
Cluster Comput (2017) 20:1937–1950
DOI 10.1007/s10586-017-0860-1

A cloud-based enhanced differential evolution algorithm for
parameter estimation problems in computational systems biology

Diego Teijeiro1 · Xoán C. Pardo1 · David R. Penas2 · Patricia González1 ·
Julio R. Banga2 · Ramón Doallo1

Received: 25 November 2016 / Revised: 30 March 2017 / Accepted: 6 April 2017 / Published online: 17 April 2017
© Springer Science+Business Media New York 2017

Abstract Metaheuristics are gaining increasing recogni-
tion in many research areas, computational systems biology
among them. Recent advances in metaheuristics can be help-
ful in locating the vicinity of the global solution in reasonable
computation times, with Differential Evolution (DE) being
one of the most popular methods. However, for most realistic
applications, DE still requires excessive computation times.
With the advent of Cloud Computing effortless access to
large number of distributed resources has become more fea-
sible, and new distributed frameworks, like Spark, have been
developed to deal with large scale computations on commod-
ity clusters and cloud resources. In this paper we propose a
parallel implementation of an enhanced DE using Spark. The
proposal drastically reduces the execution time, by means of
including a selected local search and exploiting the avail-
able distributed resources. The performance of the proposal
has been thoroughly assessed using challenging parameter
estimation problems from the domain of computational sys-
tems biology. Two different platforms have been used for

B Patricia González
patricia.gonzalez@udc.es

Diego Teijeiro
diego.teijeiro@udc.es

Xoán C. Pardo
xoan.pardo@udc.es

David R. Penas
davidrodpenas@iim.csic.es

Julio R. Banga
julio@iim.csic.es

Ramón Doallo
doallo@udc.es

1 Grupo de Arquitectura de Computadores, Universidade da
Coruña, A Coruña, Spain

2 BioProcess Engineering Group, IIM-CSIC, Vigo, Spain

the evaluation, a local cluster and the Microsoft Azure pub-
lic cloud. Additionally, it has been also compared with other
parallel approaches, another cloud-based solution (aMapRe-
duce implementation) and a traditional HPC solution (a MPI
implementation)

Keywords Parallel metaheuristics · Differential evolution ·
Local search · Cloud computing · Spark

1 Introduction

Many key problems in computational systems biology can be
formulated and solved using global optimization techniques.
The development of dynamic (kinetic) models is one of the
current key issues in the field. Dynamics, usually represented
as sets of nonlinear ordinary differential equations models,
are used to explain function in biological systems. In recent
years, research has been focused on scaling-up these kinetic
models [2,19,20,31], frommedium and large-scale up to the
level of whole-cell models [17]. In this context, the prob-
lem of parameter estimation (model calibration) remains as
a very challenging task [7,16]. Global optimization meth-
ods can be used to solve this type of problems. In particular,
methods based on heuristics, and their combination (hybrids)
with more traditional approaches, have shown promising
results [4,5,34]. In any case, the complexity of the under-
lying models requires the use of efficient solvers to achieve
adequate results in reasonable computation times. Differen-
tial Evolution (DE) [33] is one of the most popular methods,
and it has been successfully used in many different areas
[10]. However, inmost realistic applications, this population-
based method requires a very large number of evaluations
(and therefore, large computation time) to obtain an accept-
able result. Hence, different parallel DE schemes have been

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-017-0860-1&domain=pdf
http://orcid.org/0000-0003-0378-9222

1938 Cluster Comput (2017) 20:1937–1950

proposed, most of them focused on traditional parallel pro-
gramming interfaces and infrastructures.

Recently, Cloud Computing has emerged as a new
paradigm for on-demand delivery of computing resources.
However, scientific computing community has been quite
hesitant in using the cloud, simply because the tradi-
tional programming models do not fit well with the new
paradigm. Furthermore, earliest cloud programmingmodels,
like MapReduce [11], do not allow most scientific computa-
tions being efficiently run in the cloud. However more recent
proposals like Spark [46] or Flink [15] have added improved
support for iterative algorithms which, at first, make them
more promising in executing scientific codes efficiently on
cloud resources.

Two are the main objectives of this contribution. The first
aim is to obtain a cloud-based implementation of the DE
algorithm that achieves a good trade-off between exploration
(diversification or global search) and exploitation (inten-
sification or local search). This balance is at the core of
modern metaheuristics [41]. To this end, a local search and
a tabu list have been included to enhance the performance
of DE in parameter estimation problems in systems biol-
ogy. The second aim is to thoroughly assess the performance
of the proposal using different infrastructures, such as a
local cluster and a public cloud. The evaluation includes
also a comparison with other parallel approaches: another
cloud-based implementation using MapReduce, and a tra-
ditional HPC implementation using MPI. Thus, the results
obtained in this paper can be particularly useful, not only
for the computational systems biology community, but also
for those interested in the potential of new cloud distributed
frameworks for developing novel parallel metaheuristic
methods. To this end, the source code is made publicly
available.

The organization of the paper is as follows. Section 2 dis-
cusses related work. Section 3 presents a brief overview of
the DE and the new features included in the proposal to
improve the search. The Spark implementation of the pro-
posed enhanced parallel DE is described in Sect. 4. Section 5
assesses the performance of the proposal. Finally, Sect. 6
concludes the paper.

2 Related work

This section covers different approaches that follow any of
the strategies explored in this work. First, we list different
works that contribute to improve the performance of the clas-
sicDE algorithm either bymeans ofmodifications to enhance
the original algorithm, or through parallel implementations
of the DE. Note that the number of researches in this field
is significant, thus, here we focus on those that relate more
closely to the enhancements included in our proposal. Then,

webrieflydescribe the fewcloud-basedproposals, focal point
of this work, existing in the literature.

Many researches have tried to improve DE by proposing
modifications to enhance the original algorithm. Interesting
reviews can be found in [9,10]. In several cases, the origi-
nal DE algorithm was improved with additional algorithmic
components exploiting certain aspects of a given class of
problems. In [45] a modified DE approach is proposed to
improve the search performance by using generation-varying
control parameters to prevent premature convergence to local
minima. A hybrid algorithm using DE as an evolutionary
framework and a crossover-based local search was proposed
in [25,26]. A DE with Scale Factor Local Search was intro-
duced in [24,40] for self-adaptive DE schemes. The use
of a tabu list in the DE has also been applied in recent
works [18,30,32].

On the other hand, several studies have considered parallel
versions of DE, most of them focused on traditional parallel
programming interfaces and infrastructures. We focus here
on those approaches following an island-based model. A
parallel synchronous approach was proposed in [36]. It is
based on the distribution of the population data among differ-
ent processors which communicate through data migrations
and are managed by a central processor. Being implemented
with synchronous communications, this proposal leads to
low speedup results. A simple approach was also proposed
in [27], consisting also of a master-slave architecture with
several independent processes, which communicate through
the filesystem. A more recent distributed DE implementa-
tion was presented in [3] exploiting an island-model with
asynchronous communications.

