum.
Two nodes closer to each other in a graph will have lesser
value of the edge weight connecting them as compared to
the nodes placed far apart. However, a different interpreta-
tion of an edgeweight is also possible, specific to the problem
domain. Keeping the distance-based interpretation in view,
an MST thus represents a closely connected group of nodes
that can be interpreted as a cluster. When utilizing MSTs
for cluster formation, using a complete MST to represent
a single cluster is not an appropriate concept [3]. Reason
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being the inclusion of all nodes in the MST for a connected
graph, thus forming a single cluster. Techniques employ-
ing MSTs for clustering address this concern by restricting
growth of an MST for a specific threshold weight. This
enables to construct coherent groups that are strongly con-
nected. These MST-based extracted groups can further be
optimized by rearranging their connections within the tree.
However, this rearrangement needs to be done in line with
the actual connections in the graph. It needs to be done grad-
ually and evaluated for improvement in cluster quality before
accepting it. This is an area where evolutionary computing
can be utilized. Genetic algorithm and genetic programming
can be controlled to converge steadily using mutation and
crossover rates. However, evolution strategy (ES) seems to be
a better choice here,where the reproduction operator ofmuta-
tion is only used. An approach can be devised that extracts
MST from a graph representing a cluster/pattern. Later, this
MST can be optimized using ES-based approach. Since a
graph may have multiple MSTs, these can become candi-
date solutions (population) for the ES. Previously, ES-based
approaches for optimizing solutions in the domain of pat-
tern recognition, independent learning, and bioinformatics
have shown better results [4–6]. Clustering data using evo-
lutionary algorithms has been studied before, however, most
of the existing literature is either focused on similarity mea-
sures for data [7] or is an extension of existing algorithms
for graphs [8]. There are a few existing methods that rely on
the graph-based representation of the MST-based methodol-
ogy for clustering [9], similar to the approach proposed in
this work, but the amount of data lost in these methods is
much higher [10,11]. MST-based clustering is known for
extracting irregular boundaries and outlier detection [12].
TheMST-based clustering techniques have widely been used
for efficient clustering. However, creating a singleMST from
a graph is not a good idea for efficient clustering. To over-
come this limitation this work proposes to optimize MSTs
for efficient clustering formations. Themain idea is to extract
multiple MSTs from a graph and then optimize the cluster-
ing formations using ES. This work utilizes (1+1)-ES for the
optimization of MST-based extracted clusters. Details on the
existing approaches for clustering data and how the proposed
approach is different from the existingwork are listed in Sect.
2.

This work focuses on optimizing the MST-based cluster-
ing using the ES. A graph may have many MSTs and by
selecting any particular MST different clustering formation
can be achieved. In order to obtain the optimal MST-based
clustering (1+1)-ES is used in this work. Mutation is the
only reproduction operator used in ES for the creation of
new individuals by modification of the parent solutions. The
ES population is generated using multiple MSTs of the same
input graph. Later, these MST-based clustering formations
are optimized using the objective function. The Davies–

Bouldin Index (DBI) is used as a fitness function to evaluate
the quality of clusters formed by each individual of the ES
population. This proposal can be adopted as a generic frame-
work,whereDBI is one of themanypossible fitness functions
to guide this framework for better clustering formations.
The reason for opting for DBI here is its wide utility in
the clustering algorithms and much less complex than the
computation of other cluster validity indices like Silhouettes
coefficient (SC). Additionally, DBI being an internal validity
index enables to assess the cluster quality in the absence of the
ground truth. Thus, justifying the utility of DBI as an objec-
tive function here. The ES is executed for 1000 iterations
having a population of ten individuals. Population size of
ten individuals is opted due to the limited number of disjoint
MSTs in a graph. There can be a case where the input graph
having all edges with same weight has only a single MST for
any root node selection. The proposed approach is evaluated
using eleven benchmark datasets. Seven of these are based
on microarray and the rest are taken from the UCI machine
learning repository. This evaluation is performed using the
external cluster validity measure adjusted rand index (ARI)
and the internal cluster validation indices ofDBI, Dunn index
(DI) and SC. The results of the proposed approach are also
compared with two state-of-the-art MST-based clustering
algorithms, i.e., B-MST [13] and information theoreticMST-
based (ITM) clustering [14], where the results suggest better
performance of the proposed approach in the majority of the
cases.

The rest of the paper is organized as follows: Sect. 2
presents the related work; Sect. 3 explains the proposed solu-
tion covering chromosome structure, reproduction operators
and the fitness functions. Section 4 lists the detailed experi-
ments, obtained results and discussion, including comparison
with the state-of-the-art methods. Finally, Sect. 5 concludes
the paper with a few of the future directions.

2 Related work

Clustering data and extracting useful patterns attracts inter-
est from an assortment of fields. TheMST-based clustering is
specifically useful to identify clusters with irregular bound-
aries [15]. MSTs have been used to group data, in the
fields of biology [16], pattern recognition [16], and image
processing [17,18]. There are many clustering algorithms
available depending on the type of data and the problem
statement at hand. Broadly, these can be divided into three
categories; partitioning algorithms, hierarchical algorithms,
and graph-based algorithms. This section covers the litera-
ture that presents clustering usingMSTs and the evolutionary
algorithms.

