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Abstract Global optimization, especially large scale opti-
mization problems arise as a very interestingfield of research,
because they appear in many real-world problems. Ant
colony optimization is one of optimization techniques for
these problems. In this paper, we improve the continuous
ant colony optimization (ACOR) with crossover operator.
Three crossover methods are employed to generate some
new probability density function set of ACOR. The proposed
algorithms are evaluated by using 21 benchmark functions
whose dimensionality is 30–1000. The simulation results
show that the proposed ACOR with different crossover oper-
ators significantly enhance the performance of ACOR for
global optimization. In the case the dimensionality is 1000,
the proposed algorithm also can efficiently solves them.
Compared with state-of-art algorithms, the proposal is a very
competitive optimization algorithm for global optimization
problems.
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1 Introduction

Many real-world application problems in engineering, sci-
ence and technology can be formulated as continuous opti-
mization problems (CnOPs) [1–5]. Meta heuristics (e.g.,
simulated annealing (SA), evolutionary algorithms (EAs),
differential evolution (DE), particle swarm optimization
(PSO), ant colony optimization (ACO), estimation of distri-
bution algorithms (EDA), etc.) are a family of optimization
techniques that have seen increasingly rapid development
and have been applied to CnOPs over the past few years [6].
Although these approaches have shown excellent search abil-
ities when applying to some 30–100 dimensional problems,
many of them suffer from the “curse of dimensionality”,
which implies that their performance deteriorates quickly
as the dimensionality of search space increases [6]. Com-
plexity of the problem usually increases with the size of
problem and the solution space of the problem increases
exponentially with the problem size. Thus more efficient
search strategies are required to solve the large scale CnOPs.
Zhang et al. proposed a specially tailored EA based on a
decision variable clustering method [7] and an approximate
non-dominated sorting for evolutionarymany-objective opti-
mization [8]. Historically, scaling EAs to large size problems
have attracted much interest, including both theoretical and
practical studies. The earliest practical approachmight be the
parallelism of an existing EA. Later, cooperative coevolution
appears to be another promising method.

Ant colony optimization is inspired by the ants’ foraging
behavior and it was first applied to solve discrete optimiza-
tion problems [4,9,10]. Socha and Dorigo [5] applied ACO
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for continuous domains, calledACOR. The fundamental idea
underlying ACO for the continuous domains is the shift from
using a discrete probability distribution to using a continu-
ous one, that is, a probability density functions (PDFs). It
uses a solution archive as a form of pheromone model for the
derivation of a probability distribution over the search space.
However, ACOR concentrates mainly on the small-scale
CnOPs, and for the larger CnOPs or multi-modal CnOPs,
the results obtained by ACOR are far from being competitive
with the results obtained by the other algorithm.

In this paper, to solve efficiently larger CnOPs, several
variants of ant colony optimization (ACOR) with crossover
operations are suggested, which is to keep a proper trade-off
mechanism between diversification and intensification. It is
also known well that hybridization of EAs with other tech-
niques can greatly improve the efficiency of search [7]. In the
proposed algorithm, the operation similar to the crossover in
the GA is introduced to generate some new PDF set in the
promising space,which is aim at balancing the diversification
and intensification. As a result, the pheromone information
is enhanced in the promising space, and the global optima
can be found efficiently. Additionally, the crossover opera-
tion helps the ant colony exploit the correlation information
among the design variables.

The proposed algorithms are evaluated by using 21 test
functions whose dimension is 30–1000. We compare the
results with other continuous optimization methods in the
literature. The results show the used crossover operators
improve efficiently the performance of the ACOR and per-
form better than the compared algorithms.

2 ACO with crossover operators for continuous
optimization

2.1 ACOR

One of the first attempts to apply an ant-related algorithm
to the CnOPs is continuous ACO (CACO) [11]. In the
CACO, the notion of the nest is introduced, but the CACO
does not perform an incremental construction of solutions,
which is one of the main characteristic of the ACO meta-
heuristic. Another ant-related approach to the CnOPs is the
API algorithm [12], in which the ants perform their search
independently, but starting from the same nest. The third ant-
based approach to the CnOPs is continuous interacting ant
colony (CIAC) [13]. Other several ant-inspired algorithms
for CnOPs were proposed [14–16]. However, as explained in
Socha and Dorigo [5], most of these algorithms use search
mechanisms different from those used in the ACO meta-
heuristic [15]. The first algorithm that can be classified as
an ACO algorithm for continuous domains is ACOR [5].
In ACOR, the discrete probability distributions used in the

solution construction by ACO algorithms for combinatorial
optimization are substituted by PDFs. ACOR uses a solu-
tion archive for the derivation of these PDFs over the search
space. Additionally, ACOR uses sums of weighted Gaussian
functions to generate multimodal PDFs.