Several other works studied improvements to island-
model schemes. In [29], a complete study about the impact
on the performance of different communication topologies
between the islands was presented. Several studies suggest
that randomization of the control parameters can be a propi-
tiousmechanism for enhancing the DE performance [6]. Dif-
ferent randomization schemes have been proposed to develop
self-adaptive DE frameworks and investigate the effect of
changing control parameters in distributed DE [44,47]. Two
mechanisms to avoid the loss of diversity when the size of
the population is small are described in [43]. The first one
was based on shuffling: the individuals from a specific sub-
population were randomly reorganized. The second one, an
update mechanism, changed and adapted scaling factors for
each subpopulation.The results indicate that these techniques
obtain a very significant performance when the dimension-
ality of the functions grow.

Research on cloud-oriented parallel metaheuristics, based
mainly on the use of MapReduce, has also received increas-
ing attention in recent years. Some proposals investigate how
to apply MapReduce to parallelize the DE algorithm to be
used in the Cloud. In [48] the fitness evaluation in the DE

123

Cluster Comput (2017) 20:1937–1950 1939

Table 1 Overview of the cloud-based DE proposals described in the related work

Model Parallel scheme Framework Evaluation

Proposals Steady-state Generational Master-slave Island-based Optimiz. Hadoop Spark Cluster Cloud

Zhou et al. [48] � � � �
Tagawa et al. [35] � � � �
Daoudi et al. [8] � � � �
Deng et al. [12] � � � �
Teijeiro et al. [37] � � � � �
eSiPDE � � � � � �

algorithm is performed in parallel using Hadoop (the well-
known open-source MapReduce framework). However, the
experimental results reveal that the extra cost of HadoopDFS
I/O operations and the system bookkeeping overhead signif-
icantly reduces the benefits of the parallelization. In [35],
a concurrent implementation of the DE steady-state model
based onMapReduce is proposed. However, theway the pop-
ulation is accessed limits its applicability to shared-memory
architectures. In [8] a parallel implementation of DE based
clustering usingMapReduce is also proposed. This algorithm
was implemented in three levels, each consisting of different
DE operations.

An attempt to parallelize the DE algorithm using Spark
was presented in [12]. However, in that work only the com-
putation of the fitness values of the individuals is performed
in parallel following a master-slave approach. An entire par-
allelization of the DE algorithm with Spark was explored
in [37]. In that paperSpark-based implementations of twodif-
ferent parallel schemes of the DE algorithm, themaster-slave
and the island-based, were proposed and evaluated. Results
showed that the island-based scheme is by far the best suited
to the distributed nature of Spark. A thorough evaluation of
the Spark-based island implementation can be found in [38].
It has been also compared in [39] with a MapReduce imple-
mentation, concluding that Spark outperforms MapReduce
in this kind of iterative algorithms.

Table 1 summarizes the main features of the cloud-based
DE proposals commented above, specifying: the algorithm
model, the strategy followed in the parallelization, the inclu-
sion of further optimizations to the basic DE algorithm, the
distributed framework used, and the infrastructure where
the evaluations have been performed. Our proposal (called
eSiPDE) is also included in the table. There are two main
contributions in this work with respect to our previous pro-
posals [37–39]. First, we include further optimizations, a
local search and a tabu list, to improve the convergence
of the Spark-based island parallel DE. Second, we further
compare the new enhanced DE algorithm with other paral-
lel approaches: another cloud-based implementation using
MapReduce and a traditional HPC implementation using
MPI.

3 Differential evolution

Differential Evolution (DE) [33] is an iterativemutation algo-
rithm where vector differences are used to create new can-
didate solutions. Starting from an initial population matrix
composed of NP D-dimensional solution vectors (individu-
als), DE attempts to achieve the optimal solution iteratively
through changes in its vectors. Algorithm 1 shows the basic
pseudocode for the DE algorithm. New individuals are gen-
erated in the population matrix, in each iteration, through
operations (crossover - CR; mutation - F) performed among
individuals of the matrix. Old solutions are replaced only
when the fitness value of the objective function is better than
the current one. A population matrix with optimized individ-
uals is obtained as output of the algorithm. The best of these
individuals are selected as solution close to optimal for the
objective function of the model.

Algorithm1:Differential Evolution algorithm (seqDE)

input : A population matrix P with size D x N P
output: A matrix P whose individuals were optimized

repeat
for each element i of the P matrix do

choose randomly different r1, r2, r3 ∈ [1, N P]
choose randomly an integer jr ∈ [1, D]
for j ← 1 to D do

choose randomly a real r ∈ [0, 1]
if r ≤ CR or j = jr then

uG+1
i (j) ← xGr1(j) + F · (xGr2(j) − xGr3(j))

else
uG+1
i (j) ← xGi (j)

end
end
evaluate (uG+1

i)

if f (uG+1
i) < f (xGi) then

xG+1
i ← uG+1

i
else

xG+1
i ← xGi

end
end

until Stop conditions;

123

1940 Cluster Comput (2017) 20:1937–1950

However, typical runtimes for many realistic problems are
in the range from hours to days due to the large number of
objective function evaluations needed, making the perfor-
mance of the classic sequential DE unacceptable. Therefore,
in order to improve the runtime of the DE algorithm, two
main strategies have been explored. First, exploiting paral-
lelism so as to reduce the computational time needed and
to improve global search through diversification. Second,
including a selected local search to enhance the method
through intensification, drastically reducing the number of
evaluations required.

3.1 Improving global search with a parallel cooperative
scheme

The parallelization proposed in this work pursues the devel-
opment of an efficient parallel variant of the serial DE. It
accelerates the computation by performing separate evalua-
tions in parallel. Besides, it also improves the convergence
by stimulating the diversification in the search and the coop-
eration between the parallel threads.

In the literature, different parallel models can be found
[1] aiming to improve both the computational time and
the number of iterations for convergence. The master-slave
and the island-based models are the most popular. In the
master-slave model the behaviour of the sequential DE is
preserved by parallelizing the inner-loop of the algorithm,
where a master processor distributes computations among
the slave processors. The implementation of the DE master-
slave model does not fit well with the distributed nature
of frameworks like Spark [37]. The reason is that when
the mutation strategy is applied to each individual, random
different individuals have to be selected from the whole pop-
ulation. Considering that the population would certainly be
partitioned and distributed among slaves, any solution to
this problem would introduce an unfeasible communications
overhead.

In the island-basedmodel the populationmatrix is divided
into subpopulations (islands) where the algorithm is exe-
cuted isolated. Sparse individual exchanges are performed
among islands to introduce diversity into the subpopula-
tions. Thereby, the search avoids stagnation in local optima.
Although the implementation of the island-based model
in Spark drastically reduces the communications between
islands, the scalability is heavily restrained by the small size
of the DE population matrix. Thus, founded on the ideas out-
lined in [28], the island-basedmodel can be used to perform a
differentDE in each island.A different populationmatrix and
different combinations of CR and F values are used in each
island to enhance diversity. These islands cooperate through
sparse migrations, therefore modifying the systemic proper-
ties of the individual searches.

