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Abstract In order to store and analyze the increasing data
in recent years, big data techniques are applied to many
fields such as healthcare, manufacturing, telecommunica-
tions, retail, energy, transportation, automotive, security,
environment, etc. This work implements a city traffic state
assessment system in cloud using a novel big data archi-
tecture. The proposed system provides the real-time busses
location and real-time traffic state, especially the real-time
traffic state nearby, through open data, cloud computing,
bid data technology, clustering methods, and irregular mov-
ing average. With the high-scalability cloud technologies,
Hadoop and Spark, the proposed system architecture is first
implemented successfully and efficiently. Next, we utilize
irregular moving average and clustering methods to find the
area of traffic jam. Finally, three important experiments are
performed. The first experiment indicates that the comput-
ing ability of Spark is better than that of Hadoop. The second
experiment applies Spark to process bus location data under
different number of executors. In the last experiment, we
apply irregular moving average and clustering methods to
efficiently find the area of traffic jam in Taiwan Boulevard
which is the main road in Taichung city. Based on these exper-
imental results, the provided system services are present via
an advanced web technology.
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1 Introduction

Inrecent years, the amount of data is getting bigger so that the
processing and analysis of data have become more complex.
It is more hard to obtain useful information from the data. Big
data technique is an useful and powerful solution [1-3]. Now
its applications are applied to many fields such as healthcare,
manufacturing, telecommunications, retail, energy, trans-
portation, automotive, security, environment, etc. To conform
the growth of Big Data applications, almost all major indus-
tries and companies in the world invested a lot of time and
money in developing Big Data tecnology. Based on the Big
Data technology, these industries and companies can ana-
lyze and process the massive data they have and finally come
out the valuable information. IBM predicted that global data
amount continue to grow rapidly. It is predicted that the data
amount would breakthrough 8000 Exabyte (EB, 1EB = 1
Million Terabyte) in 2015. Data analysis is a quite common
concept in life after collecting all the data, and then the anal-
ysis will come out the results to be the basis of future action
and decision [4].

Accordingly, lage amount of big data techniques and cloud
techniques are proposed. Barbierato et al. [5S] adopted NoSQL
to store big data since NoSQL provides a mechanism for
storage and retrieval of data that is better than the tabular
relations used in relational databases. Zhang et al. [6] and
Yang et al. [7,8] used HBase to store big data since HBase
provides the distributed data storage cluster through HDFS
in Hadoop. Their experiments indicate a good performance.
Thus, both NoSQL and HBase have advantages in storing
big data. Gu et al. [9] applied Hadoop MapReduse to pro-
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cess big data successfully. However, for processing real-time
big data, Hadoop MapReduse is unable to show superiority
due to the fact that Hadoop MapReduse needs more time
on starting JOB and then distribute JOB to each node. To
improve this drawback, the authors adopted the IN memory
of Spark to achieve high-speed computation since Sparks
in-memory primitives provide performance up to 100 times
faster for certain applications. In addition, Spark requires a
cluster manager and a distributed storage system. For clus-
ter management, Spark supports standalone (native Spark
cluster), Hadoop YARN, or Apache Mesos. For distributed
storage, Spark can interface with a wide variety, including
Hadoop Distributed File System (HDFS), Cassandra, Open-
Stack Swift, and Amazon S3. Thus, our proposed architecture
will combine Spark with the distribution computation of
Hadoop YARN to enhance performance [10].

In order to analyze and improve the public transport, a
government utilizes GPS positioning to record the relevant
map location of most urban public transport systems, cou-
pled with the back-end processing of data transmission via
GPRS or 3G to track the transport status [11,12]. Figure 1
shows a bus positioning and data transmission scheme. Many
cities provide these system services for users to know the
bus location and estimate waiting time [13]. However, city
traffic state is worsening due to the economic development
and population growth. Zeng et al. proposed a novel multi-
sensor traffic state assessment system based on incomplete
data [14]. Their system comprises probe vehicle detection
sensors, fixed detection sensors, and traffic state assessment
algorithm. The results show that their system is effective to
assess traffic state, and it is suitable for the urban intelligent
transportation system. However, the analysis efficiency and
storage of real-time data is not sufficient. It is necessary to
combine big data architecture with cloud computing to solve
the challenges including big data capture, big data storage,
big data analysis, parallel computing, etc.