ACOR initializes the solution archive with k solutions
that are generated uniformly at random. Each solution is
a D-dimensional vector with real-valued components xi ∈
[xmin, xmax], with i = 1, 2, . . . , D.

In this paper, we assume that the optimization problems
are unconstrained except possibly for bound constraints of
the D real-valued variables xi . The k solutions of the archive
are kept sorted according to their quality (from best to worst)
and each solution S j has associated a weightω j . This weight
ωi is calculated using a Gaussian function as [15]:

ω j = 1

qk
√
2π

e
−(rank( j)−1)2

2(qk)2 (1)

where rank( j) is the rank of solution S j in the sorted archive,
and q is a parameter of the algorithm. By computing rank( j),
the best solution receives the highest weight. The weights are
used to choose probabilistically a guiding solution around
which a new candidate solution is generated. The probability
of choosing solution S j as guiding solution is given by Eq.
(2) [17]:

p j = w j
∑k

r=1 wr
(2)

So that the better the solution, the higher are the chances of
choosing it. Once a guiding solution Sguide is chosen, the
algorithm samples the neighborhood of the i-th real-valued
component of the guiding solution s jguideusing a Gaussian

PDF with s jguide = μ j
guide, and σ

j
guide equal to

σ
j
guide = ξ

k∑

r=1

∣
∣
∣Sir − Siguide

∣
∣
∣

k − 1
(3)

which is the average distance between the value of the i-th
component of Siguide and the values of the i-th components of
the other solutions in the archive,multiplied by a parameterxi
[17]. The process of choosing a guiding solution and gen-
erating a candidate solution is repeated a total of Na times
(corresponding to the number of “ants”) per iteration. Before
the next iteration, the algorithm updates the solution archive
keeping only the best k of the k+Na solutions that are avail-
able after the solution construction process.
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Fig. 1 Updating procedure of PDFs of the COACOR

2.2 The scheme of ACO with crossover operators

Establishing a balance between exploration and exploitation
for global search algorithm is important. Some crossover
operators could establish an adequate balance between explo-
ration and exploitation, and generate distribution in the
exploration and exploitation zones in the correct proportion.
For this reason, the crossover is introduced into theACO.Fig-
ure 1 presents the outline of ACOR with crossover operator
COACOR. As shown in Fig. 1, some of PDFs are gener-
ated by the crossover operations, and some of the other is
from the original way of ACOR. In the proposed algorithm,
the crossover operation in genetic algorithm is employed to
improve the search ability of the ant colony by enhancing the
pheromone distribution in the promising searching space. A
parameter nco, which is the number of the crossover oper-
ations, denotes the degree of the crossover operation. As a
result, the set of the PDFs become more diversiform and
effective, and the ants could find the good solutions effi-
ciently under the improved PDF set.

As for the procedure of theCOACOR, initially, the PDF set
of the ant colony is filled with randomly generated Gaussian
functions. The algorithm iteratively updates the PDF set. The
iteration includes two phases, in the first phase, the solutions
are constructed according to the PDFs, and in the second
phase, the PDF set is updated. In the proposed algorithm,
the PDF set consists of not only the PDFs generated by the
original ACOR but also the PDFs generated by the crossover
operation. Firstly,m new solutions are built based on the PDF
set by each ant independently. Secondly, k PDF vectors are
generated by the best k solutions directly. Meanwhile, new
2nco PDF vectors are generated by the crossover operations
on the newly generated PDFs. After both the two kinds of
PDFswere built, the updating of the PDF set is accomplished
by adding the new 2nco PDF vectors to the PDF set and
removing the same number ofworst PDFvectors. The outline
of the proposed algorithm is shown in Fig. 2.