3.2 Enhancing DE with local search and tabu list

Hybrid methods, that combine global with local search,
have a long tradition in numerical optimization. In order
to improve the computational effort required by the DE
algorithm a local search has been added, thus, reducing the
number of objective function evaluations required. The local
search moves from solution to solution in the space of can-
didate solutions, applying local changes until an optimal
solution is found or a time bound is elapsed. Different local
solvers should be chosen to fit better with the problem at
hand. In this work the NL2SOL [13] is used. NL2SOL is
a method for solving non-linear least-squares problems that
has demonstrated to be particularly effective for parameter
estimation problems [14,28].

One drawback of local search is that it tends to become
stuck in suboptimal regions. To avoid this problem, the
concept of tabu list is introduced in the algorithm. Tabu
search enhances the performance of local methods by avoid-
ing revisits to the same place during the search. This is
achieved using memory structures that keep track of the vis-
ited solutions. If the vicinity of a potential solution has been
previously visited within a certain short-term period it is
marked as tabu. As a result, the algorithm does not consider
that solution again. This technique improves the diversity
among members of the population, and consequently con-
tributes to the computational efficiency of the algorithm.

In the next section the proposed implementation of the
enhanced Spark-based parallel DE is described in detail.

4 Enhanced spark-based parallel differential
evolution

To understand the enhanced Spark-based parallel implemen-
tation of the DE algorithm, some previous insight into the
way data is distributed and processed by Spark is needed.
Spark uses the resilient distributed dataset (RDD) abstrac-
tion to represent fault-tolerant distributed data. RDDs are
immutable sets of records that optionally can be in the form
of key-value pairs. Spark programs are run by a driver (the
master in Spark terminology) which partitions RDDs and
distributes the partitions to workers (the slaves in Spark ter-
minology). The workers persist and transform the data and
return results to the driver. There is no communication among
workers. Shuffle operations (i.e. join, groupBy) that need data
movement among workers through the network are expen-
sive and should be avoided.

Our enhanced Spark-based parallel DE implementation
(eSiPDE) follows the scheme shown in Fig. 1. In the figure,
boxes with solid outlines are RDDs. Partitions are shaded
rectangles, darker if they are persistent in memory. A key-
value pair RDD has been used to represent the population

123

Cluster Comput (2017) 20:1937–1950 1941

Fig. 1 Enhanced Spark
implementation of the
island-based DE algorithm
(eSiPDE)

where each individual is uniquely identified by its key. There
are two execution flows that run asynchronously in different
threads of the Spark driver. The main flow is a version of the
island-based parallel DE implementation (SiPDE) described
in [37]. It has been modified in this work to allow for hetero-
geneous islands, and also to incorporate the result of a local
search into the islands using a substitution strategy. The sec-
ondary flow executes an asynchronous local search on the
best individual, found up to that moment, that is far enough
away from those used in previous searches.

Some steps in the main flow of the algorithm are executed
in a distributed fashion:

– The random generation and initial evaluation of individ-
uals that form the population, implemented as a Spark
map transformation.

– The evolution of the population. Every partition of the
population RDD is considered to be an island, all with
the same number of individuals. Islands evolve iso-
lated during a number of evolutions. This number can
be configured and is the same for all islands. During
these evolutions every worker calculates mutations pick-
ing random individuals from its local partition only. As
it has been said, the proposed enhanced parallel DE
(eSiPDE) is an improvement of the island-based parallel
DE (SiPDE) [37]. With this respect, eSiPDE enhances
SiPDE by allowing islands to be heterogeneous, that
is, having different combinations of CR and F values to
enrich diversity.

– The migration strategy, which introduces diversity by
exchanging selected individuals among islands every
time the evolution of the islands ends. In order to evaluate
the communications overhead, it has been implemented a
custom Spark partitioner that randomly and evenly shuf-
fles elements among partitions without replacement.

– The checking of the termination criterion, implemented
as a Spark reduce action (a distributed OR operation).

The main flow repeats this evolution-migration loop until
the termination criterion is met. Then the best individual is
selected by means of a Spark reduce action (a distributed
MIN operation).

An asynchronous local search runs concurrently with the
main flow using a different thread on the Spark driver. As
it can be seen in Fig. 1, synchronization with the main flow
takes place at two points:

– Before the evolution of the islands (label “1” in the fig-
ure), where a new search is initiated if no other is in
progress. The candidate solution selected as input of the
local search would be the best individual, found up to
that moment, that was far enough away from candidate
solutions used in previous searches. A tabu list is used to
keep track of already explored candidate solutions and
input selection is made by means of a Spark distributed
filtering followed by a reduce action (a distributed MIN
operation).

– Once the local search finishes (label “2” in the figure),
if the candidate solution has been improved by the local
search, a substitution strategy is applied in between the
evolution and migration steps to incorporate it into the
population. For this work, an strategy that replaces the
worst individual in each island with the local search solu-
tion (only if it is better) is used. It has been implemented
as a Spark map transformation.

Note that with this approach it would be at most one local
search running concurrently with islands evolution at every
moment. If the local search finishes before the islands evo-
lution, its result is incorporated to the population once the
evolution ends and a new local search is initiated before the
following evolution. By the contrary, if the islands evolution
finishes before the local search, a migration is done and a
new evolution started without waiting for the local solver to
end. This avoids the drawback of synchronous approaches in

123

1942 Cluster Comput (2017) 20:1937–1950

which the evolution of the population gets blocked waiting
for a local search to finish. Note also that the input to the
local search is selected from the whole population, so only
one global tabu list is needed, and that its result is included
in every island.

5 Experimental results

In order to evaluate the Spark implementation proposed
in this paper (eSiPDE), three challenging parameter esti-
mation problems from the domain of computational systems
biology were considered. These problems are known to
be particularly hard due to their ill-conditioning and non-
convexity [23,42]:

– Circadian model parameter estimation in a dynamic
model of the circadian clock in the plant Arabidopsis
thaliana, as presented in [22]. The model consists of
seven ordinary differential equations with 27 parame-
ters (13 of them were estimated) with data sets from two
experiments.

– NFKB model this problem is based on the model in [21]
and consists of 15 ordinary differential equations with 29
parameters and data sets from two experiments.

– 3-step pathway model problem considering a 3-step
generic and highly non-linear pathway with eight dif-
ferential equations and 36 parameters, and data sets from
16 experiments, as presented in [23].

For the experimental testbed two different platforms have
been used. First, experiments were conducted in our local
cluster Pluton, that consists of 16 nodes powered by two
octa-core Intel Xeon E5-2660 CPUs with 64 GB of RAM,
and connected through an InfiniBand FDR network. Sec-
ond, experiments were deployed with default settings in the
Microsoft Azure public cloud using an standard HDInsight
Spark cluster with A3 instances (4 cores, 7GB) for head
and worker nodes. Unless otherwise noted, Scala v2.10 was
the programming language and Spark v1.4.1 the distributed
framework used in the experiments. In both testbeds, each
experiment was executed a number of 20 independent runs.
Note that, since Spark runs on the Java Virtual Machine
(JVM), usual precautions (i.e., warm-up phase, effect of
garbage collection) have been taken into account to avoid
distortions on the measures.

