
Cluster Comput (2017) 20:2779–2792
DOI 10.1007/s10586-017-0853-0

A secure key agreement protocol for dynamic group

Muhammad Bilal1 · Shin-Gak Kang1

Received: 2 September 2016 / Revised: 1 March 2017 / Accepted: 4 April 2017 / Published online: 10 April 2017
© Springer Science+Business Media New York 2017

Abstract To accomplish secure group communication, it is
essential to share a unique cryptographic key among group
members. The underlying challenges to group key agree-
ment are scalability, efficiency, and security. In a dynamic
group environment, the rekeying process is more frequent;
therefore, it is more crucial to design an efficient group key
agreement protocol. Moreover, with the emergence of vari-
ous group-based services, it is becoming common for several
multicast groups to coexist in the same network. These mul-
ticast groups may have several shared users; a join or leave
request by a single user can trigger regeneration of multiple
group keys. Under the given circumstances the rekeying pro-
cess becomes a challenging task. In this work, we propose a
novel methodology for group key agreement which exploits
the state vectors of group members. The state vector is a set
of randomly generated nonce instances which determine the
logical link between group members and which empowers
the group member to generate multiple cryptographic keys
independently. Using local knowledge of a secret nonce, each
member can generate and share a large number of secure
keys, indicating that SGRS inherently provides a consider-
able amount of secure subgroup multicast communication
using subgroup multicasting keys derived from local state
vectors. The resulting protocol is secure and efficient in terms
of both communication and computation.

Keywords Group key agreement · Resource sharing ·
Multicast security · Dynamic system · Key distribution ·
Confidentiality

B Muhammad Bilal
mbilal@etri.re.kr

1 Electronics and Telecommunications Research Institute
(ETRI Campus), University of Science and Technology
Korea, Daejeon 305-700, Republic of Korea

1 Introduction

the recent past with the advent of fast networking technolo-
gies, there has been a profound increase in the speed of the
Internet and the degree of connectivity. In addition, with the
emergence of new Internet applications such as video con-
ferencing, online joint workspaces, group chat, multi-user
games and online social networking applications, numerous
possibilities for group communications have been created.
Group participants share common interests and share the
responsibility of secure group communication. In group com-
munication, agreement regarding a secure group key is one
of the most important and challenging tasks. Specifically,
to maintain a secure group key in a dynamic environment
becomes more difficult as the reestablishment of the group
key should be rapid and lightweight with regard to com-
plexity. Secure rekeying becomes an even more challenging
task in resource-limited networks such as wireless sensor
networks (WSNs) [1] and body-area networks (WBAN) [2],
as most conventional cryptographic mechanisms and secu-
rity protocols are not suitable for resource-limited WSNs or
WBANs. For example, very efficient public key algorithms,
such as ECC [3], need a fraction of a second to execute
encryption/decryption procedures, while a symmetric key
algorithm such as RC5 [3] needs only a fraction of amillisec-
ond to perform encryption and decryption procedures [4,5].
For computational efficiency, secure group communication
it is essential, with the group key following a symmetric key
algorithm.

For secure group communications, the two basic goals are
authentication and confidentiality. Precisely, authentication
guarantees that the communicating entity is an authorized
entity, which is alive and participating in a protocol run
according to a defined role. Further, the protocol run fol-
lows the correct pre-defined sequence of a protocol run, and

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-017-0853-0&domain=pdf

2780 Cluster Comput (2017) 20:2779–2792

confidentiality guarantees that the transmitted messages are
recognizable and/or decrypted only by the intended enti-
ties.

In this paper, we present a unique secure group key agree-
ment protocol suite known as secure group key-agreement
(SGRS with random nonce sharing). SGRS is a decentral-
ized and distributed protocol; it is decentralized because
for scalable instances of SGRS, the groups are cascaded
into larger groups (Sect. 4.5), and it is distributed because
all of the nodes in each group contribute to computing the
keying material. The SGRS protocol suite consists of four
underlying protocols: the Join, Leave, Merge and Partition
protocols. The common framework for these protocols is
based on a unique and novel group structure, where each
group member generates a secret nonce which should be
known to all except one. The set of locally known nonce
instances represents the state vector of a group member. In a
group of N members, all members have a state vector of size
|N | − 1.

Considering that the members are arranged in a logical
circular linked list where a pointer to the next member indi-
cates the secrecy of the current member’s nonce to the next
member, e.g., Ni−1 → Ni means that the secret nonce ni
does not belong to state vector Si−1; i.e., ni /∈ Si−1. Con-
sidering that the members are arranged in a logical circular
linked list where a pointer to the next member indicates that
the nonce of next node is unknown to the current node. For
instance, Ni−1 → Ni means that the secret nonce generated
by member Ni−1 is unknown to member Ni ; i.e., ni−1 /∈ Si
where Si is the state vector of member Ni , representing set
of all secret nonce known to the ith member, and ni−1 is the
nonce generated by member Ni−1

This novel approach of creating logical relationships
among group members is the key factor in our protocol.
Using local knowledge of the secret nonce, each member
can generate and share a large number of secure keys, indi-
cating that SGRS inherently provides a considerable amount
of secure subgroup communication using subgroup multi-
casting keys derived from local state vectors. We assume
that an independent authentication protocol authenticates the
groupmember. Consequently,we focus on the confidentiality
aspect of secure group communication. If a member or group
of members want to join a secure communication group, they
should initially be authenticated by a separate authentication
protocol.

The remainder of this paper is organized as follows. In
Sect. 2, we give a brief system overview and discuss the
characteristics of the group and keying system. In Sect. 3,
the proposed scheme is described in detail. Section 4 presents
the results of a performance analysis of SGRS against sev-
eral well-known schemes. Finally, we provide concluding
remarks in Sect. 5.

2 Related work

The group communication over IPwas first presented in 1986
byDeering [6].However, IPmulticast itself does not have any
mechanism to prevent group communication by non-group
members. Afterward, with the emergence of new network
technologies, group communication faced several new secu-
rity and efficiency issues. Group communication can be
secure if all group members share a common secret key,
with the key generated and distributed through a secure pro-
cedure. Group communication is considered to be efficient
if it has low computational and communication complex-
ity. Various protocols have been proposed for securely and
efficiently establishing a secret cryptographic key among
group members [7–10]. The protocols developed thus far
can be categorized into three broad categories, as follows:
(1) Centralized key distribution and management systems,
(2) decentralized key distribution and management systems,
and (3) distributed key distribution and management sys-
tems [2–5]. In the centralized approach [11,12], the overall
key management complexity is low from the standpoint
of a group participant; however, the centralized key man-
agement entity is associated with heavy computational and
communicational complexity. The centralized approach is
vulnerable to DoS/DDoS attacks and inherits the potential of
a single-point failure. Moreover, tackling the issue of scal-
ability in the centralized approach is a challenging task. In
the decentralized approach [13,14], the computational and
communication complexity levels are distributed among the
subgroup managers. The single-point failure is confined to
the subgroup region at the expense of higher complexity
of group re-keying after a join, leave, merge or partition
event. In the distributed approach [15], single-point failures
do not occur, but ensuring secure re-keying is a challenging
task. The SGRS is a decentralized and distributed protocol,
decentralized because for scalable SGRS, the groups are cas-
caded into larger groups (Sect. 4.5), and distributed because
all nodes in each group contribute to computing the keying
material.