Fig. 2 Pseudo code of the COACOR

3 Crossover operators

As mentioned above, crossover operator plays an important
role to improve the performance of ACOR. Three crossover
methods (BLX-α [18], UNDX [19] and PNX [20]) are
employed for COACOR, which are usually used in genetic
algorithm. Based different crossover methods, the presenting
COACOR are named as follows: ACOBLX , ACOUNDX , and
ACOPN X , respectively.

3.1 BLX-α

Blend crossover (BLX-α) is awell-known crossover operator
proposed by Eshelman and Schaffer [18]. For two parent
solutions:

P1 = (P1,1, P1,2, . . . , P1,n),

P2 = (P2,1, P2,2, . . . , P2,n),

min
i

= min{P1,i , P2,i },
max
i

= max{P1,i , P2,i }, i = 1, 2, . . . , n,

I = max
i

−min
i

.

theBLX-α randomly picks a solution in the range [mini−αI,
maxi + αI]. Thus, if u is a random number between 0 and 1,
an offspring C = (C1,C2, . . . ,Cn) is created as follows:

Ci = (1 − γ )P1,i + γ P2,i (4)
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where γ = (1+2α)u−α. BLX-α has an interesting property:
the location of the child solution depends on the difference
in parent solutions.

3.2 UNDX

In the unimodal normal distribution crossover (UNDX) [19],
multiple parents are used to create two or more offspring
solutions around the center of mass of these parents. A small
probability is assigned to solutions away from the center of
mass. UNDX crossover is formulated as follows:

c1 = m + z1e1 +
n∑

k=2
zkek,

c2 = m − z1e2 −
n∑

k=2
zkek,

(5)

m = (p1 + p2)/2,

z1 ∼ N (0, σ 2
1 ), zk ∼ N (0, σ 2

2 )(k = 2, . . . , n),

σ1 = αd1, σ2 = βd2/
√
n,

e1 = (p2 − p1)/|p2 − p1|, ei⊥e j (i, j = 1, . . . , n, i �= j)

Here, n is the dimension of the variable. p1 and p2 are a pair
of parent. d2 is the distance from p3 (a parent selected uni-
formly at random from the mating pool) to p1− p2 and d1 =
|p1− p2|. α and β are parameters defined by users. The com-
mended settings are α = 0.5, and β = 0.35, respectively.

3.3 PNX

In this work, the parent centric normal crossover (PNX) [20]
is also used. This parent-centric crossover is self-adaptive in
the sense that the spread of the possible offspring solutions
depends on the distance between the parents,which decreases
as the population converges. In addition, PNX is an isotropic
operator as it does not preferentially search along any partic-
ular direction. Another beneficial feature is that PNX has a
non-zero probability of generating offspring over the whole
search space. In PNX, for each of the offspring c, we proceed
as follows to determine its j th gene (c j ). First, we draw a

single random number,ω ∈ [0, 1], we use the form y(1)
i if

ω < 0.5and y(2)
i if ω ≥ 0.5. Once this choice is made, the

same selected form is used for every component j . The forms
are

y(1)
j = N

⎛

⎝x (1)
j ,

∣
∣
∣x

(2)
j − x (1)

j

∣
∣
∣

η

⎞

⎠

y(2)
j = N

⎛

⎝x (2)
j ,

∣
∣
∣x

(2)
j − x (1)

j

∣
∣
∣

η

⎞

⎠

c j =
{
y(1)
j , ω < 0.5

y(2)
j , ω ≥ 0.5

(6)

where N (μ, σ ) is a random number drawn from a Gaussian
distribution with mean μ and standard deviation σ , xij is the
j th component of the i th parent and η is a tunable parameter.
The larger is the value ofη themore concentrated is the search
around the parents. In this paper, η is set to 2.

4 Simulation

In this section, we evaluate the performance of the proposed
algorithms. Firstly, we present search abilities when apply-
ing to some 30 dimensional problems. Then 500 and 1000
dimensional for each problem is considered to evaluate their
performance for large scale global optimization.