As described in Sect. 3, the proposed implementation
(eSiPDE) can be used in two different manners: (i) dividing
the population among islands and using the same CR and
F parameters for every island (homogeneous approach),
and (ii) attempting a more thorough exploration of the solu-
tion space by means of the cooperation between different

DE with different F and CR parameters in each island
(heterogeneous approach). We compare the perfor-
mance of both homogeneous and heterogeneous approaches
with the performance of a sequential implementation of the
classic DE (seqDE) and the implementation of the island-
based parallel DE (SiPDE) described in [37].

There are many configurable parameters in the classic
DE algorithm, such as the mutation scaling factor (F), the
crossover constant (CR) or the mutation strategy (MSt). The
selection of these parameters may have a great impact in the
algorithm performance. Since the objective of this work is
not to evaluate their impact, only results for one configu-
ration are reported here. Previous tests have been done to
select a configuration that leads to reasonable computation
times. For all the experiments we used MSt=DE/rand/1. For
testing the homogeneous configuration of eSiPDE, F = 0.9
and CR = 0.8 were used, while for the heterogeneous con-
figuration different combination of CR = {0.2,0.7,0.8,0.9}
and F = {0.8,0.9} values were randomly selected for each
island. Besides, in island-based parallel DE algorithms, new
parameters have to be also considered, such as the migra-
tion frequency (μ) or the island size (λ). In the following
experiments the island size has been λ = N P/nproc and
the migration frequency has been set to 200 local itera-
tions between migrations. Nevertheless, the proposal can
be applied to any other configuration parameters. Also, it
is worth noting that further performance improvements can
be achieved by further fine-tuning settings.

Since the aim of this work is to accelerate the execution
time required for convergence in complex parameter estima-
tion problems, the best way to fairly assess the performance
of the proposal is to define a value-to-reach (VTR) to be
used as stopping criteria for the algorithm. However, in the
3-step pathway and the NFKB benchmarks the execution of
only one test could take several days to complete. Thus, we
decided to use as stopping criterium: (a) a VTR=1e-5 for
the circadian benchmark, evaluating its performance from
an horizontal view; and (b) a predefined effort of maximum
execution time Tmax = 1000s for the 3-step pathway and
the NFKB benchmarks, assessing their performance from a
vertical view.

Results for the Circadian benchmark in cluster Pluton
are shown in Table 2. This table displays, for each experi-
ment, the number of cores (#np) used, the mean number of
evaluations required (#evals), the mean number of migra-
tions (#mig.), the mean and the median of the execution
times (time(s)), and the speedup achieved versus the seqDE.
Due to the large dispersion in the obtained results for the
eSiPDE implementation, the speedup was calculated using
the median of the measures. Note that the number of cores
matches the number of islands used. Results show that the
parallelization improves the execution time required for con-
vergence by performing the evaluations in parallel. SiPDE

123

Cluster Comput (2017) 20:1937–1950 1943

Table 2 Performance
evaluation of different DE
implementations for the
Circadian benchmark in Pluton

Method #np #evals #mig. Time(s) Speedup

Mean ± std Median

seqDE 1 6,437,670 - 40883.39±3712.56 40916.76 −
2 5,980,416 117 19275.65±1281.63 19015.77 2.15

4 5,729,536 112 9305.30±1038.59 9071.51 4.51

SiPDE 8 3,904,256 74 3319.33±296.88 3256.62 12.56

16 1,835,776 36 790.97±90.50 815.51 50.17

32 1,577,216 30 348.36±43.47 355.05 115.24

2 179,456 3.5 472.41±441.29 143.80 284.54

4 230,656 4.5 388.31±736.39 104.44 391.77

eSiPDE 8 171,776 3.3 134.01±140.78 75.26 543.67

(homo) 16 225,536 4.4 115.48±119.04 77.82 525.79

32 235,776 4.6 67.60±63.63 40.56 1008.55

2 161,536 3.1 524.28±631.98 311.08 131.53

4 120,576 2.3 204.81±217.42 165.09 247.85

eSiPDE 8 128,256 2.5 115.51±135.43 45.76 894.16

(hetero) 16 107,776 2.1 54.81±43.34 48.07 851.19

32 161,536 3.2 46.85±36.01 31.55 1296.89

Parameters D=13, NP=256, VTR=1e-5

achieves already a good speedup versus the sequential algo-
rithm (seqDE). However, the local search included in the
eSiPDE implementation significantly reduces the execu-
tion time required for convergence by decreasing the number
of evaluations. Note the radical reduction in the number
of migrations when the local search is used. Moreover, the
diversification introduced in the heterogeneous approach out-
performs the homogeneous approach, specially when the
number of islands grows.

Since the values in the table hide the underlying distribu-
tion, that in this kind of stochastic problems is very important,
Fig. 2 shows the bean plots to compare the distribution of
the homogeneous versus the heterogeneous configuration of
the eSiPDE implementation. Note that the logarithmic scale
has been used in the y axis and the median of each distribu-
tion is also shown in each bean. It can be noted that for two
islands the performance of the homogeneous configuration
was slightly better because the heterogeneous configura-
tion exhibited more outliers. However, when the number of
islands increases, the heterogeneous configurationdrastically
reduces the dispersion in the results and achieves better per-
formance.

Results for 3-step pathway and NFKB benchmarks are
shown in Table 3. This table displays, for each experiment,
the number of cores (#np) used, the average of the evaluations
performed (#evals), and the average of the best value for each
run (fbest). Results show that the parallelization improves the
convergence rate since, in the same amount of time, more
evaluations are executed in parallel achieving better quality
solutions.

5
10

50
50

0
50

00

Homogeneous vs heterogeneous

#Islands

Ti
m
e(
s)

2 4 8 16 32

eSiPDE(homo)
eSiPDE(hetero)

Fig. 2 Bean plots comparing different DE strategies in the Circadian
benchmark

For 3-step pathway benchmark, Table 4 shows the number
of executions from a total of 20 samples (%hits) that achieved
convergence using a VTR=100 in a maximum time of 1000s,
aswell as themean andminimum time of all those executions
that reached the VTR. As it can be seen, as the number of
islands grows, the number of executions that achieve the qual-
ity solution increases. These results show the effectiveness
of the parallel algorithm in terms of quality of the solution.

123

1944 Cluster Comput (2017) 20:1937–1950

Table 3 Performance evaluation of the 3-step pathway and NFKB
benchmarks in Pluton

Method #np #evals fbest

3-step pathway seqDE 1 90,624 820.54

2 191,232 753.52

SiPDE 4 358,912 711.55

8 653,312 690.06

16 1,179,392 632.65

2 209,483 573.16

eSiPDE 4 369,972 363.18

(homo) 8 572,015 126.26

16 945,646 92.13

2 199,624 468.31

eSiPDE 4 350,903 305.97

(hetero) 8 552,291 102.56

16 912,968 91.52

NFKB seqDE 1 21,274 0.06868

2 44,032 0.06051

SiPDE 4 81,408 0.05472

8 143,104 0.05208

16 239,104 0.04980

2 44,334 0.03295

eSiPDE 4 82,748 0.03358

(homo) 8 146,516 0.03386

16 240,678 0.03340

2 43,930 0.03268

eSiPDE 4 84,328 0.03365

(hetero) 8 143,436 0.03256

16 231,715 0.03719

Stopping criterion: predefined effort, Tmax = 1000s. Parameters for
3-step pathway: D = 36, NP = 512. Parameters for NFKB: D = 29,
NP = 512.