In earlier work [11], the author proposed a scheme to
reduce the communication complexity of the rekeying pro-
cess in a dynamic group. In the proposed scheme, the head
node transmits a randommagic number to all groupmembers
along with a time stamp value. The member nodes undertake
a left shift of the magic number and calculate the new key
by an XOR operation on the old key and the left-shifted
magic number. The proposed scheme requires a powerful
group head node which must send n number of encrypted
messages for a group of size n, leading to the scalability
problem. Seo et al. [12] proposed a group key management
protocol for the cluster-based topology which establishes the
group key using certificate-less asymmetric cryptography.

123

Cluster Comput (2017) 20:2779–2792 2781

However, this scheme is computationally expensive due to
its use of asymmetric cryptography.

In work by Mehdizadeh et al. [14], the group is divided
into small subgroups. The rekeying process is only confined
to the locality of the event (Join and leave) in a subgroup. In
the proposed scheme the network is divided into two levels:
the multicast level and unicast level. The re-keying process
is confined to multicast level. However, it causes an issue
of data transmission within the group. The data need to be
translated on each edge node of the subgroup.

In another study [16], the authors presented a group key
agreement protocol suite based on blending binary key trees
with the Diffie–Hellman key exchange. The usage of a hier-
archal logical key significantly reduces the number of keys
held by each group member. The key of each member is
constructed from its child members; all participating mem-
bers calculate intermediate blending keys independently and
finally compute the group key.

Other work [15] presents an asymmetric group key agree-
ment protocol, in which the general construction of the
protocol is based on thewell-knownChinese remainder theo-
rem in conjunctionwith theNTRUcryptosystem. The overall
protocol provides an efficient solution.

In another study [17], an asymmetric group key agree-
ment protocol based on a proxy re-encryption technique was
proposed. The keys are arranged in a tree format, where the
members represent the key pairs and the edges represent the
proxy re-encryption keys. Each participating member holds
theproxy re-encryptionkeys from the root to the leafmember.
In two of the aforementioned studies [16,17], to construct a
logical tree of keys, the parent members are computed from
child members; consequently, members must be synchro-
nized, otherwise any delay can cause an interruption in a
protocol run. Additionally, during the setup time, both pro-
tocols depend upon a leader; in other words, a single-point
failure may still arise in the system.

In other work [18], the author presented another protocol
based on the Chinese remainder theorem. This protocol con-
structs a tree in which each member holds two values: a key
and a modulus.

Most existing group key management protocols are
designed to establish a single secure group.However,with the
emergence of various group-based services, it is becoming
common for several multicast groups to coexist in the same
network. These groups may have several common users.
In some cases [13,19], the authors discussed the issue of
the coexistence of multiple multicasting groups in a single
network. This feature is similar to SGRS secure multicast-
ing subgroup communication, which is also utilized in our
scheme. However, one of these schemes [19] is computation-
ally expensive because all of the keys are generated using
asymmetric cryptography, which makes the overall process
of key generation computationally expensive. In another

scheme [13], the computational and communication cost
complexity is highly dependent upon the number of multi-
casting groups and the number of users participating in each
group. On the other hand, the establishment of the group key
in SGRS is independent of the number ofmulticasting groups
or the number of users involved in eachgroup, as SGRS inher-
ently empowers the group members to create secure multiple
multicasting groups.

3 System overview

In SGRS, the participating group members share the secret
nonce and create a logical circular linked list. Using local
knowledge of the shared nonce, each member can gener-
ate and share a large number of secure keys. We assume
that before joining the group the requesting member/group is
authenticated by an independent authentication entity using
independent authentication protocol, largely discussed in lit-
erature [20–23], and further assume that the secrete nonce
of sponsor member is known to the authentication entity. In
the subsequent section, we explain the characteristics of the
group and the keying system in detail.

3.1 Notations

– Ni = i th member
– ni = Secret nonce of i th member
– Si = State Vector: Set of all secret nonce known to the
i th member.

– Xs = Set of secret nonce created and shared among all
members of a dynamic group

– XN = Set of member ids of all members in dynamic
group, corresponding ids of Xs

– Ys = A subset of Xs

– YN = A subset of XN , which are corresponding ids of
Ys

– KY = A key derived from elements of Ys
– KP = Public key
– KG = Group key
– EA(B) = Encryption of B using key KA, where KA is
any valid KY , KP or KG

– ‖ Symbol for concatenation of terms
– |� Symbol to explicate a portion of the term
– S � m Indicate that S can generate m

3.2 Characteristics of group

Eachgroupmember generates a secret noncewhich should be
known to all except one. The local knowledge of the secret
nonce represents the state vector of a group member. In a
group of N members, all members have a state vector of
size |N | − 1, and each member possess a Si = Xs − ni−1

secret nonce. Initially, each member independently gener-

123

2782 Cluster Comput (2017) 20:2779–2792

Fig. 1 A group of N members arranged in a logical circular linked list

ates exactly one nonce and the state vector get updated (new
nonce added or excluded) for each join, leave, merge and par-
tition events by following the respective protocols described
in subsequent Sect. 6.

For example, in Fig. 1, N2 knows all nonce instances
expect n1and N3 knows all except n2, and so on. It is impor-
tant to note that these members are arranged in a logical
circular linked list, where a pointer to the next member indi-
cates the secrecy of the current member’s nonce to the next
member. This novel approach of creating logical links among
group members is the key factor in our protocol. Using local
knowledge of a shared nonce, each member can generate and
share a large number of secure keys.

3.3 Keying system

In the SGRS scheme, each member independently gener-
ates multiple cryptographic keys KY based upon the locally
known secret setSi . Amulticasting key KY is generated using
the function f (Y) = Hash(XOR(Ys), KG). To ensure the
secrecy of setYs , setY is used as an index value to retrieve the
valid secret nonce Ysfrom the state setSiof members. Only
those members can generate the key KY , holding the corre-
sponding secret nonce Ys of the enlisted member IDs in set
Y ; i.e., KY is a valid key for all members Ni if Ys ⊆ Si and
KY is a private key of members Ni if Ys = Si . This infers
that the group size of |XN | = N has the following number
of possible multicasting keys.

W =
{ N !

(N−1)! + N !
(N−2)!2! +· · · N !

(N−(N−2))!(N−2)!N is odd
N !

(N−1)! + N !
(N−2)!2! +· · · N !

(N−(N−1))!(N−1)!N is even

However, each member can participate and/or start Znumber
of secure sub group communication, where Z ⊆ W.

Z =
{ (N−1)!

(N−2)! + N−1!
(N−3)!2! +· · · (N−1)!

(N−(N−1))!(N−1)! +1N is odd
(N−1)!
(N−2)! + N−1!

(N−3)!2! +· · · (N−1)!
(N−(N−1))!(N−1)!N is even

For instance, assuming that N = 7, we have a total of 119
possible keys in the system, which infers that our scheme
inherits the ability to createW = 119 number of secure sub-
groups, where each member can participate in 63 subgroups.