Zhong et al. [19] use the k-means approach for extracting
MST-based clusters from a graph. Their approach utilizes
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divide-and-conquer scheme to produce an approximateMST
having a time complexity of O (N 1.5), where N is the num-
ber of nodes in a complete graph. The approach initially
partitions the data into

√
N clusters using k-means algo-

rithm and then these clusters are combined using an exact
MST algorithm. The algorithm’s performance is evaluated
using real-world and synthetic datasets. Internally, Prim’s
algorithm is employed to extract the MSTs. The computa-
tional cost of their framework is dominated by the number
of partitions initially created through k-means. However,
this can be reduced by producing same sized partitions.
The approach can also be applied to larger datasets. Perim
et al. [13] report an MST-based heuristic called B-MST
for clustering. An objective function consisting of tightness
and separation index (TSI) is utilized to guide the algo-
rithm. The method is reported to work on co-expression
network topology. A local search procedure is developed
for TSI minimization. The results are compared with estab-
lished methods, such as, gene ontology and ARI. The
authors report that B-MST produced superior results as com-
pared to other complex clustering algorithms. Muller et al.
[14] present an information-theoretic clustering algorithm.
Information-theoretic grouping produces non-convex groups
by expressing the numerical information in data through the
likelihood density function. It is based on Euclidean mini-
mum spanning tree, which is a fast and efficient optimization
algorithm.The edgeweights in theEuclideanminimumspan-
ning tree represent the Euclidean distances between points.
It is a non-parametric algorithm. The only known parameter
is the number of classes. Zhou et al. [20] present an adaptive
MST-based clustering algorithm (AMST). Their proposal is
useful to extract irregular shaped clusters. Itworks by initially
determining the optimal number of partitions in the region
using a validity index. Afterwards the candidate clusters are
evaluated for their significance. The validity index takes into
consideration both compactness and isolation of data. This
enables to select the best portion of an MST for clustering.
Their approach is compared with static MST (SMST) and
dynamic MST (DMST) clustering approaches. The AMST
method extracts multiple clusters from the data as opposed
to the single cluster formed by SMST and DMST. Simula-
tions also support better accuracy of AMST in comparison
with SMST and DMST. Zhou et al. [21] present two MST-
based clustering algorithms using Euclidean distance. These
include the k-constrained algorithm and unconstrained algo-
rithm. The k-constrained algorithm extracts an MST from
a graph and repeatedly removes edges from it based on a
predefined constraint to form k clusters.Whereas, the uncon-
strained algorithm partitions the data into multiple clusters
without describing the number of clusters. This is done by
reducing the overall standard deviation of the edges in the
Euclidean minimum spanning tree. The algorithm is named
maximum standard deviation reduction algorithm (MSDR).

It is evaluated using four benchmark datasets from the UCI
repository and is compared with the scale-free minimum
spanning tree clustering algorithm (SFMST) and k-means
approach. Although the authors attempt to reduce the time
complexity of their approach by using sorting in each node,
however, it is still a performance bottleneck. The work in [9]
is like the one presented in [21]. Wang et al. [22] introduce
an MST-based clustering algorithm that detects clusters by
removing inconsistent edges. Edges are considered inconsis-
tent if their weight is larger than the average edge weight
of the MST. The algorithm also removes outliers based on
density. Density-based outliers are considered for object sta-
tus, which is the ratio between local density of the object’s
neighbors and the local densities of their neighboring objects.
Density for each object is calculated by assigning an object
a local outlier factor (LOF). LOF is compared with a thresh-
old. If LOF is higher than the pre-specified threshold, it is
considered an outlier. Several experiments are reported by
comparing the solution against other clustering algorithms
where the proposal performs better in identifying a rela-
tively small number of density-based outliers during MST
construction. Jothi et al. [23] propose twoMST-based cluster-
ing algorithms.Most of theMST-based clustering algorithms
first generate a complete graph from the input dataset and then
perform clustering. This usually takes O(n2) time. The work
in [23] aims to reduce the time for constructing MST. The

execution time of their approach is O
(
n

3
2

)
. However, the

MST is constructed with computational time of O
(
n

3
2 lgn

)
.

Experiments are used to perform evaluations using four arti-
ficial datasets. The results show that their algorithm reduces
running time aswell as gives efficient clustering.Yu et al. [25]
explain the hierarchical structures inMST. They state that the
already established algorithms and the proposed theories are
inadequate for the identification and explanation of the clus-
ters in trees. They devised a method which can first identify
a cluster in a tree and subsequently grow into MSTs. The
tree agglomerative hierarchical clustering (TAHC) method
is introduced for the identification of the clusters in MSTs.
The approach is efficient for the detection of the clusters in
artificial trees. Normalized mutual information is utilized to
quantify the similarity between the underlying real clusters
and the clusters detected by the TAHCmethod. Their method
is reported to have application in the identification of the
clusters.Xu et al. [16] present a framework to representmulti-
dimensional gene expression data as MST. The framework
avoids the loss of information during the partitioning process.
TheirMST-based clustering approach utilizes three objective
functions, namely, clustering through removing long MST
edges, iterative clustering, and globally optimal clustering.
The first objective function is to minimize the total edge dis-
tance of multiple trees by partitioning an MST in k subtrees.
The second objective function optimizes the k-clustering by
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reducing the total distance between cluster centers and their
data points. The third objective function partitions the MST
into k trees by globally minimizing the distance between the
data points and the cluster centers. This is done by grouping
the data points around the best representative. The framework
is tested using three datasets. Huang et al. [26] present amod-
ified density-basedminimum spanning tree (MST) clustering
algorithm. Their algorithm has two phases; a density-based
micro-cluster andMST-based tree formation. The initial clus-
tering is performed using the density-based part that detects
noise. In the next step the k − 1 longest edges of the MST
are removed, which results in the generation of k clustering.
The clustering results are optimized using an objective func-
tion. They further report that micro-MST-cluster algorithm
performsbetter and exhibit good clustering effect. Their algo-
rithm is reported to have various applications in domainswith
large datasets. Zhong et al. [27] present a hierarchical cluster-
ing method by splitting and merging an MST. They employ
MST to guide the processes of merging and splitting. Dur-
ing the splitting process the higher degree MST vertices are
selected as initial prototypes, while k-means is used to split
the dataset. The merging process involves the filtration of
the subgroup pairs. The neighboring pairs are considered for
merging.

As evident from the above literature survey and to the
best of our knowledge, the majority of work in MST-based
clustering focuses on partitioning the MST for better cluster
formations. The use of an evolutionary approach is missing
thatmay produce promising results. This proposal focuses on
using evolutionary algorithm for optimizing the MST-based
clusters. The works closely related to this proposal are B-
MST clustering [13] and Information Theoretic MST-based
(ITM) clustering [14]. These are used for comparing the
results of the current proposal. The key difference between
the proposed work and previous approaches is that it is
not based on any assumption about the underlying data.
Like in case of ITM, absolute continuous data distribution
is assumed. Additionally, in the previous works complex
pointer-based data structures were utilized for storing the
MSTs and the extracted clusters. This increased the pro-
cessing time. However, in this case, the trees are avoided to
permanently store clusters; instead, one-dimensional arrays
are utilized. There is a limited utility of trees while extract-
ing the MSTs, however its cost is minimized by keeping less
population size.