Table 4 Performance evaluation of the 3-step pathway using as stop-
ping criterion the combination of a predefined effort (Tmax = 1000s)
and quality of solution (V T R = 100)

Method #np Hits (%) Time(s)
Mean min

seqDE 1 0 – –

2 0 – –

eSiPDE 4 10 927 890

(homo) 8 25 818 563

16 85 632 188

2 0 – –

eSiPDE 4 5 774 774

(hetero) 8 30 693 361

16 75 477 150

Fig. 3 Convergence curves: Circadian using as stopping criterium a
VTR=1e-5, 3-step pathway and NFKB using as stopping criterium a
predefined effort of Tmax = 1000s

Also, it should be noted, that the heterogeneous configu-
ration achieves always better results in terms of execution
times.

To better illustrate the improvement in convergence time,
Fig. 3 shows the convergence curves for the three benchmarks
using the sequential algorithm and the parallel implementa-
tions with 16 islands. The convergence curve represents the
current best objective function value as the algorithm pro-
ceeds. The convergence curves depicted here are those that
fall in the median values of the results distribution. It can
be seen that, as expected, the local solver improves the con-
vergence rate in all the benchmarks. Also the heterogeneous

123

Cluster Comput (2017) 20:1937–1950 1945

Table 5 Performance
evaluation of different DE
implementations for the
Circadian benchmark in Azure

Method #np #evals #mig. Time(s) Speedup

Mean±std Median

seqDE 1 6,554,317 – 95294.70 ± 5623.22 95286.86 −
2 6,180,096 121 47895.80 ± 5091.67 49066.32 1.99

4 5,642,496 110 21106.12 ± 1549.87 20732.02 4.52

SiPDE 8 3,917,056 76 11449.79 ± 1951.18 11260.30 8.32

16 1,899,776 37 3246.46 ± 376.04 3178.94 29.35

2 100,096 1.9 725.16 ± 392.86 734.27 129.77

eSiPDE 4 199,936 3.9 874.22 ± 1362.30 393.79 242.01

(homo) 8 87,296 1.7 177.68 ± 90.83 111.53 854.39

16 171,776 3.4 216.61 ± 177.06 130.16 732.08

2 102,656 2.0 745.88 ± 656.98 383.50 248.47

eSiPDE 4 120,576 2.3 453.78 ± 431.47 384.70 247.69

(hetero) 8 156,416 3.0 355.51 ± 347.84 200.70 474.78

16 135,936 2.6 160.30 ± 151.85 112.83 844.48

Parameters: D = 13, NP = 256, VTR = 1e-5

Fig. 4 Bean plots comparing execution times for the Circadian bench-
mark in the local cluster Pluton and the Azure public cloud for the
heterogeneous configuration. The speedup achieved in Pluton vs Azure
is displayed on top of each bean

configuration exhibits a slightly better performance than the
homogeneous one.

Finally, in order to evaluate the performance of the pro-
posal in a public cloud, some experiments were conducted in
theMicrosoftAzure public cloud.As it can be seen inTable 5,
the proposal achieves similar results in Azure as the ones
obtained in the local cluster in terms of convergence (number
of evaluations) and scalability. However, the overheads intro-
duced inAzure due to virtualization and use of non-dedicated

resources in a multitenant platform are not negligible. The
execution times of Azure are between 1.3× and 1.4× times
worst than those of Pluton. Bean plots comparing the results
obtained in both platforms for the heterogeneous configura-
tion are shown in Fig. 4. This figure clearly shows, not only
the larger execution time but also the larger dispersion in the
results obtained in Azure (note the logarithmic scale in the
y axis).

5.1 Comparison with other parallel approaches

Several tests have been also performed to assess how compet-
itive the Spark parallel implementation can be with respect
to other parallel approaches.

Since MapReduce is still the de-facto standard for large
scale data-intensive applications, it has been selected as
representative of other cloud-based approaches for the com-
parison.We have compared aMapReduce implementation of
SiPDE usingHadoop v2.7.1 and Java v1.7.0. Figure 5 shows
some bean plots that allow for an easy comparison of the exe-
cution times obtained using the MapReduce and the SiPDE
implementations in the local cluster. Note that not only the
execution time is larger for the MapReduce implementation
but also the dispersion of the results obtained is bigger.

The experimental results show thatMapReduce has signif-
icant higher overhead per iteration than Spark mainly caused
by longer task initialization times and HDFS access. To eval-
uate this overhead we have used a modified version of our
implementation in which the evolution of the population was
removed. This modified implementation was executed for a
total of 8 evolution-migration iterations and the overhead of
each iteration was measured separately in order to assess dif-

123

1946 Cluster Comput (2017) 20:1937–1950

Fig. 5 Bean plots comparing Spark SiPDE vs MapReduce imple-
mentations in cluster Pluton for the Circadian benchmark. Parameters:
D=13, NP=640, VTR=1e-5

Fig. 6 Boxplot of the overhead times per evolution-migration iteration
in Pluton

ferences between them. Figure 6 shows the results obtained
both for the Spark and the MapReduce implementations in
the local cluster. As it can be seen, the first iteration in the
Spark implementation is always the most time-consuming (it
corresponds to the outliers in the box plots). However, the rest
of the iterations show lower overhead and lower dispersion
in the results. By the contrary, in MapReduce there is no sig-
nificant difference between the first and the subsequent itera-
tions. The figures clearly indicate a higher overhead and large

Table 6 Comparison of Spark and MPI parallel DE implementations
for the Circadian benchmark in the local cluster Pluton and the Azure
public cloud

Method #np #evals Time(s)

Pluton 2 179,456 472.41±441.29

Spark 4 230,656 388.31±736.39

eSiPDE 8 171,776 134.01±140.78

16 225,536 115.48±119.04

2 78,276 94.62±66.75

MPI 4 78,903 49.23±35.79

asynPDE 8 79,992 26.38±21.12

16 87,341 17.13±14.11

Azure 2 102,656 745.88±656.98

Spark 4 120,576 453.78±431.47

eSiPDE 8 156,416 355.51±347.84

16 135,936 160.30±151.85

2 70,332 201.49±110.32

MPI 4 57,195 84.68±2.55

asynPDE 8 69,469 54.45±22.06

16 72,244 30.54±5.07

Parameters: F = 0.9, CR = 0.8, NP = 256, MtSt = DE/rand/1, and
VTR = 1e-5.

dispersion in the results, being the mean overhead of each
iteration 17.95 ± 2.50 versus the 0.027 ± 0.006s in Spark.