The group key KG is generated by the hash function
KG = Hash(ni , X), where ni is the secret nonce of sponsor
member Nior Ni is the immediate previous member in the

logical linked list if Ni+1 leaves the group and X is selected
based on the key update event. In join event X is an existing
group key, in leave and partition event X is a random nonce
generated and shared by the sponsor member, and in merge
event it is the group key of requesting group. For computa-
tional efficiency, secure group communication it is essential,
with the group key following a symmetric key algorithm.
For example, very efficient public key algorithms, such as
ECC [3], need a fraction of a second to execute encryp-
tion/decryption procedures, while a symmetric key algorithm
such as RC5 [3] needs only a fraction of a millisecond to per-
form encryption and decryption procedures [4,5]. In SGRS
all the cryptographic keys generated, as in the above dis-
cussion, are symmetric keys and have a size of 256 bits (32
bytes); hence, in the subsequent section of protocols any sym-
metric encryption supporting the 256-bit key can be used,
e.g., RC5 [3]; Rijndael [24], Twofish [25], MARS [26], and
Blowfish [27] symmetric encryption algorithms support the
256-bit encryption key.

3.4 A reference framework for SGRS

The application scenario for SGRS is not limited to the group
of communicating nodes. As shown in Fig. 2, a group of
nodes/users {N1, N2, . . . NN } is arranged in a logically con-
nected group, as explained above. All group nodes can access
the common resources using the group key KG and a subset
of the group can securely access resources private to the sub-
set of nodes. Resources can be a subscription to a service,
shared data, and/or a secure multicast group, for instance.
Note that

As an example shown in Fig. 2, Ri∀i = 1, 2..k, can be
a service, shared memory, shared data or a multicast com-
munication channel private to members N1, N3, and N5.
The private key can be calculated by the subgroup members

Fig. 2 The logically connected group members share the common
resources using the group key. The subsets of groupmembers also create
multiple secure subgroups.

123

Cluster Comput (2017) 20:2779–2792 2783

Fig. 3 An example when one of the group member moves from one authentication as service point to another authentication as service point. Note
that whole network is divided into multiple clusters and each cluster provides a complete set of resources.

independently without an exchange of a single message, as
follows:

1. Ys = S1 ∩ S3 ∩ S5
2. KY = f (N1, N3, N5, N7, . . . , NN−1) = Hash(XOR

(Ys), KG)

Note that the function f takes the list of node IDs as an input
argument and translates it into vector YS by selecting the
corresponding secret nonce from the local state vector Si . In
the subsequent section, we demonstrate that to maintain the
characteristics of a group, we share the node IDs (Y)and let
the member node translate the vector Y into Ys . This ensures
that only eligible nodes with the required information (Ys)
can generate the secret key.

At this stage as shown in Fig. 3, we consider that the net-
work is divided into clusters/cells. Each cluster provides a
complete set of resources. If a user who is subscribed to mul-
tiple subgroup resourcesmoves fromone cluster to another, it
will invoke a single leave and single join protocol.Once a user
becomes part of a logical group, it can generate all of the sub-
group keys to access the subscribed resources. As shown in
Fig. 3, N3 in cluster 1 is subscribed to R1, R2, and Rk , which
indicates that N3 is part of one major group as well as three
subgroups. When it leaves cluster 1 and joins cluster 2 as N4,
cluster 1 runs leave protocol while cluster 2 runs join proto-
col. The rekeying of three subgroups in both clusters requires
a singlemessage exchange, and all subgroup keys can be gen-
erated by the members independently using function f .

4 Proposed scheme

The SGRS protocol suite consists of four underlying proto-
cols: the join, leave, merge and partition protocols. All of
these protocols share a joint framework with the following
prominent features:

• Each group member contributes to maintaining its state
vector to preserve the characteristics of a group as defined
in Sect. 2.

• Upon the addition or removal of members, all mem-
bers update the previous keying material based upon the
updates shared by the sponsor node.

• Each member can participate and/or start Z instances of
secure subgroup communication, where Z ⊆ W.

Upon each membership event, all members independently
update the state vector and compute all possible keys on
demand. SGRS protocols are highly distributed; all partic-
ipating members equally participate in a protocol run except
for the sponsor member, which performs a few additional
operations.

4.1 Join protocol

The join protocol is initiated when a potential member sends
a valid joinmessage to a sponsormember. The authentication

123

2784 Cluster Comput (2017) 20:2779–2792

server generates a ’joining tag’ for newmemberN j , as shown
below.

EG(S j)||EY (sig(n j)) |� YN = Ni

A valid joining tag consists of two parts. The first part
EG(S j) is destined for new member N j only, whereas the
second half EY (sig(n j)) |� Y = Ni is used by newmember
N j to initiate the join protocol. Due to the encryption with
unknown keys, the contents of the tag are hidden from the
requesting member N j . The first half is encrypted with the
updated group key KG = Hash(Kcurrent

G , ni), where ni
is the secret nonce of the current sponsor member of the
group, which is the new member, who intends to join. This
part of the tag consists of the vector state for memberN j ,
as the state is encrypted with the updated group key KG ,
and the requesting node N j does not have knowledge of the
contents until and unless it initiates and participates in the
joining protocol. During the join protocol run, the sponsor
member verifies the join request using the second half of the
tag. Note that the second half of the joining tag is encrypted
by multicasting key KY , which is derived from the secret
nonce of the group sponsor node. This key is also unknown
to the joining member. Once N j is verified, the sponsor node
then shares the updated group keyKG such that the joining
member retrieves the state vector and becomes part of logical
circular linked list of the group. After receiving a valid join
tag, N j multicasts the join request EY (n j) |� Y = Ni), and
the protocol proceeds as follows:

1. N j → (XN − Ni+1) : EY (sig(n j)) |� YN = Ni

2. ∀(XN − Ni+1) � Knew
G = Hash(Kcurrent

G , ni)
3. Ni → N j : EY (Knew

G) |� YN = N j

4. Ni−1 → Ni+1 : Ecurrent
G (ni)

5. N j � Knew
G = Hash(Kcurrent

G , ni)

(1) In first step N j multicasts the joinmessage encryptedwith
multicasting key KY derived from Ni ’s secret nonce, which
infers thatall group members excluding Ni+1receiven j . All
members confirm the authenticity of the sender by verifying
the signatures of the authentication server and sender. (2)
All group members, excluding N j and Ni+1, generate a new
group key and update their state vectors by adding the secret
of the new member N j . (3) The sponsor node Ni shares the
new group key with the joining member N j . At this point,
the newly joining member N j can decrypt the first half of the
join ticket to acquire its state vectorS j . (4) In parallel with
message 3, the member Ni−1 shares the nonce of the sponsor
node with memberNi+1. This sharing breaks the logical link
between the sponsormember and Ni+1 and established a new
logical connection between N j and Ni+1. (5) Finally, after
receiving n j , the member Ni+1 also generates a group key.

We consider a group of three members, as shown in Fig. 4,
where N3is the sponsor member and N4 sends a valid join

Fig. 4 Update of state vectors in a simple scenariowhen a newmember
joined the group

request EY (sig(n4)) |� Y = N3, which infers that onlyN2

and N3 can decrypt the message using KY = f ({N3}) .
For the given example the join protocol proceeds as fol-
lows: (1) N2 and N3verify the request and add n4 to the state
vector. (2) N2 and N3 generate a new group key Knew

G =
Hash(Kcurrent

G , n3) and update their state vectors by adding
the secret of the new member N4. (3) The sponsor node
N3shares the new group key with joining node N4. (4) In par-
allel with message 3, the member N2 shares the nonce of the
sponsor node with member N1. This sharing breaks the logi-
cal link between N3and N1 and establishes a new logical link
between N4 and N1. (5) Finally, after receiving n3,member
N1 also generates group keyKG = Hash(Kcurrent

G , n3).