3 Proposed solution

This proposal presents an MST-based clustering approach
to extract optimized clustering using (1+1)-ES. Previously,
work has been reported that indicate MST-based clustering
as an efficient method for clustering because of its ability to

extract arbitrary shaped clusters and outliers [9]. This work
initially extracts multiple MSTs from a graph and later ES
is used to optimize the clusters represented by these. The
(1+1)-ES has benefits in solving optimization problems due
to its simplicity and flexibility of strong response in vary-
ing circumstances [28]. The advantage of ES over genetic
programming (GP) is its ability to avoid premature conver-
gence thus resulting in better clustering. A key issue in ES is
its population size. Small population causes ES to converge
too quickly, however larger population waste computational
resources. The ES population here consists of ten individu-
als. The initial individuals of the ES population are MSTs
extracted from the input graph using Prim’s algorithm by
selecting varying nodes as the root. Depending on the input
graph there may be multiple MSTs. However, this number is
usually small thus restricting our framework to have a pop-
ulation size of ten chromosomes. Once the ES population is
initialized, one child is produced from each parent through
mutation resulting in a parent child pool of 20 chromosomes.
Fitness of both, parent, and the child solution is computed. If
the child’s fitness is higher than the parent, it replaces the par-
ent in the next iteration. Otherwise, the parent chromosome
is moved to the next generation. The rate at which muta-
tions occur is often small because large mutation rates alters
the structure of the chromosome quickly thereby resulting
in the loss of good genetic material in highly fit individ-
uals. The Davies–Bouldin index (DBI) [29] is utilized as
a fitness function in the proposed solution. Since a lower
value of DBI indicates better clustering, the individuals with
minimum DBI values survive in the next generation. This
proposal requires the datasets to be represented as a graph by
considering each data point as a node and edge indicating dis-
tance between them. The proposal is evaluated using various
distance measures for the edge weight, such as: Euclidean,
Minkowski, Chebyshev, Correlation, Mahalanobis and city
block. Figure 1 shows the overall working of the proposed
solution. For the proposed system, the input dataset is repre-
sented as a graph. The data samples become the graph nodes
and an edge between two nodes represent their Euclidean dis-
tance. For N samples, we have an N×N adjacency matrix.
Where, each cell containing a non-zero entry shows the dis-
tance between two nodes, which is computed by applying the
distance measure to its attributes.

3.1 Chromosome encoding

To initialize the ES population multiple MSTs are derived
from a single graph by arbitrarily selecting a node as the
MST root. This results in dissimilar MSTs. The MSTs are
derived using Prim’s algorithm. However, to have multiple
MSTs in the graph there must be multiple edges having
the same weight. This result in multiple MSTs having same
total weight, but varying shape. Figure 2 shows two MSTs
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Fig. 1 Overall system working

Fig. 2 A sample graph with two of its MSTs a input graph, bMST-1, c MST-2

extracted from the sample graph. Once multiple MSTs are
extracted from the graph, the next step is to extract coher-
ent partitions (i.e., clusters) from theseMSTs. Initial clusters
from each MST are generated using a specific threshold. For
a givenMST1, edges are extracted from theMSTand added to
cluster C1

MST , this process is repeated until the cumulative
weight of the cluster C1

MST exceeds a threshold (tc). This
threshold is the ratio between the total weight of an MST
divided by the number of clusters. When the sum of the clus-
ter’s edges reaches a value greater than the threshold, the
cluster growth is stopped [See Eq. (1)].

Threshold (tc) =
(

n∑
k=0

Wk

)
/nc (1)

Where, nc is the total number of clusters and w is the sum
of all the edges in the MST. Upon exceeding the threshold,
cluster C2

MST is constructed and the process is repeated until
all edges in the MST are exhausted. This approach is used
in all MSTs for creating clusters. From M MSTs, we have
M sets of clustering formations. The chromosomes are rep-
resented as a one-dimensional array where a cell containing
−1 is used to separate clusters. These cells are called separa-
tors. The consecutive series of cells in the chromosome (until
a cell having −1 is reached) represents one cluster. Each cell
can contain an integer between 1 and n, where n is the total
number of nodes in the graph. This integer value represents
the node number of the graph. Once a node is assigned to
a cell in the chromosome, it cannot repeat in other cells.

123



382 Cluster Comput (2007) 21:377–391

Fig. 3 Pseudocode to generate
clusters using MSTs Procedure-1: Generate N MSTs using prim’s algorithm 

Input: Datasets D; 
Output:     N MSTs of the graph from D; 
1. Read the dataset D and represent as a graph G
2.  Store G in an adjacency matrix AMG

3. Set N as the number of MSTs where  
N

4.  Set i=0 
5.  i<N
6.  Select vertex v as a root where    

v N
7.   Call Prim’s algorithm, Prims(AMG,V)

Procedure-2: Generate M clusters from the N MSTs 

Input: N MSTs; 
Output: M clusters; 

1. Set the threshold, tc
2. Set i=0 
3.  i<N
4.  Select MST Ni for clustering 
5.  Clusterweight<tc

6.   Add edges from Mi to cluster CMST
j

7.  Store cluster CMST
j

The initial assignment of the nodes to the chromosome’s cell
comes from the extracted MSTs. This provides the ES with
a logical initial clustering formation to start with. Figure 3
lists the pseudocode that generates clusters using the MSTs.