4.1 Experimental setup

In order to verify the effectiveness of the proposed algo-
rithm, we use the benchmark test functions ( f1 ∼ f21) used
in the literature [3]. Among the 21 traditional benchmark
functions, functions f1 ∼ f10 are unimodal (there are some
recent evidence that f4 is a multimodal for D > 3, and the
correlation between the variables of Rosenbrock function f4
is very strong). Functions f11 ∼ f21 are multimodal with
the number of local minima increasing exponentially with
the problem dimension, and especially the function f21 is a
strong multi-apex function. Functions f1 ∼ f21 are reported
as follows:

1. Sphere function ( f1)

f (x) =
n∑

i=1

x2i , −5.12 ≤ xi ≤ 5.12, x∗ = (0, 0, . . . , 0),

f (x∗) = 0.

2. Ellipsoid function ( f2)

f (x) =
n∑

i=1

(1000i−1/n−1xi )
2, −5.12 ≤ xi ≤ 5.12,

x∗ = (0, 0, . . . , 0), f (x∗) = 0.

3. k-Tablet function ( f3)

f (x) =
k∑

i=1

x2i +
n∑

i=k+1

(100xi )
2, −5.12 ≤ xi ≤ 5.12,

x∗ = (0, 0, . . . , 0), f (x∗) = 0.
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4. Rosenbrock function f4

f (x) =
n∑

i=2

(100(x1 − x2i )
2 + (1 − xi )

2),

−2.048 ≤ xi ≤ 2.048,

x∗ = (0, 0, . . . , 0), f (x∗) = 0.

5. Schewefel problem 3 ( f5)

min
x

f (x) =
n∑

i=1

|xi | +
n∐

i=1

|xi |, −10 ≤ xi ≤ 10,

x∗ = (0, 0, . . . , 0) and f (x∗) = 0.

6. Schewefel problem 4 ( f 6)

min
x

f (x) = max
x

{|xi |, 1 ≤ i ≤ n},
−100 ≤ xi ≤ 100,

x∗ = (0, 0, . . . , 0) and f (x∗) = 0.

7. Axis parallel hyper ellipsoid ( f7)

min
x

f (x) =
n∑

i=1

i x2i , −5.12 ≤ xi ≤ 5.12,

x∗ = (0, 0, . . . , 0) and f (x∗) = 0.

8. Zakharow’s function ( f8)

min
x

f (x) =
n∑

i=1

x2i +
(

n∑

i=1

i

2
xi )

2 + (

n∑

i=1

i

2
xi

)4

,

−5.12 ≤ xi ≤ 5.12,

x∗ = (0, 0, . . . , 0) and f (x∗) = 0.

9. Exponential problem ( f9)

min
x

f (x) = − exp

(

0.5
n∑

i=1

x2i

)

, −1 ≤ xi ≤ 1,

x∗ = (0, 0, . . . , 0) and f (x∗) = −1.

10. Ellipsoidal function ( f10)

min
x

f (x) =
n∑

i=1

(xi − i)2, −n ≤ xi ≤ n,

x∗ = (1, 2, . . . , n) and f (x∗) = 0.

11. Ackley’s problem ( f11)

min
x

f (x) = −20 exp

(

−0.2

√

1
n

n∑

i=1
x2i

)

− exp

(
1
n

n∑

i=1
cos(2πxi )

)

+ 20 + e, −30 ≤ xi ≤ 30,

x∗ = (0, 0, . . . , 0) and f (x∗) = 0.

12. Cosine mixture problem ( f12)

min
x

f (x) =
n∑

i=1

x2i − 0.1
n∑

i=1

cos(5πxi ), −1 ≤ xi ≤ 1,

x∗ = (0, 0, . . . , 0) and f (x∗) = −0.1n

13. Griewank problem ( f13)

min
x

f (x) = 1 + 1

4000

n∑

i=1

x2i −
n∏

i=1

cos
( xi√

i

)
,

− 600 ≤ xi ≤ 600,

x∗ = (0, 0, . . . , 0) and f (x∗) = 0.

14. Levy and Montalvo problem 1 ( f14)

min
x

f (x) = π
n (10 sin2(πy1)

+
n−1∑

i=1
(yi − 1)2[1 + 10 sin2(πyi+1)]

×(yn − 1)2),
where yi = 1 + 1

4 (xi + 1), −10 ≤ xi ≤ 10,
x∗ = (0, 0, . . . , 0) and f (x∗) = 0.