This work presents a cloud city traffic state assessment
system using a novel big data architecture. The proposed
system provides the real-time busses location and real-time
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Fig. 1 Bus positioning and data transmission schematic
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traffic situation, especially the real-time traffic situation
nearby, through open data, GPS, GPRS and cloud technolo-
gies. With the high-scalability cloud technologies, Hadoop
and Spark, the proposed system architecture is first imple-
mented successfully and efficiently. Next, we utilize moving
average and clustering methods to find the area of traffic
jam. Finally, two important experiments are performed. The
first experiment indicates that the computing ability of Spark
is better than that of Hadoop. In the second experiment,
we apply moving average and clustering methods including
DBSCAN, K-means, and Fuzzy C-means to efficiently find
the area of traffic jam in Taiwan Boulevard which is the main
road in Taichung city. Based on these experimental results,
the provided system services are present via an advanced web
technology.

The rest of the paper is as follows. Section 2 reviews some
mathematical preliminaries. In Sect. 3, we introduce the pro-
posed system design and implementation. Section 4 shows
our experiment environment and results. In Sect. 5, some
conclusions are given.

2 System architecture design and implementation

In this section, the proposed cloud city traffic state assessment
system collects open data to provide real-time traffic state,
especially the real-time traffic state nearby. Because the real-
time data collected is huge and from different attributes, the
proposed system first utilizes a novel cloud architecture of
big data to store, process, and analyze a huge amount of real-
time data and then provides useful traffic information and
services by using irregular moving average and clustering. In
addition, the proposed system also store the generated real-
time information to be historical data for the improvement
of the system accuracy.

2.1 Proposed cloud architecture of big data

The proposed system architecture, as shown in Fig. 4, is
introduced in this section. First of all, we collect open data
including real-time data and historical data from government
server. The capture details are as follows: In real-time open
data including bus dynamic location and weather informa-
tion,we utilize Python Program to capture these real-time
data from government server and then store these datain a file
system HDFS managed by Big Data Distributed Database,
Hbase, through a tool Hbase API, as shown in Fig. 2. Gener-
ally, historical data including bus GPS data is huge and with
different format. To solve these two problems, we first uti-
lize Python Program to capture these data respectively and
then process the different format of these data by Apache
Spark. Finally, the processed data are stored in Hbase. Fig-
ure 3 shows the history data collection.
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Next, the data in HBase is transferred to Cloud Storage
and processed based on the high-scalability cloud technolo-
gies [15-17], Hadoop [18] and Spark [19]. In data storage,
we used Hadoop HDFS to be a cloud storage basis and then
a NoSQL database for big data, namely HBase, is utilized
to establish the cluster of distributed data storage includ-
ing structured and unstructured data based on the Hadoop
HDEFS. In data analysis and computation, we adopted Spark
to meet the requirement of the high-speed real-time compu-
tation since Spark can quickly assess and analyze the data
stored in HBase. Finally, these results of analyzing real-time
traffic situation is friendly present by web application service
through several web technologies, java scritp, html5, and css3
combined with d3.jspquery. Figure 5 is the flowchart of the
proposed cloud city traffic state assessment system.

2.2 System implementation

Fourteen nodes were used to build a cloud cluster platform
by using Cloudera Manager, Two nodes as master, Twelve
node as the computing node to set up Apache ZooKeeper
3.4.5, Apache Hadoop HDFS 2.5.0, Apache Hadoop YARN
2.5.0, Apache HBase 0.98.6, and Apache Spark 1.2.0.

Distributed File System
HDFS

2.3 Cluster deployment

On the deployment, platform environment using two servers
as master, and using 10 Gigabit Ethernet connection. comput-
ing nodes using 1 Gigabit Ethernet, each node as DataNode,
NodeManage, and RegionServer, where three computing
nodes as ZooKeeper, as shown in Fig. 6.