3.2 Objective function

The Davies Bouldin Index (DBI) is used as a fitness to eval-
uate the cluster quality represented by the ES chromosomes.
DBI is a clustering algorithm evaluationmetric which checks
for the inter-cluster as well as intra-cluster similarity. Being
an internal evaluation scheme, DBI validates the clustering
based on quantities and dimensions inherent to the dataset.
Equation (2) shows the mathematical formulation of DBI,
where n represents the number of clusters, σx represents the
average distance of all the nodes in the cluster to the cen-
ter of the cluster ci,and d(ci , c j ) is the distance between the
centroids of two clusters ci and c j .

DBI = 1

n

n∑
i=1

max
i �= j

(
σi + σ j

d(ci , c j )

)
. (2)

The minimum value of DBI indicates better clustering. The
time complexity of computing DBI is O(d(K 2 + N )).

3.3 Reproduction

Mutation is the only reproduction operator used in ES to
guide the population towards convergence. Population’s each

individual is mutated to produce one offspring. The muta-
tion rate of 5% is set in this proposal. For mutation, two
sets of nodes are utilized. The first set includes the origi-
nal cluster’s nodes (called the cluster-nodes) and the second
set is of nodes that are used for mutation, referred to as the
mutation-nodes. The mutation-nodes and the cluster-nodes
are two disjoint sets. Nodes in set cluster-node and the ones
in mutation-nodes have equal chances to be selected for the
replacement and mutation respectively. For example, con-
sider a dataset with nine nodes numbered as 1, 2, 3, 4, 5,
6, 7, 8, and 9. We have a cluster-node set with members 2,
3, 5, 7 and mutation-nodes set having 1, 4, 6, 8, 9 as mem-
bers. If the mutation rate is 50%, it means that two nodes are
randomly selected from the mutation-nodes to be replaced
by any two randomly selected nodes from the set cluster-
nodes. This results in a new cluster with changed structure.
However, the connectivity of various nodes is validated to
be present in the original graph before the mutated chromo-
some is accepted. This mechanism avoids creation of any
false-negative clusters. Figure 4 demonstrates an example
mutation.

4 Experiments and results

This section lists the experiments and their results. The sec-
tion shows the outcomes of experiments for the proposed
approach referred to as evolution strategy towards clustering
(ES-TCL) from this point onwards. Performance of ES-TCL
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Fig. 4 An example mutation

is compared with B-MST [13] and Information Theoretic
MST-based (ITM) clustering [14], these being the closely
related work to the current proposal. B-MST is proposed
in [13] that use R and the igraph1 library [30] for imple-
mentation. ITM is proposed in [14] and is implemented
using python. ES-TCL is evaluated using eleven benchmark
datasets. Seven of these are microarray datasets with known
clusters, and remaining four are taken from the UCI reposi-
tory.2 The comparison is based on both internal and external
cluster validity indices. These include,DBI,DI, SC, andARI.
Table 1 lists the description of the eleven datasets. Microar-
ray data represent themeasurement technology used for gene
expression.Gene expression is the process of finding the rules
due to which the information is stored in DNA. BreastA
dataset is about breast cancer produced using one-channel
oligonucleotide with 98 objects and 1213 attributes. BreastA
is originally clustered into three classes with 51, 11, and 36
samples. BreastB is also a breast cancer dataset produced
using two-channel oligonucleotide with 48 objects and 1213
attributes.DLBCLA stands for diffuse largeB-cell lymphoma
A, it is a dataset having 141 objects and 661 attributes. CNS
and LungA datasets are utilized in [31] and [13] respectively.
Novartis represent MultiA gene expression dataset having
5565 genes which are normalized for reduction to 100 and
103 objects. The digits, vowels, vehicle, and iris datasets are
taken from the UCI repository. Table 2 lists the parameter
setting for the ES. The ES is run for 1000 iterations having
a population size of ten chromosomes. A mutation rate of
5% is used in the experiments, however, convergence is also
evaluated on three other mutation rates.

1 http://igraph.org/.
2 http://archive.ics.uci.edu/ml/datasets.html.

Table 1 Datasets description

Dataset Samples Features Classes

BreastA 799 98 3

BreastB 800 49 4

DLBCLA 661 141 3

DLBCLB 661 180 4

CNS 112 9 4

LungA 197 188 4

Novartis 799 20 4

Digits 1797 64 10

Vowel 990 10 11

Vehicle 846 18 4

Iris 150 4 3

Table 2 EA parameter settings

Parameter Value(s)

Number of populations 1

Initial population size 10

Reproduction operators Mutation only

Mutation rate 1, 5, 10, 15, and 25%

Stopping criterion 1000 iterations/convergence

ES type (1+1)-ES

4.1 Cluster validity measures

Once a chromosome represents a clustering formation of the
given graph, its quality, i.e., fitness is evaluated using the
DBI. However, additional clustering quality indices will help
in evaluating the formed clusters by the proposed approach.
For this purpose, both internal and external cluster valid-
ity indices are utilized. The internal validity index does not
require prior knowledge about the clustering structure [32].
Whereas, the external validity indices require this infor-
mation. External validity indices compare two portions on
equality. Other than DBI, the two internal validity indices
and one external validity index used for evaluation are listed
as follows.

4.1.1 Dunn index (DI)

Dunn index (DI) is an internalmeasure for gauging the results
of a clustering algorithm. It aims to find solid and disjoint
clusters. DI is the ratio between intra-cluster and inter-cluster
similarity. Equation (3) lists the formula to find the intra-
cluster similarity.

intracluster = 1

n

c∑
i=1

∑
a∈Ci

||a − centeri || (3)
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where, n is the number of points in a cluster, c is the total
number of clusters, Ci is the cluster and centeri is the cen-
ter of Ci . The intra-cluster distance is to be minimized. The
inter-cluster similarity shows the separation between clus-
ters which measure the distance between them. For good
clustering, it should be maximum. Formula for inter-cluster
similarity is given in Eq. (4).

intercluster

=
∑n

k=0

min
(
||Ci − C j ||2

)
, i = 1, 2, 3, . . . , c − 1
j = 1, 2, 3, . . . , c

(4)

Where, C represents the cluster center.

DI = min1≤ j≤C (inter_cluster)

max1≤J≤C (intra_cluster)
(5)

where, min (inter-cluster) represent the minimum distance
between two clusters. Max (intra-cluster) is the maximum
distance between two points in cluster k. Dunn index is
inversely proportional to mix(inter − cluster). The higher
values of DI represent good clustering.