15. Levy and Montalvo problem 2 ( f15)

min
x

f (x) = 0.1(sin2(3πx1) +
n−1∑

i=1
(xi − 1)2

×[1 + sin2(3πxi+1)] + (xn − 1)2

×[1 + sin2(2πxn)]), −10 ≤ xi ≤ 10,
x∗ = (0, 0, . . . , 0) and f (x∗) = 0.

16. Schwefel problem ( f16)

min
x

f (x) = 418.9829 ∗ n −
n∑

i=1

xi sin(
√|xi |),

− 500 ≤ x≤
i 500,

x∗ = (420.97, . . . , 420.97) and f (x∗) = 0.
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17. Generalized penalized function 1 ( f17)

min
x

f (x) = π
n (10 sin2(πy1) +

n−1∑

i=1
(yi − 1)2

×[1 + 10 sin2(πyi+1)] + (yn − 1)2)

+
n∑

i=1
u(xi ,10,100,4), −10 ≤ xi ≤ 10,

x∗ = (0, 0, . . . , 0) and f (x∗) = 0.

18. Generalized penalized function 2 ( f18)

min
x

f (x) = 0.1(sin2(3πx1) +
n−1∑

i=1
(xi − 1)2

×[1 + sin2(3πxi+1)] + (xn − 1)2)

×[1 + sin2(2πxn)] +
n∑

i=1
u(xi ,10,100,4),

−5 ≤ xi ≤ 5, x∗ = (0, 0, . . . , 0) and f (x∗) = 0.

In the problem 17 and 18, the penalty function u is given
by the following expression:

u(x, a, k,m) =
⎧
⎨

⎩

k ∗ pow((x − a),m) i f x > a,

−k ∗ pow((x − a),m) i f x < −a,

0 otherwise.

19. Bohachevsky function ( f19)

f (x) =
n−1∑

i=1

(x2i + 2x2i+1 − 0.3 cos(3πxi )

− 0.4 cos(4πxi+1) + 0.7),−5.12 ≤ xi ≤ 5.12,

x∗ = (0, 0, . . . , 0), f (x∗) = 0.

20. Schaffer function ( f20)

f (x) =
n−1∑

i=1

[
(x2i + x2i+1)

0.25 × (sin2(50(x2i + x2i+1)
0.1)

+ 1.0)
]
,

− 100 ≤ xi ≤ 100, x∗

= (0, 0, . . . , 0), f (x∗) = 0.

21. Rastrigin function ( f21)

f (x) = 10n +
n∑

i=1

(x2i − 10 cos(2πxi )),

− 5.12 ≤ xi ≤ 5.12, x∗ = (0, 0, . . . , 0),

f (x∗) = 0.

In general, the comparison of algorithms for CnOP is
usually based on the following criterion to evaluate the algo-
rithms: the number of the function evaluations (FEs) to

Table 1 Parameters setting

Func. Param.

m k nco ξ

f1 ∼ f5, f7 ∼ f10, 40 40 5 0.76

f12 ∼ f14, f17, f18
f6, f11, f15, 60 200 5 0.76

f16, f19 ∼ f21

achieve a certain solution quality [9,10]. For all the 21 test
functions, we performed 25 independent runs. The stopping
criterions are as follows: | f (s) − f (s∗)| <10−7(s* is the
global optimal solution) or the maximum number of func-
tion evaluations (MaxFEs) is set to 10,000*D. It means that
if the error accuracy does not reach 10−7 within 10,000*D,
the simulation run is considered to an unsuccessful run.

4.2 Parameter setting

It is difficult to find the best parameter combination for all the
problems because of the multimodality and nonlinearity of
different kinds of objective functions. As a result, the robust-
ness of the parameter is very important, and it is a challenge
to suggest common fixed values of the parameters. We car-
ried out extensive experiments for the proposed COACOR

algorithm to analyze the parameters.
The same parameters used in the three proposedCOACOR

are as follows: the number of antsm, the size of PDF set k, the
number of the crossover operations nco, and the evaporation
rate ξ of the pheromone. For the sake of fairness, m, k, nco
and ξ are set as same as value for three COACOR and the
typicalACOR.They are set as Table 1. The parameters setting
of crossover operators are described in Sect. 3.