Cloudera Manager is used to monitor service states and
system loading, in service states such as Spark, HBase,
HDFS, YARN and ZooKeeper service status, or in system
loading such as CPU usage, Memory usage, Disk I/O, net-
work and Disk usage.

Cloudera Manager can also monitor the status of each
node, confirming normal connections of each host. Cloud-
era Manager checks at regular intervals, and it will warn if
connections are abnormal or the connection quality is poor.
Cloudera Manager can remove nodes at any time, adding or
removing nodes into or out of the cluster.

Through the Fourteen hosts, i.e., the two NameNode and
Twelve DataNodes, the Hadoop HDFS NameNode Web
Interface shows that the cluster provides 10.47 TB of big
data storage space. This information also shows how many
live DataNodes are functioning shown in Fig. 7.
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Fig. 4 System architecture
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2.4 Implementation of the provided system services

In Taichung City Bus Dynamic System, there are 245 bus
routes and over 1000 bus drive in these route at rush hour.
Taichung City Bus Dynamic System provides each bus infor-
mation in XML format including bus position, bus number,
bus route, bus velocity, and so on. In addition, XML format
is shown in Fig. 9 the Taichung City Bus Dynamic Sys-
tem updates each bus position every 20 s. For an instance,
this thesis implement the proposed Cloud City Traffic State
Assessment System in Taiwan Boulevard Taichung, Taiwan.
First of all, the proposed system used python programming
to captures the bus position updating data per second into our
storage basis in Hadoop HBase. In this step, the host road is
randomly divide into several blocks according to the inter-
section with other roads is shown in Figs. 8 and 10. Then,
we apply Fuzzy C-means clustering mentioned in section
Backgrounds and preliminaries to roughly classify the blocks
and their size. Finally, the real-time traffic state in three lev-
els, Jam, Normal, and Smooth for each block is evaluated
by irregular moving average which is introduced as follow.

@ Springer
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Suppose N; is the number of bus at time ¢ and

S = {x,-,x,-+1,x,-+2,...,th} (H
is a subset of sample values, each of which denotes the aver-

age time of a bus within ith block. Then, a new series of

{A1, As, ., Agy L) 2)

is called the irregular moving average of S which is obtained
by the following calculation:

_ Xt X+ Xipp + - Xy,
Ny

3)

i

3 Performance comparison for different techniques

In this section, we have two performance comparisons for
later use. The first is the computation ability of Spark and
Hadoop. The second is the efficiency of three clustering
methods,



Cluster Comput (2017) 20:1101-1121

1105

Eugene System Server L]

10G Ethernet

10G Ethernet

Hadoop Master

RegionServer

Computing Nodes

Computing Nodes

DN&NM

RegionServer

Computing Nodes Computing Nodes

Fig. 6 System deployment architecture diagram

3.1 Spark and Hadoop MapReduce performance
comparison

To verify that Spark adopted in our system has better per-
formance than Hadoop MapReduce, this subsection gives a
comparison test for Spark and Hadoop using WordCount pro-
gramming. First, ten test files of size IGB 10GB are randomly
generated and then put these files into HDFS. Next, the ten
files in HDFS are executed by Spark and Hadoop individu-
ally. As shown in Fig. 11, Spark cost less time regardless of
file size. It is worth mentioning that the difference between
them increases when the test file size increases.

Data processing and analysis are important to the proposed
system. Before data analysis, the proposed system needs to
read and write data. In other words, data read and data write
are two important parts in data processing. Since the proposed
system store data in HDFS, we adopt Hadoop TESTDFSIO to
test the read and write performance by changing replication
number and MAP number in different data size to obtain the
best solution. The detail is as follows. First of all, we test
data read speed and data write speed in three data sizes, 12G,
60G, and 120G. In each data size, we increase the replication

RegionServer

Computing Nodes

number from 1 to 12 to observe the data read speed and
data write speed. At the same time, we adjust TESTDFSIO
arguments to observe the dataread speed and data write speed
under various MAP number which is a multiple of number
of cluster nodes, especially (1-5) number of nodes. Since
TESTDEFSIO is a MapReduce program, the test procedure is
given as follows and as shown in Fig. 12:

— Step 1. Input user parameters in beginning.