4.1.2 Silhouettes coefficient

Silhouettes coefficient (SC) provides a graphical represen-
tation of the clustered objects. SC is an internal validity
measure showing the similarity and dissimilarity of the object
assigned to a cluster. If the object is well clustered, it is more
connected to its own cluster’s members, and disconnected to
other clusters. For example, if an object i is assigned to clus-
ter C1 then average dissimilarity AVGa(i) of i with all other
objects of C1 is calculated. Next, the average dissimilarity of
i to objects of other clusters except C1 is computed. The SC
value ranges between −1 and 1. Formula for computing SC
is listed in Eq. (6). The higher SC value is considered better.

SC(i) = AVGb (i) − AVGa(i)

max{AVGa (i) , AVGab(i)} (6)

4.1.3 Adjusted rand index (ARI)

ARI, an external cluster validity index, finds the resemblance
between two clusters by identifying how much two clusters
are like each other. Consider the data points in a dataset rep-
resented as a set SD.

SD = {d1, d2, d3 . . . dn} (7)

Let two clusters of SD be C1 = {a1, a2, a3 . . . ds} and C2 =
{b1, b2, b3 . . . bs}

Table 3 Notations used in ARI formula

Variable Description

a Represent the number of elements that
share the same class in cluster C1 and
same class in C

b Represent the number of elements having
different classes in cluster C1 and
different classes in C2

c Represent the number of elements that
share same class in C1 but assigned
different classes in C2

d Represent the number of elements having
different classes in cluster C1 but share
same class in C2

Where,C1 is an external index containing ai classes, andC2
is a result of clustering algorithm containing bi classes. The
formula for ARI is:

ARI = a + b

a + b + c + d
(8)

Table 3 lists the description of a, b, c, and d. The value of
ARI ranges between 0 and 1. If both clusters are same, ARI
is 1. The value a + b shows the connection between C1 and
C2, while c + d shows disparity between two clusters. The
higher ARI value indicates better clustering formation.

4.2 Distance measures

ES-TCL utilizes Prim’s algorithm to extract initial MSTs
from a given graph and later clusters are formed. All this
involves computation of distance between various nodes. In
the experiments six distancemeasures are utilized, including:
Euclidean, Chebyshev, Minkowski, Mahalanobis, correla-
tion, and city block distance. These distance measures are
shown in Eq. (9–14).

d(a, b) =
√

(b1 − a1)2 + (b2 − a2)2 + · · · + (bn − an)2 (9)
dchebyshev(a, b) = maxi | ai − bi | . (10)

dminkowski (a, b) =
(∑n−1

i=0
|ai − b j |p

)1/p

(11)

dmahalanobis(a, b) =
((

�a − �b
)T

S−1
(
�a − �b

))1/2

(12)

dcorrelation

=
n

(∑n−1
i=0 ai bi

)
−

(∑n−1
i=0 ai

) (∑n−1
i=0 bi

)
√[

n
∑n−1

i=0 a2i −
(∑n−1

i=0 ai
)2] [∑n−1

i=0 b2i −
(∑n−1

i=0 bi
)2]

(13)

dcityblock =
∑N

i=1
| ai − bi | (14)
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4.3 ES results

The ES-TCL is executed over the eleven datasets for 1000
iterations. After each iteration, fitness of the best individ-
ual (from the parent child pool) is recorded. This enables to
compute the population’s average fitness indicating the con-
vergence or otherwise of the proposed methodology. Figure
5 shows the convergence using five datasets, i.e., BreastA,
BreastB, CNS, DLBCLA, and DLBCLB. Depending on the
features and other dataset specific characteristics the fit-
ness function values, i.e., DBI may vary across the datasets.
Due to this reason, these values are normalized in Fig. 5
for demonstration purpose. All the datasets converge before
1000 iterations. Figure 6 shows the convergence speed on
four mutation rates. These results represent the average val-
ues obtained from ten runs. Each run evolved the population
for 1000 iterations. The figure indicates quicker convergence

of 5% mutation, thus the same is opted for further experi-
ments.

4.4 Comparison

For the purpose of comparison,B-MSTand InformationThe-
oretic MST-based (ITM) clustering are utilized, these being
the closely related recent approach to ES-TCL. Both, the pro-
posed algorithm and B-MST, are distance-based clustering
algorithms. For the similarity between objects, six distance
measures were evaluated (Sect. 4.2). ES-TCL obtained the
results using these six measures (one at a time), and a com-
parison was made with B-MST. Out of the eleven datasets
utilized in this study, seven are microarray datasets, which
were originally used in the evaluation of B-MST. Table 4
shows the comparison of the proposed solution with B-
MST using Euclidean distance. ES-TCL and B-MST were

0

2

4

6

8

10

12

1
2
1

4
1

6
1
8
1

1
0
1

1
2
1

1
4
1

1
6
1

1
8
1

2
0
1

2
2
1

2
4
1

2
6
1

2
8
1

3
0
1

3
2
1

3
4
1

3
6
1

3
8
1

4
0
1

4
2
1

4
4
1

4
6
1

4
8
1

5
0
1

5
2
1

5
4
1

5
6
1

5
8
1

6
0
1

6
2
1

6
4
1

6
6
1

6
8
1

7
0
1

7
2
1

7
4
1

7
6
1

7
8
1

8
0
1

8
2
1

8
4
1

8
6
1

8
8
1

9
0
1

9
2
1

9
4
1

9
6
1

9
8
1

N
or

m
al

ize
d 

fit
ne

ss
 

Itera�ons 

BreastA BreastB
CNS DLBCLA
DLBCLB

Fig. 5 (1+1)-ES convergence graphs for five datasets

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

30
1

32
1

34
1

36
1

38
1

40
1

42
1

44
1

46
1

48
1

50
1

52
1

54
1

56
1

58
1

60
1

62
1

64
1

66
1

68
1

70
1

72
1

74
1

76
1

78
1

80
1

82
1

84
1

86
1

88
1

90
1

92
1

94
1

96
1

98
1

N
or

m
al

ize
d 

fit
ne

ss
 

Itera�ons 

0.5%
1%
5%
10%

Fig. 6 Four mutation rates and convergence speed

123



386 Cluster Comput (2007) 21:377–391

Table 4 Cluster validity indices using Euclidean distance

Datasets ES-TCL B-MST

DBI DI SC ARI Time (s) DBI DI SC ARI Time (s)