4.2 Leave protocol

The leave protocol is initiated when a valid member becomes
invalid, for instance, when the group subscription time
expires or if a valid member unsubscribes from the group
membership. In either case, the sponsor member of the group
is responsible for initiating the leave protocol. Here, N j is the
sponsor of the group, and Ni is the departing member. Upon
the occurrence of a leave event, the sponsor Ni initiates the
leave protocol, which proceeds as follows:

1. N j → X
′
N : EY (nrandom)||Eold

G (YN) |� YN = Ni−1

2. ∀(X ′
N−Ni+1) � (ni−1, KG) = (Hash(noldi−1, ni), Hash

(Hash(noldj , nrandom), nrandom))

3. N j → N j−1 : EY (KG)||Eold
G (YN) |� YN = Nold

i−1

(1) When Ni leaves the group, the sponsor member N j

updates its secret nonce n j = Hash(noldj , nrandom) and
generates a new group key KG = Hash(n j , nrandom). The
sponsor member also updates its state vector by updating
the secret nonce ni−1 = Hash(ni−1, ni) of memberNi−1

but keeps the old value as well until the second step is com-
pleted. The sponsoring member skips this step if the sponsor
is next to the leaving member Ni in the logical linked list,
i.e., if j = i + 1. After generating the new group key and

123

Cluster Comput (2017) 20:2779–2792 2785

Fig. 5 Update of state vectors in a simple scenario when a groupmem-
ber leave the group

updating the state vector, the sponsor member multicasts the
partition message in conjunction with nrandom . The multi-
casting key KY is derived from set Y = Ni−1, which infers
that only remaining members X

′
N will receive this message.

Note that even if the sponsor node updatedni−1, it will still
use the old value of ni−1 for the multicast message, until
the second step completed. The departing node Ni cannot
decrypt this message as ni−1 /∈ Si , hence departing node Ni

cannot generate the new group key; it ensures the forward
secrecy. (2) After receiving the arguments for generating a
new group key, all members excluding Ni+1 generate a new
group key and update the state vectors by updating nonce
ni−1 by hashing its old value withni . This step ensures that
departing member cannot generate the group key, as nrandom
is unknown to the departing member. Moreover, it ensures
that member Ni+1should not generate ni−1, as ni is unknown
to Ni+1. Hence, after the second step, ni−1 /∈ Si+1, meaning
that a new logical link between Ni−1 and Ni+1 is created. 3)
Finally, the sponsor member shares the group key with Ni+1.

Let us consider a group of four members, as shown in
Fig. 5, where N2 is the sponsormember, and N4 is the depart-
ing member. For the given example the leave protocol pro-
ceeds as follows: (1) When N4leaves the group, the sponsor
node N2updates its secret nonce n

′
2 = Hash(n2, nrandom),

generates a new group key KG = Hash(n
′
2, nrandom), and

multicast the partition message in conjunction with nrandom .
Themulticasting key KY = f ({N3})is derived from set Ys =
{N3}, whichmeans N4 cannot receive themessage. The spon-
sormember also updates its state vector byupdating the secret
nonce n

′
3 = Hash(n3, n4). (2)After receiving the arguments

for generating new group key, N1 updates the state vector
by updating the secret nonce n

′
2 = Hash(nold2 , nrandom)

and generates new group key KG = Hash(n
′
2, nrandom).

Besides, N3 updates the state vector by updating the secret
nonce n

′
3 = Hash(n3, n4) . At this stage, N4 (departing

node) cannot generate KG and n3 as nrandom is unknown to
the N4. (3)Finally, N2shares the updated group key using the
key derived from old n3. The old n3is unknown to N4, hence
the group key is only delivered to N1 and N3. The member
N1 updates its state vector by deleting old n3.

Fig. 6 An example of merging 6 small groups into a single larger
group. The merge completed in �(log2 6� = 3 rounds

4.3 Merge protocol

To merge knumber of small groups into one large group,
the merge protocol runs concurrently in �(log2 k� rounds.
For each run of the protocol, we obtain a merged group of
two subgroups. For example, as shown in Fig. 6, six small
groups G1,G2,G3,G4,G5,G6 are merged into one large
group G16 in �(log2 6� = 3 rounds.

The merge protocol is initiated when a sponsor member
sends a valid join message to a sponsor member of another
group. Here, Na

i is the current sponsor of the groupaand Nb
i

is the sponsor of group b. After receiving a valid join ticket
(EY (Kb

G ||sig(Xb
s))||nai−1 |� Y = Xa

N − Na
i+1, the mem-

bers of group b know the secret of the immediate previous
member in the logical linked list of Na

i . Upon sending the
join request, the protocol proceeds as follows:

1. Nb
i → Na

i : EY (Kb
G ||sig(Xb

s)) |� Y = Xa
N − Na

i+1
2. Na

i → (Xa
N − Na

i+1): E
a
G(Update)

3. Na
i → (Xb

N − Nb
1) : Eb

Y (S
a
i)||Eb

G(Y) |� Yb = Nb
2

4. Na
i → Nb

1 : EY (nbm, (S
a
i − nai))||Eb

G(Y
b) |� Yb = N2

5. Na
i → (Xa

N − Na
i+1) : Ea

G(EY (Xb
s ||Kb

G)||Ya) |� Ya =
Ni

6. Na
i−1 → Na

i+1 : Ea
G(EY (Sai−1, (X

b
s −nbm))||Kb

G)||Ya) |�
Ya = Na

i+1

(1) The sponsor of group b sends the joinmessage, encrypted
with key KY , as derived fromXa

N − Na
i+1, inferring that only

the sponsor members of group a receive the Join message.
Sponsor member Na

i confirms the authenticity of the sender
by verifying the signatures. (2) The sponsor of group amulti-
casts the updated message, meaning that all group members
excluding Ni+1 update the value of nai = Hash(nai , K

a
G).

Ni+1 cannot update because nai /∈ Si+1. The updated value
of nai ensures backward secrecy. (3) N

a
i shares his state vec-

tor with all members of group b,except the tail member Nb
1 .

123

2786 Cluster Comput (2017) 20:2779–2792

Fig. 7 Update of state vectors in a simple scenario when two groups
merged and share a common group key

To ensure this, Na
i multicasts the message using KY , which

is derived from the secret of head member Nb
m i.e.,nbm . (4)

Na
i shares a set nbm, (S

a
i − nai) of secret values with Nb

1 and
straight away, member Nb

1 breaks the logical link with Nb
m

and establishes a new logical link with member Na
i .Note that

messages 2 and 3 are sent by the sponsor member of group
a,but they are encrypted with keys derived from group b.
The rationale behind this choice is to prevent the disclosure
of Sai from other members of group a. (5) At this stage, the
sponsor member shares the vector Xb

Sand Kb
G with all mem-

bers of group a, excluding Na
i+1.The message is encrypted

with Ka
G and further encrypted with KY derived from Na

i ;
this infers that the message is prevented from being accessed
by Na

i+1 and all members of group b. (6) Na
i−1 shares a set

nai , (X
b
s − nbm) of secret values with Na

i+1, and straight away
member Nb

i+1 breaks the logical link with Nb
i and estab-

lishes a new logical linkwithmember Nb
m,with groupb added

between Na
i and Na

i+1. All members of groups band ashared
the common group key Kb

G and updated the state vectors with
new secret values while maintaining the logical links.