— Step 2. Arrange the number of MAP and the data size for
each MAP when reading and writing data.

— Step 3. Read and write data into node by MAP.

— Step 4. Estimate MAP execution time and collect corre-
sponding results.

— Step 5. Output the results.

In the results. Figure 13 Read and write time duration for
MAP =12, 24,36, 48, 60 in various replication number under
the case 12GB.

Figure 14 Read and write time duration for MAP = 12,
24, 36, 48, 60 in various replication number under the case
60GB.
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Hadoop Overview Datanodes Snapshot Startup Progress Utilities

Overview 'hadoop-master:8020' (active)

Started: Tue Apr 28 15:11:14 CST 2015
Version: 2.5.0-cdh5.3.3, r82a65209d6e9e4a2b41fdbcd8190c7ea38730627
Compiled: 2015-04-08T21:57Z by jenkins from Unknown
Cluster ID: cluster8
Block Pool ID: BP-966863754-172.24.12.59-1429170322953
Summary
Security is off.

Safemode is off.
337 files and directories, 792 blocks = 1129 total filesystem object(s). i
Heap Memory used 115.63 MB of 989.88 MB Heap Memory. Max Heap Memory is 989.88 MB. |

Non Heap Memory used 51.14 MB of 82 MB Commited Non Heap Memory. Max Non Heap Memory is 130 MB.

Configured Capacity: 1047 1B

DFS Used: 327.56 GB i
Non DFS Used: 561.61 GB

DFS Remaining: 96TB

DFS Used%: 3.06%

DFS Remaining%: 91.71%

Block Pool Used: 327.56 GB

Block Pool Used%: 3.06%

DataNodes usages% (Min/Median/Max/stdDev): 2.74%/3.11%/3.40% / 0.17%
Live Nodes 12 (Decommissioned: 0)

Dead Nodes 0 (Decommissioned: 0)
Decommissioning Nodes 0

Number of Under-Replicated Blocks 0

Number of Blocks Pending Deletion 0

Fig. 7 Hadoop NameNode information

Fig. 8 Block division
schematic

TR EACk <m [ buss2 |

Sensing Road "o wp  xm

uonoasIAU|
uondasIAU|
uonoasIAU|

@ Springer



Cluster Comput (2017) 20:1101-1121 1107

- <BusDynInfo>
- <Essentiallnfo>
- <Location>
<name>Maxwin</name>
<CenterName/>
</Location>
<UpdateTime>2015-04-01 05:08:48</UpdateTime>
<CoordinateSystem/>
</Essentiallnfo>
- <Businfo>
<BusData Provider|D="3" BusID="903-FE" DutyStatus="0" BusStatus="0" RoutelD="86" GoBack="1" Longitude="120.621948" Latitude="24.179197" Speed="9.0" Azimuth="136" DataTime="2015-04-01
05:08:42"/>
<BusData Provider|D="3" BusID="866-U5" DutyStatus="0" BusStatus="0" RoutelD="86" GoBack="2" L itude="120.685020" Latitude="24.137680" Speed="0.0" Azimuth="248" DataTime="2015-04-01
05:08:40"/>
</Buslinfo>
</BusDyninfo>

Fig. 9 XML format

- s 3
5 maue 8 eume
a-ww man-w ®

nom; wan .