In order to evaluate the competitiveness of the proposed
cloud-based solution with a traditional HPC solution, we
have also compared the Spark eSiPDE implementation
with an MPI implementation. The same previous exper-
iments were carried out with the implementation of the
asynchronous parallel enhanced DE (asynPDE) described
in [28]. This implementation is coded in C and uses the
OpenMPI library. It must be noted that, as already avail-
able implementations in C/C++ and/or FORTRAN existed
for all the benchmarks, we have wrapped them in the Scala
code of eSiPDE by using Scala native interfaces (i.e., JNI,
JNA, SNA). Thus, the code used for the benchmark func-
tion evaluation has been the same in both the asynPDE and
eSiPDE implementations.

To perform the fairest comparison, the MPI implementa-
tion includes also a local solver and a tabu list, like eSiPDE,
to improve the convergence rate of the DE. Results for these
experiments are reported in Table 6. This table displays, for
each experiment, the number of cores (#np) used, the mean
number of evaluations needed (#evals), and the mean of the
execution times (time(s)). The homogeneous configuration
with the following parameters: F = 0.9, CR = 0.8, NP = 256,
DE/rand/1 asmutation strategy, and aVTR=1e-5 as stopping
criterion, has been used in all the cases. As it can be observed,
the MPI implementation achieves convergence between 5

123

Cluster Comput (2017) 20:1937–1950 1947

and 7× more quickly than the Spark implementation. This
is mostly because it also achieves an important reduction in
the number of function evaluations required (between 2×
and 3×). Two can be the main causes, both of them aris-
ing from the inherent features of the programming paradigm
used in each implementation. First, since the communica-
tion among workers is not allowed in Spark, the migration
strategy is implemented with a partitioner that introduces
an implicit synchronization step in the Spark implementa-
tion. The MPI implementation, on the contrary, performs the
information exchange between islands through non-blocking
asynchronous message passing operations. Another conse-
quence of the lack of communications between workers in
Spark is that the fulfillment of the stopping criterion by one
ore more islands during island evolution cannot be informed
to the rest until the reduce operation at the end of the stage
(see Fig. 1). Thus, the Spark implementation cannot stop
just right when the stopping criterion is reached (as the MPI
one does). Second, the migration strategy is different in
both implementations. In the MPI implementation a selec-
tion of the best individuals in one island replace the worst
individuals in the neighbour. In the Spark implementation
a partitioner randomly and evenly shuffles elements among
islands without replacement. Hence, to allow for a further
comparison, Fig. 7 shows the number of evaluations per sec-
ond and core (eval/s/core) achieved for both implementations
and the two platforms used. Note that this metric includes
not only the CPU time for the evaluation itself but also the
communication time and other implementation overheads.
We encountered that the number of evaluations per second
and core of the MPI implementation was between 2.18×
and 2.69× times that of the Spark implementation in Pluton,
and between 2.54× and 2.90× in the case of Azure. How-
ever, note that in Pluton the MPI implementation achieves
more than 400 eval/s/core while in Azure it only achieves
around 150 eval/s/core. Another interesting result that this
figure illustrates is the fact that the number of eval/s/core
decreases with the number of cores. This happens for both
implementations and both platforms, but its impact is larger
for the MPI implementation in Pluton. The reason is that the
computation time decreases with the number of cores due to
the tasks distribution. In the MPI implementation, the num-
ber of communications increases with the number of cores,
thus, the trade-off between computation and communication
is not preserved with the number of cores. By the contrary,
in the Spark implementation, the number of communications
remains constant with the number of cores. However, as the
number of cores grows this amount of communications are
spread between a large number of nodes which also impacts
on the computation time/communication time ratio.

All these results show that, as it was expected, the MPI
implementation outperforms Spark in terms of execution
times. This is mainly due to its low level programming lan-

Fig. 7 Number of evaluations per second and core (evals/s/core)
achieved by asynPDE vs eSiPDE in the local cluster Pluton and the
Azure public cloud

guage and reduced overhead. Nevertheless, there are other
tradeoffs to be concerned with, apart from efficiency. The
Spark implementation should be positively considered since
it allow easier programmability and because it also presents
further advantages, such as native support to node failure and
data replication.

6 Conclusions

In this paper, we presented a cloud based approach for
parameter estimation problems in computational systems
biology using an enhanced Differential Evolution algorithm.
The proposal aims to benefit from the exploration abilities of
DE and the exploitation abilities of efficient local search. The
method improves global search through a parallel implemen-
tation based on a cooperative island-model. The local search,
on its turn, is improved including a local solver, together with
a tabu list, that exploits the structure of parameter estima-
tion problems in systems biology. The enhancement in the
local search is fundamental to successfully exploit the spe-
cial characteristics of these problems, which are typically
very ill-conditioned and highly multimodal.

The proposal has been implemented using Spark and
thoroughly evaluated with three challenging parameter esti-
mation problems from the domain of computational systems
biology on two different platforms: a local cluster and a vir-
tual cluster on the Microsoft Azure public cloud. Results
show that the enhanced DE significantly reduces the execu-
tion time required for convergence in all the benchmarks.
Besides, using cloud resources shows similar behaviour in
terms of convergence and scalability as using resources from
a local cluster, but at the expense of a not negligible overhead.

Finally, a comparison with other parallel approaches has
been performed: a MapReduce implementation, to compare
with the de-facto standard for cloud-based applications, and
a MPI implementation, to compare with traditional HPC
solutions. The results conclude that, on the one hand, Spark

123

1948 Cluster Comput (2017) 20:1937–1950

presents better support for iterative algorithms than MapRe-
duce, reducing the overhead between the first and subsequent
iterations. On the other hand, as it was expected, the MPI
implementation outperforms Spark in terms of processing
speed. But Spark can be still of interest due to its easier pro-
grammability and inherent support to node failure and data
replication.

Although the proposed Spark implementation was desig-
ned and tested with focus on parameter estimation problems
in computational systems biology, it can also be applied to
solve arbitrary global optimization problems. In particular,
we believe that both the description of the implementation
and the results obtained in this work can be useful for those
interested in the potential of new cloud-based programming
models for the development of novel parallel metaheuristic
methods.

The source code is publicly available at:
https://bitbucket.org/xcpardo/sipde.

Acknowledgements This research received financial support from the
Spanish Government (and the FEDER) through the projects DPI2014-
55276-C5-2-R, TIN2013-42148-P and TIN2016-75845-P, and from
the Galician Government under the Consolidation Program of Com-
petitive Research Units (Network Ref. R2016/045 and Project Ref.
GRC2013/055), all of them cofunded by FEDER funds of the EU.
We also acknowledge Microsoft Research for being awarded with a
sponsored Azure account.