Let’s consider two groups a and b each with three mem-
ber nodes, as shown in Fig. 7, where Nb

3 sponsor member
of groups b sends a valid merge request to Na

2 , the spon-
sor member of group a. For the given example the merge
protocol proceeds as follows:. (1) Na

2 verifies the request,
and updates his secret nonce na

′
2 = Hash(na2, K

a
G) and state

vector Sa2 . (2) N
a
2 informs all group members, excluding Na

3

to updated state vectors by updating na
′

2 = Hash(na2, K
a
G).

(3) Na
2 shares his state vector with the members of group

b,except tail member Nb
1 , to guarantee this, N

a
2 multicast the

message using KY which is derived from the secret of head
member Nb

3 i-e,n
b
3. (4) N

a
2 shares a set nb3, (S

a
2 − na2) of secret

values with Nb
1 ; this ensures that the member Nb

1 broke the
logical link with Nb

3 and established a new logical link with
member Na

2 . (5) Now sponsor member Na
2 shares the vector

Xb
Sand K

b
G with allmembers of the groupaexcluding Na

3 .The

message is encryptedwith Ka
G and further encryptedwith KY

derived from na2; this infers the message is prevented from
being accessed by Na

3 . (6) N
a
1 shares a set na2, (X

b
s − nb3) of

secret values with Na
3 , which means the member Na

3 broke
the logical link with Na

2 and established a new logical link
with member Nb

3 ,in other words, group b is added between
Na
2 and Na

3 .

4.4 Partition protocol

Assume that there is a group of XN members where XM

members leave the group simultaneously and are leftwith X
′
N

members. Occasionally, a fault in the network disconnects a
large number of nodes simultaneous. Upon the occurrence of
a partition event, the current sponsor of group Ni will initiate
the partition protocol, which proceeds as follows:

1. Ni → X
′
N : EY (nrandom)||Eold

G (YN) |� Y =⋂
j S j ,∀N j ∈ X

′
N

2. ∀(X ′
N − Ni−1) � S j = G(S j)

K
G = Hash(ni , nrandom)

3. Ni → Ni−1 : EY (KG)||Eold
G (Y) |� YN = ⋂

j S j ,

∀N j ∈ X
′
N

(1) Upon the occurrence of a partition event, the sponsor
member N j updates its secret nonce n j = Hash(noldj ,

nrandom) and generates a new group key KG = Hash(n j ,

nrandom). The sponsor member multicast the partition mes-
sage in conjunctionwith nrandom .Themulticasting key KY is
derived from the set YN = ⋂

j S j ,∀N j ∈ X
′
N , which infers

that only remaining members X
′
N will receive this message.

This also infers that all members ni ∈ X
′
N remove all mem-

bers nk ∈ XM from the local secret list. (2) After having
received the arguments for generating a new group key, all
members excluding Ni−1 generate the new group key and
update the state vectors by running functionG. Function G
updates the state vector of all remainingmembers by discard-
ing all of the secrets which cannot be generated and those
which belong toXM . For instance, if Ni+1, . . . N j ∈ XM ,
then function G updatesni = Hash(ni , n j), where n j is
the secret of the head member among contiguous departing
members in the logical linked list. In the worst case, when
leaving members are noncontiguous, function G will per-
form |XN − XM | number of hash operations to update each
member’s state vector. In best case, when all leaving mem-
bers are contiguous, function G must perform only one hash
operation to update each member’s state vector. (3) Sponsor
member Ni sends the group key to Ni−1 explicitly, as node
Ni−1 does not know the value of n j .

Weconsider a groupof sixmembers {N1, N2, N3, N4, N5}
= X6, as shown in Fig. 8, where N3is the sponsor mem-
ber and {N1, N2, N5} leave the group simultaneously. For
the given example the partition protocol proceeds as fol-

123

Cluster Comput (2017) 20:2779–2792 2787

Fig. 8 Update of state vectors in a simple scenario when a group is
partitioned

lows: (1) The sponsor member N3generates a new group
key KG = Hash(n3, nrandom) and multicast the partition
message, including the new group key and a list of mem-
bers XM = {N1, N2, N5}, to N4andN6 using encryption key
KY derived from YS = n1, n4, n6. (2) After receiving the
partition message, all remaining members update the state
vector, where n

′
3 = Hash(n3, n5) n

′
4 = Hash(n4, n5) and

n
′
6 = Hash(n2, n6) and generate the group key KG =
Hash(n3, nrandom).

4.5 Scalable SGRS larger group

For each join and leave message, we are required to per-
form a hash operations proportional to the group size. SGRS
may encounter a scalability problem when the group size
reaches millions of users. For instance, in a group of one
million members, each member must maintain a state vector
of 999,999 nonce instances. In terms of memory consump-
tion, this will require approximately 40MB, which is not an
issue for modern end-user devices, but for each leave and
join event, the protocol requires the performance of nearly
one million hash operations. With such a large group size,
the probability of the occurrence of a leave or join event also
increases.

The problem of scalability can be solved by dividing the
large group into smaller cascadedgroups arranged inmultiple
layers, as shown in Fig. 9. Let us consider N number of
members divided into k number of groups with each group
(Gi) having its group key
(Ki

G∀i = 1, 2, 3..k) shared and generated, as discussed in
relation to the SGRS protocol suite. All of these groups can
generate a supergroup (SGi) by considering each group (Gi)

as a logical member of the supergroup and considering the
corresponding group key Ki

G as their secret nonce. With this
type of arrangement, all of the groups and group members
share a common group key generated at the supergroup level.
The supergroup (SGi) can further be cascaded to generate
an ultra-supergroup (USGi), and so on.

The cascaded group limits the required number of nonce
updates for the new group key to the lowest group level. For

Fig. 9 A cascaded group example , k number of groups generate one
super-group and l number of super-groups generate one large ultra-
super-group. The group key generated at ultra-super-group level is
shared among all super-group, groups, and group members.

example, consider two levels which are cascading, where
groups join to create a supergroup (SG). If a leave or join
event occurs in group Gi ∈ SG, the SGRS will run locally
and will produce the new group key Ki

G , which will fur-
ther serve as an updated nonce of group member Gi at the
supergroup level. At the supergroup level, all of the group
members then generate the new group key, as follows:

1. SGRS(Gi) � Ki
G(Newlocalgroupkey)

2. ∀(G j ∈ SG − Gi−1) � KSG = Hash(KSG, Ki
G)

3. AnyG j → Gi−1 : EY (KG) |� YN = Gi+1

(1)AnSGRSevent occurs, leading to production of new local
group keyKi

G . (2) At the supergroup level, all group mem-
bers, excluding Gi−1, generate new a supergroup key and
share it with local members. (3)Any other groupmembersG j

can send the updated group key to Gi+1.
For a cascaded group solution for the scalable SGRS

scheme, we make one important assumption. At the group
level, the sponsor member is considered to be a permanent
and trusted member who does not share upper-level keys,
except for the final supergroup key, with local members.