Fig. 10 Block division schematic apply to Taiwan Boulevard

Fig. 11 Spark and Hadoop Spark vs Hadoop YARN (WordCount)
MapReduce performance 100
comparison T 9%
(3 80
o 70
E 60
o 50
£ a2
17}
10
@
9 " /"_’/’—’/___—————\__-————'—_
e
o
° 168 2GB 3GB 4GB 5GB 6GB 7GB 8GB 9GB  10GB
——Spark 16 20 22 25 25 29 32 30 33 34
~—hadoop 27 34 39 47 52 63 68 74 90 93
Data Size (GB)

Figure 15 Read and write time duration for MAP = 12,  replication 2 has the best result. In the point of view on dif-
24, 36, 48, 60 in various replication number under the case ferent test size, writing time increases stably but reading time

120GB. From above figures, one can observe that more repli-  decreases unstably, as shown in Fig. 17. In addition, one can
cation number more writing time under various data size and  observe that both reading time and writing time are short for
various MAP but reading time slightly decreases when repli-  bigger data file. It means once reading or writing a big data

cation number increases, as shown in Fig. 16. In conclusion, file is efficient.
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Fig. 12 The flow chart of
HDFS read and write test
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Fig. 13 Read and write time duration for MAP = 12, 24, 36, 48, 60 in various replication number under the case 12GB

3.2 Using Spark to process bus location data under
different number of executors

Most input data of the proposed system is obtained through
the Government OPEN DATA. These input data are col-
lected every two seconds from open data. The collected data
are about 5GB one day. They will be a big historical data.
Accordingly, the processing and calculation of these big data
are achieved through Spark Application. To process and ana-
lyze the big data efficiently, two Spark Applications are test.

@ Springer

Each Spark Application has 12 executors for testing one-day,
two-day, four-day data and six kinds of memory size.

The first Spark Application, namely convBus, is mainly to
remove unwanted data in BUS GPS information and dupli-
cate data in accordance with the update time so as to find
the Block of the given latitude and longitude coordinates.
As shown in Fig. 18, the detail procedure is summarized as
follows:

— Step 1. Read BUS record data file.
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Fig. 14 Read and write time duration for MAP = 12, 24, 36, 48, 60 in various replication number under the case 60GB. a Map = 12, b map = 24,

¢ map = 36, d map =48, e map = 60

Step 2. Filter necessary BUS information and remove
XML format data.

— Step 3. Use MAP to group Update Time and cluster coor-
dinate into proper Block.

Step 4. Remove duplicate data.

Step 5. Output data to HDFS.

The second Spark Application, namely comBus, has
almost the same procedures with the first Spark Application.
The difference between them is that comBus has a permu-
tation for Block in last two steps. As shown in Fig. 19, the
detail procedure is summarized as follows:

Step 1. Read BUS record data file.

Step 2. Filter necessary BUS information and remove
XML format data.

Step 3. Use MAP to group Update Time and cluster coor-
dinate into proper Block.

— Step 4. Remove duplicate data.

— Step 5. Sort by Block.
— Step 6. Output data to HDFS.

Figures 20, 21 and 22 show the execution time of using
both convBus and comBus to process one-day, two-day and
three-day data under different number of executors and differ-
ent memory. One can observe that processing time decreases
when executors increase under fixed memory. However, pro-
cessing time is similar when memory increases, especially
when executors are greater than three. We also observe that
the execution time of comBus is greater than the execution
time of convBus. To reduce their processing time, increase
of the number of executors is a consideration.

3.3 Comparison of different clustering methods to find
traffic jams

This section first finds traffic jams by three popular cluster-
ing methods: DBSCAN, K-means, Fuzzy-C-Means. Next,
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Fig. 16 All sizes in 12 map read and write speed. a Read, b write

Apache Spark is utilized to compute the clustering methods
efficiently and then some comparison results are given.

3.3.1 DBSCAN

Density-based spatial clustering of applications with noise
(DBSCAN) is a density-based data clustering algorithm.