References

1. Alba, E., Luque, G., Nesmachnow, S.: Parallel metaheuristics:
recent advances and new trends. Int. Trans. Oper. Res. 20(1), 1–48
(2013)

2. Almquist, J., Cvijovic, M., Hatzimanikatis, V., Nielsen, J.,
Jirstrand,M.: Kinetic models in industrial biotechnology - Improv-
ing cell factory performance. Metab. Eng. pp. 1–22 (2014)

3. Apolloni, J., García-Nieto, J., Alba, E., Leguizamón, G.: Empirical
evaluation of distributed differential evolution on standard bench-
marks. Appl. Math. Comput. 236, 351–366 (2014)

4. Ashyraliyev, M., Fomekong-Nanfack, Y., Kaandorp, J.A., Blom,
J.G.: Systems biology: parameter estimation for biochemical mod-
els. Febs J. 276(4), 886–902 (2009)

5. Banga, J., Balsa-Canto, E.: Parameter estimation and optimal
experimental design. Essays Biochem. 45, 195–210 (2008)

6. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-
adapting control parameters in differential evolution: a comparative
study on numerical benchmark problems. IEEE Trans. Evol. Com-
put. 10(6), 646–657 (2006)

7. Cedersund, G., Samuelsson, O., Ball, G., Tegnér, J., Gomez-
Cabrero, D.: Uncertainty in biology: a computational modeling
approach. In: Geris, L., Gomez-Cabrero, D. (eds.) Optimization
in Biology Parameter Estimation and the Associated Optimization
Problem, pp. 177–197. Springer International Publishing, Cham
(2016)

8. Daoudi, M., Hamena, S., Benmounah, Z., Batouche, M.: Parallel
differential evolution clustering algorithm based on MapReduce.
In: 6th International Conference of Soft Computing and Pattern
Recognition (SoCPaR), IEEE, pp. 337–341 (2014)

9. Das, S., Mullick, S.S., Suganthan, P.: Recent advances in differen-
tial evolution-an updated survey. Swarm Evol. Comput. 27, 1–30
(2016)

10. Das, S., Suganthan, P.N.: Differential evolution: a survey of the
state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

11. Dean, J., Ghemawat, S.: MapReduce: simplified data processing
on large clusters. In: The 6th USENIX Symposium on Operating
Systems Design and Implementation (2004)

12. Deng, C., Tan, X., Dong, X., Tan, Y.: A parallel version of differ-
ential evolution based on resilient distributed datasets model. In:
Gong,M., Pan, L., Song, T., Tang,K., Zhang,X. (eds.) Bio-Inspired
Computing-Theories andApplications, pp. 84–93. Springer, Berlin
(2015)

13. Dennis Jr., J.E., Gay, D.M., Welsch, R.E.: Algorithm 573: Nl2sol -
an adaptive nonlinear least-squares algorithm. ACM Trans. Math.
Softw. 7(3), 369–383 (1981)

14. Egea, J.A., Rodríguez-Fernández, M., Banga, J.R., Martí, R.: Scat-
ter search for chemical and bio-process optimization. J. Global
Optim. 37(3), 481–503 (2007)

15. Ewen, S., Tzoumas, K., Kaufmann, M., Markl, V.: Spinning fast
iterative data flows. CoRR abs/1208.0088 (2012). http://arxiv.org/
abs/1208.0088

16. Gábor, A., Banga, J.R.: Robust and efficient parameter estimation
in dynamic models of biological systems. BMC Syst. Biol. 9(1),
74 (2015)

17. Karr, J.R., Sanghvi, J.C., Macklin, D.N., Gutschow, M.V., Jacobs,
J.M., Bolival, B., Assad-Garcia, N., Glass, J.I., Covert, M.W.: A
whole-cell computational model predicts phenotype from geno-
type. Cell 150(2), 389–401 (2012)

18. Kushida, J.I., Oba, K., Hara, A., Takahama, T.: Solving quadratic
assignment problems by differential evolution. In: 6th Interna-
tional Conference on Soft Computing and Intelligent Systems, and
13th International Symposium on Advanced Intelligence Systems,
SCIS/ISIS 2012, pp. 639–644 (2012)

19. Le Novère, N.: Quantitative and logic modelling of molecular and
gene networks. Nat. Rev. Genet. 16(3), 146–158 (2015)

20. Link, H., Christodoulou, D., Sauer, U.: Advancing metabolic mod-
els with kinetic information. Current Opin. Biotechnol. 29, 8–14
(2014)

21. Lipniacki, T., Paszek, P., Brasier,A., Luxon,B.,Kimmel,M.:Math-
ematical model of nf-κb regulatory module. J. Theor. Biol. 228(2),
195–215 (2004)

22. Locke, J., Millar, A., Turner, M.: Modelling genetic networks with
noisy and varied experimental data: the circadian clock in arabidop-
sis thaliana. J. Theor. Biol. 234(3), 383–393 (2005)

23. Moles, C., Mendes, P., Banga, J.R.: Parameter estimation in bio-
chemical pathways: a comparison of global optimization methods.
Gen. Res. 13(11), 2467–2474 (2003)

24. Neri, F., Tirronen,V., Kärkkäinen, T.: Enhancing differential evolu-
tion frameworks by scale factor local search - part ii. In: 2009 IEEE
Congress on Evolutionary Computation, CEC 2009, pp. 118–125
(2009)

25. Noman, N., Iba, H.: Enhancing differential evolution performance
with local search for high dimensional function optimization. In:
GECCO 2005 - Genetic and Evolutionary Computation Confer-
ence, pp. 967–974 (2005)

26. Noman, N., Iba, H.: Accelerating differential evolution using an
adaptive local search. IEEE Trans. Evol. Comput. 12(1), 107–125
(2008)

27. Ntipteni, M.S., Valakos, I.M., Nikolos, I.K.: An asynchronous
parallel differential evolution algorithm. In: Proceedings of the
ERCOFTAC conference on design optimisation: methods and
application (2006)

28. Penas, D., Banga, J., González, P., Doallo, R.: Enhanced parallel
differential evolution algorithm for problems in computa-
tional systems biology. Appl. Soft Comput. 33, 86–99 (2015).

123

http://arxiv.org/abs/1208.0088
http://arxiv.org/abs/1208.0088

Cluster Comput (2017) 20:1937–1950 1949

http://dx.doi.org/10.1016/j.asoc.2015.04.025. http://www.
sciencedirect.com/science/article/pii/S1568494615002525

29. Ruciński, M., Izzo, D., Biscani, F.: On the impact of the migration
topology on the island model. Parallel Comput. 36(10–11), 555–
571 (2010)

30. Schneider, E., Krohling, R.A.: Differential evolution and tabu
search to find multiple solutions of multimodal optimization prob-
lems. In: Snasel, V., Kromer, P., Koppen, M., Schaefer, G. (eds.)
Soft Computing in Industrial Applications. Advances in Intelligent
Systems and Computing, vol. 223, pp. 61–69. Springer Interna-
tional Publishing, Berlin (2014)

31. Smallbone, K., Mendes, P.: Large-scale metabolic models: from
reconstruction to differential equations. Ind. Biotechnol. 9(4), 179–
184 (2013)

32. Srinivas, M., Rangaiah, G.: Differential evolution with tabu list
for global optimization and its application to phase equilibrium
and parameter estimation problems. Ind. Eng. Chem. Res. 46(10),
3410–3421 (2007)