5 Performance analysis

5.1 Security analysis

There are four major security apprehensions regarding group
communication: group key secrecy, backward secrecy, for-

123

2788 Cluster Comput (2017) 20:2779–2792

ward secrecy and key independence [3,6]. SGRS addresses
all of these security concerns.

1. Group key secrecy: In SGRS, it is computationally infea-
sible to generate a group key unless the intruder knows
the secret state vector of the group members.

2. Backward secrecy: To ensure backward secrecy, when
a member or group of members joins the group, they
are prevented from regenerating the previous group keys.
As the group keys are generated using shared secrets, at
the time when a member or group of members joins the
group, the secret nonce of the sponsor member has been
updated using a one-way hash function. Thus, upon the
occurrence of a join event, the requisite material to re-
generate the previous group key is destroyed. In the Join
and leave protocol, this step ensures this property.

3. Forward secrecy: When a member or group of mem-
bers leaves the group, they are precluded from know-
ing/generating future group keys. In both algorithm 2 and
algorithm 4, step 2 ensures this property. As the group
keys are generated using shared secrets, at the time when
a member or group of members leaves the group, we
update the secret state vectors of all groupmembers using
a one-way hash function. Note that upon a leave event, it
is not necessary to update the entire state vector, and the
multicasting keys are generated by including a new group
key as an argument which ensures that multicasting keys
cannot be used by leaving members.

4. Key Independence: In SGRS, group key generation is
independent of previously generated group keys. Any
knowledge of previously known group keys cannot help
discover any other group key.

5.2 Efficiency analysis

This section analyzes the efficiency of SGRS in terms of
computational andmessage complexity against earlier works
[13–17].We consider that encryption should protect all types
of keying materials exchanged among group members. Fur-
ther,we assume that encryption and decryption have identical
computational costs, represented by E ; for instance, the
exchange of an encrypted unicast message increases the
computational cost by 2E , whereas an encrypted broadcast
message increases the computational cost by (1+N)E . Sim-
ilarly, the encrypted multicast message adds (1+ k)E to the
total computational cost. Here, K denotes the size of the
multicasting group. Additionally, we presume that the com-
putational price of an asymmetric key pair and an asymmetric
proxy re-encryption key are identical.

To present the computational analysis of the results of
earlier work [13,14], we make a few extra assumptions. In
Mehdizadeh et al. [14], the group is divided into two network
levels: the multicast level and the unicast level. We assume

that the network of size N is divided into K subgroups, each
of size |Gi | = N/k. Hence, in Mehdizadeh et al. [14], we
have 2k+1 − 1nodes at the multicast level and Nnumber of
nodes at the unicast level. In the performance analysis sec-
tion, the author overlooked the rekeying cost induced at the
multicast level.At themulticast level, the keys are arranged in
a logical key hierarchy (LKH) and the key tree is a binary bal-
anced tree. Upon each key update event, the multicast server
must send at least one multicast message to all leave2k+1−1
nodes. In Zhong et al. [13] the authors discussed the issue
of the coexistence of multiple multicasting groups in a sin-
gle network. However, in that work [13], the computational
and communication cost complexity is highly dependent on
the number of multicasting groups and the number of users
participating in each group. If there are K number of multi-
casting services, in upper case, we have 2k−1 key encryption
keys (KEKs) while in lower case, if all users are subscribed
to one multicast service, there will simply be a single KEK.
For our analysis, we consider the lower case scenario.

Table 1 presents a computational cost comparison of
SGRS and the approaches by Kim et al. [16], Lv et al. [15],
Chen [17], Mehdizadeh et al. [14] and Zhong et al. [13].
All of the proposed schemes require at least N number of
encryption/decryption operations because there is at least one
broadcast message in all types of protocol runs. However, in
two works [16] and [17] the significant contribution of the
computational cost is made by the exponential operations,
requiring O(logN) modular exponential operations. In two
other approaches [14,15], multiplication operations are the
major contributors, and both require O(N 2) multiplication
operations. Zhong et al. [13] is very efficient, but that scheme
requires the re-encryption and translation of each message
by the subgroup leader, whereas in SGRS, the significant
contribution to the computational cost stems from the one-
way hash function, requiring O(N) hash operations for the
join and leave protocols, while it is limited to the number of
groups and the size of the group in the merge and partition
protocols. In SGRS, the computational workload is well dis-
tributed among the group members. For instance, in the join
protocol, each member performs one hash operation, while
in the leave protocol, each member performs two hash oper-
ations. SGRS is persistent, and during the protocol run, the
availability of the correct group key is independent of the
failure of one or a set of members.

Table 1 also presents the communication complexity and
a cost comparison of SGRS and the approaches by Kim et
al. [16], Lv et al. [15], Chen [17] Mehdizadeh et al. [14] and
Zhong et al. [13]. The communication complexity determines
the number ofmessages exchanged, whereas communication
cost determines the total amount of data exchanged during
the protocol run. In terms of the communication complex-
ity and considering the number of join and leave protocols,
the approaches by Zhong et al. and by Chen [13,17] are the

123

Cluster Comput (2017) 20:2779–2792 2789

Ta
bl
e
1

A
co
m
pu
ta
tio

n
an
d
co
m
m
un
ic
at
io
n
co
st
co
m
pa
ri
so
n
of

gr
ou
p
ke
y
pr
ot
oc
ol
s

Sc
he
m
es

Pr
ot
oc
ol

C
om

p.
C
om

pl
ex
ity

C
om

m
.C
om

pl
ex
ity

C
om

m
.C
os
ti
n
by

te
s

K
im

et
al
.[
16

]
Jo
in

(3
lo
g 2

N
+

9)
E
x

+
(4

+
2
N
)E

2
B
C

N
C
K

+
N
C
K
(2
N

−
1)

L
ea
ve

(3
lo
g 2

N
+

9)
E
x

+
(2

+
2
N
)E

1
B
C

N
C
K
lo
g 2

N

M
er
ge

(3
lo
g 2

N
+

9)
E
x

+
(2
k(
1

+
N
)
+

1
+

N
)E

(1
+

2k
)
B
C

C
K k
(k
N

−
N
)(
2
N

−
k)

+
N
(2
n

−
1)
C
K

Pa
rt
iti
on

(3
lo
g 2

N
+

9)
E
x

+
m
iN

(2
k,

N
/
2)
E

m
in
(2
k,

N
/
2)
B
C

k
N
C
K
lo
g_
{2
}N

$

X
.L

v
et
al
.[
15

]
Jo
in

(2
N

2
+

N
)M

u
+

(5
+

N
)E

2U
C

+
1
B
C

(2
N

+
1)
In

t
+

N
C
K

L
ea
ve

(2
N

2
+

N
)M

u
+

(1
+

N
)E

1
B
C

N
In

t

M
er
ge

(2
N

3
+

N
2

+
N
)M

u
+

(5
+

N
)E

k
B
C

+
2k
U
C

(N
2
−

N
2

K
)(
C
K

−
In

t)

Pa
rt
iti
on

(2
|G

i|2
+

|G
i|)

M
u

+
(5

+
N
)E

k
B
C

(N
2
−

N
2

K
)I
nt

C
he
n
[1
7]

Jo
in

(4
lo
g 2

N
)E

x
+

(5
+

2
N
lo
g 2

N
)E

(2
lo
g2

N
)M

C
+

2
B
C

C
K
(2

lo
g 2

N
+

2)
+

N
C
K
(l
og

2
N

+
1)