@ Springer

TestDFSIO Read Time in 12GB,60GB,120GB(12Map)

250

(b)

200

150

100 -_.M

50
& * @ e * * * * - > - -
0

TIME/SEC

1 2 3 4 5 6 7 8 9 10 11 12
~¥=12GB 42.779 47.319 35617 39.811 36.766 35812 35.824 35815 31.992 29.74 3288 30.777
~—8—60GB 120.362117.32 107.162 105.21 96.61 84407 90.505 84.148 81.185 60.116 71.193 67.153
~*=120GB 205.645176.828217.973192 806168.673176.816169.742150.683 100.41 124.581124442118.408

HDFS REPLICATION

DBSCAN requires two parameters: (eps) and the minimum
number of points required to form a dense region (minPts).
It starts with an arbitrary starting point that has not been
visited. This point’s -neighborhood is retrieved, and if it con-
tains sufficiently many points, a cluster is started. Otherwise,
the point is labeled as noise. Note that this point might later
be found in a sufficiently sized -environment of a different
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Fig. 17 All sizes in 12 map read and write average speed of 1GB. a Read, b write
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point and hence be made part of a cluster. If a point is found  they are also dense. This process continues until the density-
to be a dense part of a cluster, its -neighborhood is also part ~ connected cluster is completely found. Then, a new unvisited
of that cluster. Hence, all points that are found within the -  point is retrieved and processed, leading to the discovery of
neighborhood are added, as is their own -neighborhood when  a further cluster or noise [20]. We utilize two epsilons and

@ Springer



1112

Cluster Comput (2017) 20:1101-1121

Using convBus and comBus processing 3-days of Bus data
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Fig. 22 Using convBus and comBus processing 3-days of Bus data

three minPts to test the performance of DBSCAN clustering.
Figure 23(a—d) show the results in cases original, PTS = 3,
PTS =4, PTS =5 under epsilon =0.001. Figure 24(a—d) show
the results in cases original, PTS =3, PTS =4, PTS =5 under
epsilon = 0.002. One can observe that the cluster decreases
when PTS increases and the searching area enlarges when
epsilon increases.

3.3.2 K-means

K-Means clustering is a method of cluster analysis which
aims to partition n observations into k clusters in which
each observation belongs to the cluster with the nearest
mean. Given a set of observations (xi, x2, ..., x;) where
each observation is a d-dimensional real vector, k-means
clustering aims to partition the n observations into k sets
{s1, 82, ..., 8¢} so as to minimize the within-cluster sum of
squares

k
argminz Z |lxj = i ”27

i=1xjes;

where p; is the mean of points in s;. [21,22] We utilize k =
3 and two iterations to test the performance of K-MEANS
clustering. Figure 25(a—d) show the results in cases original,
k =10, k =50, k = 100 under iteration = 100. Figure 26(a—d)
show the results in cases original, k = 10, k = 50, k = 100
under iteration = 1000. One can observe that the clustering
fails when k is very small and works when k is sufficient.

3.3.3 Fuzzy C-means

The fuzzy C-means (FCM) [23,24] attempts to partition a
finite collection of n elements

X={.X1,...,xn}

@ Springer

into a collection of ¢ fuzzy clusters with respect to some given
criterion. Given a finite set of data, the algorithm returns a
list of p cluster centres

C={cl,...,cp}

and a partition matrix

U = [uif]

pxn

where each element u;; tells the degree to which element
x; belongs to cluster ¢;. Then FCM aims to minimize an
objective function J:

JW,c1,¢2,...,¢p) = Xp:i‘ (uip)"dist(c;, xj)?
i=1 j=1
where
m € [1, 00)
represent weighting;
dist(ci, xj)
denotes the distance between ¢; and x;. By introducing

Lagrange multiplier A;, the above objective function is rewrit-
ten as

Jnew (U, C1,C2, .. , )»,1)

n p
= J(U,cl,cz,...,cp)+2)»j (Zuij — 1)
j=1

i=1

P n n 14
=D i dist(ci.x))* + ) A (Z uij — 1)
j=1

i=1 j=1 i=1

S Cpa A,

and the optimal cluster is

M=

2. (uij)"x;
J
Ci =

“

M:.&

(uij)m
1

~.
Il

We utilize three k-values and two iterations to test the per-
formance of K-MEANS clustering. Figure 27(a—d) show the
results in cases original, k = 10, k = 50, k = 100 under itera-
tion = 50. Figure 28(a—d) show the results in cases original,
k=10, k=50, k = 100 under iteration=100. One can observe
that the clustering fails when k is very small and works when
k is sufficient.
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Fig. 23 DBSCAN in epsilon =
0.001 clustering results. a
Original data, b EPS =
0.001/PTS =3, c EPS =
0.001/PTS =4, d EPS =
0.001/PTS =5