BreastA 2.666415 0.05752 0.143474 −0.00798 148.5644 5.1695 0.0801 −0.01558 −0.002 789.0522

BreastB 2.427889 0.05636 0.270697 0.00164 170.8247 4.5508 0.0872 −0.01321 −0.064723 1178.732

DLBCLA 4.077493 0.00362 0 0.0287 88.67897 38.8197 0.0091 −0.71704 −0.2190631 858.0941

DLBCLB 4.042141 0.0886 0.289725 −0.0078 115.4174 5.3449 0.0916 −0.30726 −0.003 1327.828

CNS 3.609224 0.01106 −0.50689 0.0045 11.26453 5.3449 0.0916 −0.30726 −0.003 1327.828

LungA 1.945492 0.0708 0.599852 −0.164 18.50534 59.1341 0.0045 −0.81183 −0.0259 55.16616

Novartis 2.8132099 0.034 0.163783 0.0106 143.4517 13.4414 0.1394 −0.41247 −0.0064 1337.777

Bold values indicate the proposed approach performs better

executed five times and the average value was used for eval-
uation. The lowest value for DBI and the highest values for
DI, SC, andARI indicate better clustering. The table presents
the validity indices of partitions generated by ES-TCL and
B-MST. The results suggest that using the Euclidean mea-
sure, the proposed approach has better DBI values for all
datasets as compared to the B-MST, while DI value is bet-
ter only for LungA dataset. The SC value for ES-TCL is
better for all datasets except CNS. Similarly, ES-TCL gives
better ARI values for BreastB, DLBCLA, DLBCLB, CNS,
and Novartis. Figure 7 shows an SC plot using the LungA
dataset. The dissimilarity between objects was also com-
puted using Chebyshev distance for ES-TCL and B-MST.
The DBI, DI, SC, ARI values for B-MST and ES-TCL are
listed in Table 5. The minimum value of DBI is achieved for
ES-TCL on all datasets. ES-TCL has better DI values for four
among the seven datasets. ES-TCL has better SC value for all
the datasets with an exception of CNS. ARI values for three
datasets, i.e., BreastA,DLBCLA, andDLBCLB, are better for
the ES-TCL. The proposed approach takesminimum running
time on all datasets except for CNS as compared to B-MST.
Table 6 lists the validity indices using Minkovski distance.
As is the case for Euclidean and Chebyshev distances, ES-
TCL has better DBI values for all datasets. It has better DI
values only for two datasets; CNS and lungA. SC values of
ES-TCL are better for five datasets. Table 7 mentions the
DBI, DI, SC, and ARI measured when correlation is used for
clustering in ES-TCL and B-MST. Four datasets have better
DBI values using correlation with the current proposal. For
DI, no dataset gives better results for ES-TCL. Four datasets
have better SC values by using correlation. For ARI, ES-TCL
has better values for all datasets, except lungA and Novartis.
Table 8 shows the results using Mahalanobis distance. For
this distance measure, all the datasets produce better DBI
values excluding CNS, over the proposed solution. DI val-
ues of ES-TCL are worst only for BreastA and CNS datasets.
Excluding the CNS dataset, SI value on all datasets are bet-
ter using the proposed solution. Novartis is the only dataset
that does not provide good values on the proposed solution.

Table 9 lists the results using city block distance. The results
show that DBI is better for all datasets, DI is better for four
datasets, i.e., DLBCLA, DLBCLB, CNS, and Novartis.

Analysis of the results reveals that the ES-TCL performs
better than B-MST in most of the cases. However, there are
few instances in the results where B-MST’s performance is
better. Since the objective function used by ES-TCL is the
DBI, it has a success rate of 85.71% for this metric. Consid-
ering time, other than the six instances, ES-TCL consumed
less running time than B-MST. This is due to the fewer indi-
viduals in the ES-TCL’s population as compared to B-MST.
Additionally, the initial individuals of the ES-TCL were a
good estimate of the cluster formation in shape of MSTs.
This enabled the approach to converge quickly.

Performance of ES-TCL is also compared with ITM. For
this comparison, four UCI repository datasets were used,
including:digits, vowel, vehicle, and iris. These datasetswere
also evaluated using three internal and one external validity
index. The comparison is also performed on running time.
Table 10 lists the results. The current proposal produces bet-
ter DBI for all the datasets. The four datasets, digits, vowel,
vehicle, and iris also produce better DI for ES-TCL. ITM
is a Euclidean distance based clustering algorithm. While
comparing it with the ES-TCL, the highest value among all
distance measure is selected. However, it is observed that the
ITM performed better using the cluster validity indices of
SC and ARI. A deeper investigation of the results in Table
10 reveals that on average the clustering solution provided by
ES-TCL is four times better than the one provided by ITM
based on the DBI metric. Whereas, the clustering solution
provided by ITM is only half or one-third times better than
the ones provided by ES-TCL. The ES-TCL is slower than
ITM due to being an evolutionary approach.