L
ea
ve

(2
lo
g 2

N
)E

x
+

2h
(2

+
2
N
lo
g 2

N
)E

(2
lo
g2

N
)M

C
C
K
2
lo
g 2

N
+

N
C
K
(l
og

2
N

+
1)

M
eh
di
za
de
h
et
al
.[
14

]
Jo
in

(6
N

2
+

3
N
)M

u
+

(8
+

4
N
)E

3U
C

+
2
M
C

2i
nt

+
C
K
(K

+
N
/
K

+
1

+
lo
g 2

K
)

L
ea
ve

(6
N

2
+

3
N
)M

u
+

(6
+

4
N
)E

4U
C

+
2
M
C

4i
nt

+
C
K
(K

+
N
/
K

−
3

+
lo
g 2

K
)

Z
ho
ng

et
al
.[
13

]
Jo
in

(8
+

N
/
K

+
2(
K

+
1)

+
lo
g 2

K
)E

+
2
E
x

1U
C

+
3
B
C

5
N
C
K

+
1
In

t

L
ea
ve

(9
+

N
/
K

+
2(
K

+
1)

+
lo
g 2

K
)E

+
E
x

3
B
C

5
N
C
K

SG
R
S

Jo
in

(N
−

1)
H

+
(N

+
2)
E

2U
C

+
1
B
C

N
In

t
+
C
K

L
ea
ve

2
N
H

+
2
N
E

2U
C

+
1
B
C

(N
−

1)
In

t
+
C
K

M
er
ge

(2
K

−
1)

[(7
+

N
/
K
)
+

(N
/
K

−
1)
H

]
(3
K

−
3)
U
C

+
(3
K

−
3)
B
C

4
K
C
K

+
(3

+
N
/
K
)N

/
K
In

t

Pa
rt
iti
on

(N
+

2
K
)E

+
(K

+
N

−
2)
H

K
B
C

+
K
U
C

N
In

t
+

K
C
K

Pl
ea
se

no
te
th
e
fo
llo

w
in
g
fo
r
Ta
bl
e
1

E
en
cr
yp
tio

ns
/d
ec
ry
pt
io
ns
,
E
x
m
od
ul
ar

ex
po
ne
nt
ia
tio

ns
,
M
u
m
ul
tip

lic
at
io
ns
,
H

ha
sh

op
er
at
io
n,

k
nu
m
be
r
of

gr
ou
ps

to
be

m
er
ge
d,

G
i
si
ze

of
ith

gr
ou
p,

U
C

U
ni
ca
st
m
es
sa
ge
,
B
C

B
ro
ad
ca
st

m
es
sa
ge
,k

nu
m
be
r
of

gr
ou
ps
,C

K
32

by
te
s
(r
ep
re
se
nt
s
si
ze

of
cr
yp
to
gr
ap
hi
c
K
ey
H
as
h
an
d
si
gn
at
ur
e)
,
In

t
4
by
te
s
(r
ep
re
se
nt
s
si
ze

of
no
nc
e,
N
od
e
Id
s
an
d
In
te
ge
rs
)

123

2790 Cluster Comput (2017) 20:2779–2792

Fig. 10 The total amount of data exchanged for different number of
Join requests with group size of 100 members

Fig. 11 The total amount of data exchanged for different number of
Leave requests with group size of 100 members

most expensive. Considering join and leave protocol, SGRS
and the approaches by Lv et al. and Kim et al. [15] and [16]
have very low and almost similar levels of communication
complexity. For themerge protocol, SGRS is expensive com-
pared to two earlier studies [15] and [16], while in the case
of a partition protocol, the approach by Kim et al. [16] is the
most expensive protocol.

However, the communication cost concerning the total
data exchange gives a different conclusion. For simplicity
of determining the communication, during merge and parti-
tion protocols, we consider that the merging or partitioning

Fig. 12 The total amount of data exchanged for different numbers of
merge events assuming that the size of each group is 15, combined to
create a larger group 100–50 in size

Fig. 13 The total amount of data exchanged for different number of
partition events assuming size of each partitioned group is 15

groups are of identical sizes. Further, we consider the best
case condition for Kim et al. [16]; for instance, we assume
that a blinded keys tree is always a perfect binary tree with at
most nodes. In a merge protocol after tree sharing, we con-
sider that the protocol require one BC to share the group key,
while in the partition protocol, we consider in each round
sponsor node must broadcast one blinded key. To calculate
the total amount of data exchanged, we assume that the inte-
gers, nonce, and the member IDs are 4 bytes in size. The
cryptographic keys, hash, and signatures size are considered
to be 32 bytes. The communication cost results are shown in
Figs. 10, 11, 12 and 13.

Figure 10 shows the comparison results of the total amount
of data exchanged for the join protocol assuming a group
of 100 members receiving 5–25 joining requests. It is quite

123

Cluster Comput (2017) 20:2779–2792 2791

clear that SGRS outperform all of the other schemes. Figure
11 depicts the comparison results of the total amount of data
exchanged for a leave protocol considering a group of 100
members receiving 5 to 25 leave requests. It is quite clear that
SGRS and the scheme by X. Lv et al. [15] outperform the
remaining schemes. SGRS is slightly expensive compared to
that by X. Lv et al. [15], but the performance gap is too small.
Figures 12 and 13 depict the comparison results considering
the total amount of data exchanged for themerge andpartition
protocols, respectively. In the merge protocol, we consider
that 15 identically sized groups are merged to create one
single large group, while we assume that one single large
group is partitioned into 15 small identically sized groups;
the small group size varies from 7 to 34. It is quite clear that
SGRS outperform both Kim et al. [16] and X. Lv et al. [15].

6 Conclusion

In this paper, we have proposed a novel group key agree-
ment scheme for the dynamic group, SGRS. Our scheme
is distributed yet does not require synchronization among
group members to share and update the keys. However, in
the case of cascaded membership events, group members
should perform all necessary update operations, especially
updating the local group key, beforemoving to the nextmem-
bership event. Additionally, our solution inherently provides
a considerable amount of secure subgroupmulticast commu-
nication using subgroupmulticasting keys derived from state
vectors.Moreover, SGRS establishes a symmetric group key,
which ensures that group communication is computationally
efficient.

Acknowledgements This work was supported by the ICT R&D pro-
gram of MSIP/IITP. [R-20160302-003082, Standards development for
service control and contents delivery for smart signage services]

References

1. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network sur-
vey. Comput. Netw. 52(12), 2292–2330 (2008)

2. Ghamari, M., Janko, B., Simon Sherratt, R., Harwin, W., Piechoc-
kic, R., Soltanpur, C.: A survey on wireless body area networks for
ehealthcare systems in residential environments. Sensors 16(6),
831 (2016)

3. Rivest, TR. L.: The RC5 encryption algorithm. In: Proceedings of
the Second International Workshop on Fast Software Encryption
(FSE), Leuven, Belgium, pp. 8696 (1994)

4. Koyama, K., Maurer, U. M., Okamoto, T., Vanstone S.A.: New
public-key schemes based on elliptic curves over the ring Zn.
In: Proceedings of Annual International Cryptology Conference
(CRYPTO 91), pp. 252–266 (1991)

5. Panic, G., Stecklina, O., Stamenkovic, Z.: An embedded sensor
node microcontroller with crypto-processors. Sensors 10(5), 607
(2016)