Fig. 24 DBSCAN in epsilon =
0.002 clustering results. a
Original data, b EPS =
0.001/PTS =3, c EPS =
0.001/PTS =4, d EPS =
0.001/PTS =5

3.4 Results comparison

Figure 29(a—d) show the clustering results in cases origi-
nal, DBSCAN with EPS = 0.001/PTS = 5, K-means with
k-value = 100/Iteration = 100, Fuzzy-C-means with k-value
= 100/Iterations = 50. From the results in Figure 5, we know
that Fuzzy-C-Means has the best clustering but k-means and
DBSCAN use less time.

4 Experimental environment and results

In this section, experimental environment and results with
respect to the proposed Cloud City Traffic State Assessment
System using open data, GPS, GPRS in Taichung city, Tai-
wan are present. Figure 30 shows Taichung City bus Dynamic
Positioning. We adopt K-Means clustering to efficiently find
the area of traffic jam in Taichung city, Taiwan and then the
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Fig. 25 K-MEANS in
iterations = 100 clustering
results. a Original data, b
clusters = 10/iterations = 100, ¢
clusters = 50/iterations = 100, d
clusters = 100/iterations = 100

Fig. 26 K-MEANS in
iterations = 1000 clustering
results. a Original data, b
clusters = 10/Iterations = 100, ¢
clusters = 50/Iterations = 100, d
clusters = 100/iterations = 100

proposed irregular moving average is utilized to find the area
of traffic jam in Taiwan Boulevard which is the main road
in Taichung city. Based on these experimental results, the
provided system services are present via an advanced web

technology.
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4.1 Experimental environment

This subsection introduces our environmental environment
including hardware and software. To implement the proposed
system, we use 12 physical servers connected by Giga-
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Fig. 27 Fuzzy-C-means in
iterations = 50 Clustering
results. a Original data, b
clusters = 10/Iterations = 50, ¢
clusters = 50/Iterations = 50, d
clusters = 100/Iterations = 50

Fig. 28 Fuzzy-C-means in
iterations = 100 Clustering
results. a Original data, b
clusters = 10/Iterations = 100, ¢
clusters = 50/Iterations = 100, d
clusters = 100/Iterations = 100

bit Ethernet to establish a cluster as shown in Fig. 31. In
hardware, each physical server is Intel Core i7 CPU with
16GB Memory and 1TB HD. In software, Ubuntu 14.04 is
adopted as our operating systems. Also, Cloudera Express
5.2.0 Hadoop 2.5.0 HBase 0.98.6 Spark 1.1.0 Zookeeper
3.4.5 are installed.

4.2 Cloud city traffic state assessment system

In this work, the proposed Cloud City Traffic State Assess-
ment System offers the user to understand the Traffic State
through a Web-based User-friendly interface using Html5,
CSS3, JavaScript, and JQuery with semantic Front End. Fig-
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Fig. 29 Comparison of i ‘ F o
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Fig. 30 Taichung City bus dynamic positioning
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Fig. 31 Spark and Hadoop = e
computing cluster

Fig. 32 Cloud city traffic state
assessment system functions

History Data Real-Time Assessment Bus Location Clustering
History speed of each block Real-Time Traffic State Use DBSCAN Result
History Jam block Real-Time Block Estimated time Use K-Means Result