33. Storn, R., Price, K.: Differential evolution - a simple and efficient
heuristic for global optimization over continuous spaces. J. Global
Optim. 11(4), 341–359 (1997)

34. Sun, J., Garibaldi, J.M., Hodgman, C.: Parameter estimation
using metaheuristics in systems biology: a comprehensive review.
IEEE/ACMTrans. Comput. Biol. Bioinform. 9(1), 185–202 (2012)

35. Tagawa, K., Ishimizu, T.: Concurrent differential evolution based
on MapReduce. Int. J. Comput. 4(4), 161–168 (2010)

36. Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis, M.N.:
Parallel differential evolution. In: IEEE Congress on Evolutionary
Computation, CEC2004, vol. 2, pp. 2023–2029. IEEE (2004)

37. Teijeiro, D., Pardo, X.C., González, P., Banga, J.R., Doallo, R.:
Implementing parallel differential evolution on Spark. In: Appli-
cations of Evolutionary Computation. Lecture Notes in Computer
Science, Vol. 9598, pp. 75–90. Springer (2016)

38. Teijeiro, D., Pardo, X.C., González, P., Banga, J.R., Doallo, R.:
Towards cloud-based parallel metaheuristics: a case study in com-
putational biologywith differential evolution and spark. Int. J. High
Perform. Comput. Appl. (2016)

39. Teijeiro, D., Pardo, X.C., Penas, D.R., González, P., Banga, J.R.,
Doallo, R.: Evaluation of parallel differential evolution implemen-
tations on MapReduce and Spark. In: Lecture Notes in Computer
Science, in press. Springer (2016)

40. Tirronen, V., Neri, F., Rossi, T.: Enhancing differential evolution
frameworks by scale factor local search - part i. In: 2009 IEEE
Congress on Evolutionary Computation, CEC 2009, pp. 94–101
(2009)

41. Crepinšek,M., Liu, S.H.,Mernik,M.: Exploration and exploitation
in evolutionary algorithms: a survey. ACM Comput. Surv. 45(3),
35 (2013)

42. Villaverde, A., Banga, J.R.: Reverse engineering and identification
in systems biology: strategies, perspectives and challenges. J. R
Soc. Interface 11(91), 20130505 (2014)

43. Weber, M., Neri, F., Tirronen, V.: Shuffle or update parallel differ-
ential evolution for large-scale optimization. Soft Comput. 15(11),
2089–2107 (2011)

44. Weber, M., Neri, F., Tirronen, V.: A study on scale factor/crossover
interaction in distributed differential evolution. Artif. Intell. Rev.
39(3), 195–224 (2013)

45. Weihmann, L., Martins, D., dos Santos Coelho, L.: Modified dif-
ferential evolution approach for optimization of planar parallel
manipulators force capabilities. Expert Syst. Appl. 39(6), 6150–
6156 (2012)

46. Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant
abstraction for in-memory cluster computing. In: The 9th USENIX
Symposium on Networked Systems Design and Implementation,
NSDI 2012 (2012)

47. Zhao, S.Z., Suganthan, P.N., Das, S.: Self-adaptive differential evo-
lution with multi-trajectory search for large-scale optimization.
Soft Comput. 15(11), 2175–2185 (2011)

48. Zhou, C.: Fast parallelization of differential evolution algorithm
using MapReduce. In: Proceedings of the 12th Annual Conference
on Genetic and Evolutionary Computation, pp. 1113–1114. ACM
(2010)

Diego Teijeiro received theM.S.
(2016) degree in Computer Sci-
ence from the University of A
Coruña, Spain. Currently he is a
postgraduate student in the Com-
puter Architecture Group at the
Department of Computer Engi-
neering in the University of A
Coruña. His research focuses on
cloud frameworks and program-
ming paradigms for scientific
computing.

XoánC. Pardo received his B.S.
(1994) and M.S. (1995) degrees
in Computer Science and the
Ph.D. (2004) degree in Com-
puter Engineering from the Uni-
versity of A Coruña, Spain. He
is an Associate Professor in the
Department of Computer Engi-
neering at the University of A
Coruña since 2008. His main
research interests are in the area
of High Performance Computing
(HPC) focused on new cluster
and cloud frameworks and pro-
gramming paradigms for scien-

tific computing.

David R. Penas received the
M.S. (2011) degree in Computer
Science from the University of
Santiago de Compostela, Spain.
Currently he is a Ph.D. student
in the Bioprocess Engineering
group at C.S.I.C. (Spanish Coun-
cil for Scientific Research). His
research focuses on the applica-
tion of high performance com-
puting techniques to improve
optimization methods for prob-
lems within computational sys-
tems biology.

123

http://dx.doi.org/10.1016/j.asoc.2015.04.025
http://www.sciencedirect.com/science/article/pii/S1568494615002525
http://www.sciencedirect.com/science/article/pii/S1568494615002525

1950 Cluster Comput (2017) 20:1937–1950

Patricia González received the
M.S. (1996) and Ph.D. (2001)
degrees in Physics from the Uni-
versity of Santiago de Com-
postela, Spain. Currently she is
an Associate Professor in the
Department of Computer Engi-
neering at the University of A
Coruña. Her main research inter-
ests are in the area of High
Performance Computing (HPC),
focused on parallel and dis-
tributed computing and fault-
tolerance for parallel applica-
tions.

Julio R. Banga is a Research
Professor at C.S.I.C. (Spanish
Council for Scientific Research).
Heworks at theBioProcessEngi-
neering Group, located at the
IIM-CSIC, Vigo (Spain), doing
research in the area of com-
putational systems biology. He
obtained a Ph.D. in Chemical
Engineering from the Univer-
sity of Santiago de Compostela
(Spain) in 1991. He has been
a postdoc at the University of
California, Davis, and a visiting
researcher at the University of

Pennsylvania and MIT. He has supervised over ten Ph.D. students,
and is the author of more than 160 archival publications. He has been
involved in over 40 major research projects and contracts. Currently he
is a member of the Editorial Board of BMC Systems Biology, the IFAC
Technical Committee on Control of Biotechnological Processes, and
several international advisory boards.

Ramón Doallo received his
Ph.D. in Physics from the Univ.
Santiago de Compostela. He is
Full Professor and Head of the
Computer Architecture Research
Group atUniversity ofACoruña.
He has 28 years of experience
in research and development in
the area of High Performance
Computing (HPC), covering a
wide range of topics such as par-
allel and distributed algorithms
and applications, cloud comput-
ing, BigData processing, proces-
sor architecture, and computer

graphics. He has published more than 200 technical papers on these
topics.

123

	A cloud-based enhanced differential evolution algorithm for parameter estimation problems in computational systems biology
	Abstract
	1 Introduction
	2 Related work
	3 Differential evolution
	3.1 Improving global search with a parallel cooperative scheme
	3.2 Enhancing DE with local search and tabu list

	4 Enhanced spark-based parallel differential evolution
	5 Experimental results
	5.1 Comparison with other parallel approaches

	6 Conclusions
	Acknowledgements
	References