6. Deering, S. E.:Host extensions for IPmulticasting.RFC988 (1986)
7. Cheikhrouhou, O.: Secure group communication inwireless sensor

networks: a survey. J. Netw. Comput. Appl. 61, 115–132 (2016)
8. Rafaeli, S., Hutchison, D.: A survey of key management for secure

group communication.ACMComput. Surv. 35(3), 309–329 (2003)
9. Daghighi, B., Kiah, M.L.M., Shamshirband, S., Rehman, M.H.:

Toward secure group communication in wireless mobile environ-
ments: issues, solutions, and challenges. J. Netw. Comput. Appl.
50, 1–14 (2015)

10. Klaoudatou, E.,Konstantinou, E.,Kambourakis,G.,Gritzalis, S.:A
survey on cluster-based group key agreement protocols for WSNs.
IEEE Commun. Surv. Tutor. 13(3), 429–442 (2011)

11. Ghafoor, A., Sher, M., Imran, M., Saleem, K.: A lightweight key
freshness scheme for wireless sensor networks. In: 12th Interna-
tional Conference on Information Technology—NewGenerations,
ITNG15, Las Vegas, USA (2015)

12. Seo, S.,Won, J., Sultana, S., Bertino, E.: Effective keymanagement
in dynamic wireless sensor networks. IEEE Trans. Inf. Forensics
Secur. 10(2), 371–383 (2015)

13. Zhong, H., Luo, W., Cui, J.: Multiple multicast group key manage-
ment for the Internet of People. Concurr. Comp. doi:10.1002/cpe.
3817

14. Mehdizadesh, A., Hashim, F., Othman, M.: Lightweight decentral-
ized multicastunicast key management method in wireless IPv6
networks. J. Netw. Comput. Appl. 42, 5969 (2014)

15. Lv, X., Li, H., Wang, B.: Group key agreement for secure group
communication in dynamic peer systems. J. Parallel Distrib. Com-
put. 72(10), 1195–1200 (2012)

16. Kim, Y., Perrig, A., Tsudik, G.: Tree-based group key agreement.
ACM Trans. Inf. Syst. Secur. 7(1), 60–96 (2004)

17. Chen, Y., Tygar, J.D., Tzeng, W.: Secure group key management
using uni-directional proxy re-encryption schemes. Proc. IEEE
INFOCOM 2011, 10–15 (2011)

18. Song, R., Korba, L., Yee, G.O.M.: A scalable group key manage-
ment protocol. IEEE Commun. Lett. 12(7), 1 (2008)

19. Park, H., Park, Y., Jeong, H., Seo, S.: Key management for mul-
tiple multicast groups in wireless networks. IEEE Trans. Mobile
Comput. 12(9), 1712–1723 (2013)

20. Bilal, M., Kang, SG.: Time-assisted authentication protocol. Int. J.
Commun. Syst. doi:10.1002/dac.3309. arXiv:1702.04055

21. Kumar, P., Gurtov, A., Ylianttila, M., Lee, S., Lee, H.: A strong
authentication scheme with user privacy for wireless sensor net-
works. ETRI J. 35(5), 889–899 (2013)

22. Quan, Z., Chunming, T., Xianghan, Z., Chunming, R.: A secure
user authentication protocol for sensor network in data capturing.
J. Cloud Comput. 4(1), 6 (2015). doi:10.1186/s13677-015-0030-z

23. Nguyen, K.T., Laurent, M., Oualha, N.: Survey on secure commu-
nication protocols for the internet of things. Ad Hoc Netw. 32(C),
17–31 (2015)

24. Daemen, J., Rijmen, V.: AES Proposal: Rijndael. National Institute
of Standards and TechnologyAvailable online: http://csrc.nist.gov/
archive/aes/rijndael/Rijndael-ammended.pdf. Accessed 25 Sept
2016

25. Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Hal, C.:
Twofish: A 128-bit block cipher. https://www.schneier.com/
academic/paperfiles/paper-twofish-paper.pdf. Accessed 25 Sept
2016

26. Burwick, C., Coppersmith, D., DAvignon, E.: MARS—a candi-
date cipher for AES. http://www.nada.kth.se/kurser/kth/2D1449/
99-00/mars.pdf. Accessed 25 Sept 2016

27. Schneier, B.: Description of a New Variable-Length Key, 64-Bit
BlockCipher (Blowfish). Fast Software Encryption. In: Cambridge
Security Workshop Proceedings (December 1993), Springer, pp.
191–204 (1994)

123

http://dx.doi.org/10.1002/cpe.3817
http://dx.doi.org/10.1002/cpe.3817
http://dx.doi.org/10.1002/dac.3309
http://arxiv.org/abs/1702.04055
http://dx.doi.org/10.1186/s13677-015-0030-z
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
https://www.schneier.com/academic/paperfiles/paper-twofish-paper.pdf
https://www.schneier.com/academic/paperfiles/paper-twofish-paper.pdf
http://www.nada.kth.se/kurser/kth/2D1449/99-00/mars.pdf
http://www.nada.kth.se/kurser/kth/2D1449/99-00/mars.pdf

2792 Cluster Comput (2017) 20:2779–2792

Muhammad Bilal has received
his B.S. degree in computer sys-
tems engineering from Univer-
sity of Engineering and Tech-
nology, Peshawar, Pakistan and
M.S. in computer engineer-
ing from Chosun University,
Gwangju, Rep. of Korea. Cur-
rently, he is Ph.D. student
at University of Science and
Technology, Korea at Electron-
ics and Telecommunication
Research Institute Campus, Dae-
jeon, Rep. of Korea. He has
served as a reviewer of various

international journals including IEEE Access, IEEE Communications
Letters, Journal of Network and Computer Applications, Personal and
Ubiquitous Computing and International Journal of Communication
Systems. He has also served as a program committee member on many
international conferences. His primary research interests are Design
and Analysis of Network Protocols, Network Architecture, and Future
Internet.

Shin-Gak Kang received his
B.S. and M.S. degree in elec-
tronics engineering from Chung-
nam National University, Rep.
of Korea, in 1984 and 1987,
respectively and his Ph.D. degree
in information communication
engineering from Chungnam
National University, Rep of
Korea in 1998. Since 1984,
he is working with Electron-
ics and Telecommunications
Research Institute,Daejeon,Rep.
of Korea, where he is a principal
researcher of infrastructure stan-

dard research section. From200 to2008he served as an editorwithETRI
Journal. From 2008 he is a professor at the Department of Information
and Communication Network Technology, University of Science and
Technology, Korea. He is actively participating in various international
standard bodies as a Vice-chairman of ITU-T SG11, Convenor of JTC
1/SC 6/WG 7, etc. His research interests include multimedia communi-
cations andApplications, ICT converged services, contents networking,
and Future Network.

123

	A secure key agreement protocol for dynamic group
	Abstract
	1 Introduction
	2 Related work
	3 System overview
	3.1 Notations
	3.2 Characteristics of group
	3.3 Keying system
	3.4 A reference framework for SGRS

	4 Proposed scheme
	4.1 Join protocol
	4.2 Leave protocol
	4.3 Merge protocol
	4.4 Partition protocol
	4.5 Scalable SGRS larger group

	5 Performance analysis
	5.1 Security analysis
	5.2 Efficiency analysis

	6 Conclusion
	Acknowledgements
	References