4.5 Discussion

The proposal presented in this work aims at optimizing the
clusters represented by the MSTs using evolutionary com-
putation approach. For this purpose, (1+1)-ES is utilized.
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Fig. 7 Silhouettes coefficient
plot using the LungA dataset
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There are many other evolutionary approaches, including:
genetic algorithms, genetic programming, evolutionary pro-
gramming, and differential evolution.However, the (1+1)-ES
seems to be the most suitable evolutionary approach for the
problem at hand. The reason for this is the less complica-
tions in the reproduction procedure due to the mutation-only
strategy as compared to the other algorithms in this domain.
Additionally, the problem at hand starts with an initial well-
calculated solution instead of a random initial population.
This makes ES more suitable for the current task. The ES

population is restricted to only ten individuals because of
the limited number of unique MSTs extracted from the same
input graph. Increasing the population size would not only
cause duplication, but will also increase the running time of
ES-TCL. DBI, a widely-used cluster validity index guides
the ES-TCL. DBI has the advantage of being an internal
cluster validity index, that quantifies the quality of cluster-
ing using features inherent to the dataset. However, once the
ES-TCL converges, the final clustering formations are evalu-
ated using two other internal and one external cluster validity
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Table 5 Cluster validity indices using Chebyshev distance

Datasets ES-TCL B-MST

DBI DI SC ARI Time (s) DBI DI SC ARI Time (s)

BreastA 2.970359 0.0729 0.19363 0.1624 168.5211 7.4286 0.0902 0.14498 0.07033 678.8684

BreastB 2.649981 0.01842 0.286087 −1319 137.645 4.7746 0.2124 −0.2138 −0.0089 1158.405

DLBCLA 3.793666 0.0476 0.038762 0.0677 90.78201 16.5012 0.0141 −0.6101 −0.0085 624.1618

DLBCLB 3.626372 0.1245 0.484702 −0.006 124.8141 4.5276 0.0675 −0.1504 −0.1556 1118.444

CNS 5.219949 0.01115 −0.49281 −0.08496 12.54441 12.9055 0.0159 −0.1454 0.0145 8.511814

LungA 1.921503 0.0926 0.275887 −0.1788 17.82112 5.7497 0.006 −0.2989 −0.0096 32.42853

Novartis 2.529076 0.0432 −0.00736 −0.0135 133.0246 35.8225 0.0796 −0.6665 0.0012 988.1966

Bold values indicate the proposed approach performs better

Table 6 Cluster validity indices using Minkovski distance

Datasets ES-TCL B-MST

DBI DI SC ARI Time (s) DBI DI SC ARI Time (s)

BreastA 2.670957 0.06484 0.153419 −0.00713 152.4506 5.1695 0.0801 −0.01558 −0.002 789.0522

BreastB 2.433051 0.0594 0.266573 0.01348 162.72 4.5508 0.0872 −0.01321 −0.0013 1268.31

DLBCLA 4.164795 0.00348 −0.56559 0.04004 90.94402 38.8197 0.0091 −0.71704 −0.0044 679.461

DLBCLB 4.19728 0.00322 −0.5219 0.01714 94.87888 5.3449 0.0916 −0.30726 −0.003 1118.084

CNS 3.605427 0.0111 −0.41779 0.00553 11.45757 6.0591 0.0097 −0.18641 −0.0235 8.912353

LungA 1.945492 0.0708 0.599825 −0.164 18.60181 59.1341 0.0045 −0.81183 −0.0259 35.12061

Novartis 2.8132099 0.034 0.163783 0.0106 136.6229 13.4414 0.1394 −0.41247 −0.0064 1046.138

Bold values indicate the proposed approach performs better

Table 7 Cluster validity indices using correlation

Datasets ES-TCL B-MST

DBI DI SC ARI Time (s) DBI DI SC ARI Time (s)

BreastA 2.670957 0.06484 0.153419 −0.00713414 152.4506 5.4377 0.0727 −0.13726 −0.28378 1342.194

BreastB 2.433051 0.059398 0.266573 0.013475 162.72 2.6754 0.1483 −0.18848 −0.0086 1362.543

DLBCLA 4.164795 0.00348 −0.56559 0.04004 90.94402 2.1164 0.1084 0.453231 0.0105 746.7688

DLBCLB 4.19728 0.00322 −0.5219 0.01714 94.87888 9.5643 0.1138 −0.28557 −0.0118 1148.729

CNS 3.605427 0.01108 −0.41779 0.005531742 11.45757 2.5324 0.0285 −0.35062 −0.0063 8.035242

LungA 1.945492 0.0708 0.599825 −0.164 18.60181 7.7934 0.0916 −0.78754 −0.0299 31.10301

Novartis 2.813209912 0.034 0.163783 0.0106 136.6229 2.6751 1.178 −0.62493 0.16044 987.8204

Bold values indicate the proposed approach performs better

indices, namely,DI, SC, andARI.This enables to evaluate the
results over other independent metrics previously unknown
to the proposed algorithm. The ARI has an added advantage
of computing the clustering accuracy even in the absence
of the class labels [33]. The proposal is compared with two
other MST-based clustering approach, namely: B-MST and
ITM. ITM utilizes MSTs, whereas, B-MST employs an evo-
lutionary computing approach for clustering in addition to
the utility of MSTs. This makes the comparison rational.

The current proposal is compared with B-MST using six
distance measures based on four cluster validity indices and
time. The results are listed in Tables 4, 5, 6, 7, 8, and 9.

Using the seven datasets, five performance measures (four
validity indices and time), and six distance measures a total
of 210 indicators are presented for B-MST and ES-TCL.
Where, the ES-TCL perform better in 143 instances turning
to be 68.0952% better than B-MST. Overall, ES-TCL per-
forms best with the Euclidean distance having an average
accuracy of 74.29% for all datasets and all cluster valid-
ity indices. Considering all datasets and all validity indices,
ES-TCL performs worst using Mahalanobis and city block
distances. For the DBI, ES-TCL performs best, i.e., 85.71%
of the times, it achieves better performance than B-MST
considering all distance measures. ES-TCL performs better
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Table 8 Cluster validity indices using Mahalanobis distance

Datasets ES-TCL B-MST

DBI DI SC ARI Time (s) DBI DI SC ARI Time (s)

BreastA 1.951134 0.1495 0.234792 0.00888 107.7252 5.4429 0.2318 −0.18131 −0.3037 893.8644

BreastB 25.66471 0.18904 0.29525 0.4684 118.3054 4.1185 0.1442 −0.05782 −0.138466 1250.203