Real-Time Bus Dynamic

Real-Time Assessment
History Data

Bus Location Clustering

Fig. 33 Web Ul function menu

@ Springer



Cluster Comput (2017) 20:1101-1121

SR A A U0 KL S
1,000
[0 2015-06-18 12:02:07
500
250
0
2015-06-18 11:42:17 2015-06-18 12:57:16 2015-06-18 14:11:44 2015-06-18 15:26:44 2015-06-18 16:41:38 2015-06-18 17:56:14 2015-06-18 19:11:50 2015-06-18 20:26:49

Fig. 34 History bus travel each block of time use waveform display

S np=sl F3 AR s ;
— City Traffic State + |5 & % S H % bl
Assessment System 4 _ | N = ®
= o e PS Jl &
- L X8 LErS ~ nap=R WAB-g & 3
2015-06-2000:22:40 o T wa /g2 .
» 3 %
23R LA et H gidaE g
Al Jam  Smooth & BT DR s * mE
< [’ = -
& - I3
J ! /s & S E1e ] R
AnEs-aHE H 5 2 X & lﬁ:ﬁ—;;mmu"u.- o= G
2 & &
8 & (=11 > &
ES = RE2 \
s REES £ . i
B G \CHE % o i
Ty ummza WER
* E [
LA e T ST '5%’:
wne CIEE- 4]
S R 25
u FRE e win Y
FHD 2 » RS
e * =2 &
¥ :
* ] '
& { ®
AR 2
wiandtRE { =) T
=t i L T—t——
» = ARE gy B f
(= = ¥ KRB
» /Hxe &
i = / /AR
s 2 /i
3 | y -
9inzafitala & % x jjege EB R #AR Foum
Amig FR N x * ©
XEE 3 LETSEY @ ~ 2 i
-5 L R H A g
Asnsg [ =0 > s £ il ®E
13 ) ¥
BT :""in /A‘ 285 5 (?f/'.”»- 5y
£l Ty 2 X 3
i =23 5 :‘ ""'é FRE o 3l
2 e 5 & PR amz/ &
S % PR
G as = )
« & #mE y
/ AN Rwe ATE oy
& E P o KRR
KR I i i #
NGRS xxd 30 wmm ¥
Leaflet | Map data © O CC-BY-SA, Imagery © Mapbox

Fig. 35 Real-time assessment traffic in Taiwan Boulevard using WEB presentation

— Real-time evaluation provide real-time traffic state, bus
results. speed, and distribution of busses, as shown in Figs. 35,36.

— Clustering results provide the clustering results of
DBSCAN, K-Means and Fuzzy C-means.

ure 32 and the left side of Fig. 33 show the following three

— Historical data provide the average speed of a bus and
the area of traffic jam in the past by a line chart, as shown
in Fig. 34. Moreover, we use AJAX and Openstreetmap to update web-
page information and Map information.
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Fig. 37 Cloud city traffic state assessment system in Taiwan Boulevard

4.3 Cloud city traffic state assessment system in Taiwan
Boulevard

This subsection implements the proposed Cloud City Traffic
State Assessment System in Taiwan Boulevard. First, the host
road is randomly divide into several blocks according to the
intersection with other roads is shown in Figs. 8 and 10 and
k-means clustering is applied to roughly classify the blocks

and their size in Taichung city, Taiwan. Next, the real-time
buses average velocity is compared with the past average
velocity in each block to indicate whether the traffic in each
block is heavy by using irregular moving average. As shown
inresulting table of Fig. 37, the second column shows the past
average velocity while the third column shows the real-time
buses average velocity. The forth column shows the traffic
state in each block.
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5 Conclusions and future work

In this work, we present a cloud city traffic state assess-
ment system using a novel architecture of big data. With
the high-scalability cloud technologies, Hadoop and Spark,
the proposed system architecture for big data and services
is implemented in Taiwan Boulevard efficiently. In addition,
experimental results show that Spark adopted in our sys-
tem has better performance than Hadoop MapReduce. For
the system interface, this work designed a front-end web
interface providing users to view traffic status in Taiwan
Boulevard so that a user can both know the real-time traf-
fic state and view the history of traffic status. In the future,
we expect to apply this system to all roads in Taichung and
to improve the accuracy of traffic state assessment.
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