DLBCLA 1.602811 0.5443 0.240131 −0.16781 59.66713 8.3338 0.0705 −0.38419 0.006 726.1468

DLBCLB 1.664109 0 0.443355 0.00466 46.59076 7.1445 0.2734 −0.0408 0.0029 1244.952

CNS 4.2972 0.01736 −0.28381 −0.02852 19.31994 3.4248 0.0731 0.522244 −0.0287 7.48139

LungA 1.992492 0.0608 0.679725 −0.154 20.10122 6.8834 0.0987 −0.77721 −0.0289 32.11214

Novartis 4.928132 0.702 −0.14529 −0.0322 162.3264 11.7694 0.0023 −0.52068 0.0253 38.244

Bold values indicate the proposed approach performs better

Table 9 Cluster validity indices using city block distance

Datasets ES-TCL B-MST

DBI DI SC ARI Time (s) DBI DI SC ARI Time (s)

BreastA 2.734299 0.06556 0.163923 −0.02094 143.3229 11.3856 0.0829 −0.23492 −0.0031 766.7153

BreastB 2.393452 0.03522 0.234028 −0.15882 174.8822 5.0094 0.0838 −0.55813 −0.0082 1312.105

DLBCLA 3.196549 0.0053 −0.37437 0.1515 92.37199 13.0132 0.004 −0.61012 −0.10678 715.1776

DLBCLB 3.325546 0.13902 0.379567 −0.01522 117.5778 7.6459 0.0969 0.39193 0.05604 1245.631

CNS 3.421404 0.0059 −0.46296 −0.0354 15.46642 5.2355 0.0276 0.357144 −0.0368 7.294779

LungA 2.483765 0.0698 0.67835 −0.1581 20.36352 11.7694 0.0023 −0.52068 0.0253 38.244

Novartis 3.239041 0.2855 0.184355 0.0184 133.1547 42.4816 0.0896 −0.71526 −0.0025 1155.687

Bold values indicate the proposed approach performs better

Table 10 Cluster validity indices for ES-TCL and ITM

Datasets ES-TCL ITM

DBI DI SC ARI Time (s) DBI DI SC ARI Time (s)

Digits 2.486632 0.09828 −0.16032 0.16698 1960.86 4.0147 0.0937 0.117218 0.838 70.45772

Vowel 2.188279 0.0421 −0.14139 0.0107 144.6044 11.3628 0.0411 0.053141 0.195 0.63281

Vehicle 2.002779 0.0599 −0.38933 −0.0121 136.2124 4.0349 0.0123 0.071473 0.141 0.461641

Iris 2.868464 0.0306 −0.39544 0.07024 14.75993 9.5988 0.0197 −0.00159 0.882 0.165507

Bold values indicate the proposed approach performs better

than B-MST 71.43% of the times considering SC. However,
it performs only 23.81% times better than B-MST for DI.
Considering time, B-MST consumes less running time and
executes quicker than B-MST 88.10% of the times for all
datasets and distances. Reason for this is ES-TCL’s initial
population being computed logically and the lesser num-
ber of individuals in each iteration. Keeping in view the
above discussion, ES-TCL works at its optimal to opti-
mize the clusters with the DBI as a fitness function and
Euclidean/Chebyshev/Minkovski distance as a measure to
compute node detachment. With this configuration, ES-TCL
performs better than B-MST for all datasets (Tables 4, 5, 6).

ITM is the other MST-based clustering approach used to
compare the performance of ES-TCL. ITM’s approximate
optimization formulation leads it to be an efficient algorithm

with low runtime complexity. Whereas, ES-TCL being an
evolutionary computing-based approach requires additional
time for convergence. The results in Table 10 show that ES-
TCL performs better than ITM on all datasets using the
cluster validity indices of DBI and DI. ITM does perform
better on the cluster validity indices of SC and ARI. Inves-
tigating this in depth reveals that the solution produced by
ES-TCL is at least two times better based on DBI and DI in
comparison to the ones produced by ITM.Whereas, the better
clustering solutions provided by ITM based on SC and ARI
are only at maximum, half times better than those provided
by ES-TCL. However, the key strength of ITM remains to be
its much less computation time. Overall, ES-TCL performs
better than ITM and B-MST using all cluster validity indices,
all datasets, and all distances. Thus, generalizing the results.
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Like any other research, there are some limitations of the
proposed work. Although this work has performed a detailed
set of experiments on evaluating the ES-TCL’s performance,
where this proposal generally performs better than the two
closely related clustering approaches. However, a limitation
of the work is duplication of MST’s. Though care has been
taken for the datasets considered in this study to discard any
duplicateMST to be considered as a candidate solution, how-
ever, for datasets with many duplicate MSTs ES-TCL will
suffer with performance issues. The proposed framework,
ES-TCL, can be utilized for various software visualization
tasks that benefit from clustering [34,35] and in extracting
social circles in the ego networks [36,37].

5 Conclusions and future work

This work proposed a MST-based clustering procedure to
extract coherent groups from a dataset represented as a graph.
An input dataset was transformed into a graph where, nodes
of the graph represented the samples and an edge indicated
the distance between them. Multiple MSTs from a graph
were extracted using Prim’s algorithm. The (1+1)-ES was
utilized for the optimization of the MST-based extracted
clusters. The ES used DBI as its guiding function. Eleven
benchmark datasets were used to evaluate the performance
of the proposed methodology. The (1+1)-ES-based cluster
optimization approach, named, ES-TCL, was executed using
10 chromosomes for 1000 iterations. A mutation rate of 5%
was used. The results were compared with two state-of-the-
art MST-based clustering algorithms, B-MST and ITM. For
this comparison three internal validity indices (DBI, DI, and
SC), and one external validity index, ARI was used. The pro-
posed solution was also compared with the two algorithms
with respect to execution time. B-MST and the proposed
solution both use distance-based clustering, so these were
evaluated using seven microarray datasets. The results sug-
gested that the proposed solution on average performed better
as compared toB-MST and ITM. The proposed approach can
be explored further in the future. A limitation of the proposed
solution is that it finds n MST in a graph which may cause
to build identical MSTs. This needs to be looked into in the
future. Evolutionary approaches are slow by their nature, in
the future other faster optimization techniques can be used
to extract MST-based clustering formations.
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