4.3 Performance evaluation for 30 dimensionality
problems

In this subsection, we firstly present the performance eval-
uation for 30 dimensionality problems. To investigate the
performance of the proposed COACOR, the convergence
properties of the three COACOR on some typical functions
( f1, f4, f11, and f20) are analyzed, in comparison with the
original ACOR. The parameters of the ACOR is set the same
as the proposed COACOR except the nco (nco = 0 in ACOR),
because there is no crossover operation in ACOR. The typ-
ical functions include the basic function, the non-separable
function which have correlation among the design variables,
and the multimodal functions which have a large number of
local minima.

Sphere function f1 is the basic function to evaluate the
algorithm. For the non-separable function we choose the
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Fig. 3 The convergence
process on the sphere f1, D=30

Fig. 4 The convergence
process on the sphere f4, D=30

Fig. 5 The convergence
process on the sphere f11,
D=30

Rosenbrock function f4 [21]. In the Rosenbrock function,
the variables are correlated and interact between two adjacent
variables, and the global minimum is inside a long, narrow,
parabolic shaped flat valley. As shown in the Figs. 3 and 4,
the proposed algorithm could find the global optimum suc-
cessfully and faster than the ACOR for these two.

For the multimodal functions, the Ackley function f11
[22] and the Schaffer function f20 [23] are chosen. Ackley
function has an exponential term that covers its surface with
numerous local minima. Schaffer function is made up of a
large number of local minima whose value increases with
the distance to the global minimum. The number of the local

minima is so huge that the ant is trapped in the local minima
easily. From the Figs. 5 and 6, we can see that for the Ack-
ley function and the Schaffer function, the proposed three
algorithms also faster to reach the required accuracy than
the ACOR. Rastrigin function ( f21) is another famous multi-
modal functions, which is made up of a large number of local
minima. As shown in Table 2, the proposed algorithm could
find the global optimum very easily while the ACOR could
not find the global optimum for the Rastrigin function.

In order to have an overview of the performance of the
proposed algorithms, more extensive experiments are carried
out. CMA-ES [22], CGAR [3] and the differential evolu-
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Fig. 6 The convergence
process on the sphere f20,
D=30

Table 2 Comparing with other
algorithms on 21 benchmark
functions, D=30

Func. ACOBLX ACOUNDX ACOPN X ACOR CGAR DE MMGUNDX

f1 8.50E+3 8.15E+3 1.10E+4 1.84E+4 1.26E+4 4.39E+4 8.03E+4

f2 1.35E+4 2.46E+4 1.74E+4 2.89E+4 3.75E+4 – –

f3 1.22E+4 2.27E+4 1.54E+4 2.73E+4 4.18E+4 – –

f4 3.96E+5 3.85E+5 3.94E+5 – 3.40E+5 – –

f5 1.58E+4 1.76E+4 2.08E+4 3.77E+4 4.86E+4 7.39E+4 –

f6 2.10E+5 1.37E+5 2.28E+5 3.36E+5 2.50E+5 3.75E+5 1.32E+6

f7 1.09E+4 1.14E+4 1.24E+4 1.82E+4 1.99E+4 1.13E+5 3.09E+5

f8 7.57E+4 4.78E+4 9.58E+4 1.89E+5 1.47E+5 – 2.56E+5

f9 6.54E+3 6.21E+3 8.35E+3 1.30 E+4 1.08E+4 3.54E+4 6.11E+4

f10 1.37E+4 1.34E+4 1.64E+4 2.72E+4 2.52E+4 – 1.12E+5

f11 1.96E+4 2.25E+4 2.51E+4 3.98E+4 7.46E+4 8.40E+4 3.63E+5

f12 2.97E+4 2.24E+4 8.10E+4 6.18E+4 2.35E+4 4.18E+4 1.58E+5

f13 4.40E+4 8.53E+3 9.50E+4 9.50E+4 4.34E+4 5.32E+4 1.04E+6

f14 6.80E+3 7.66E+3 8.60E+3 1.39E+4 1.08E+4 3.24E+4 4.45E+5

f15 2.94E+4 3.37E+4 3.86E+4 6.64E+4 2.54E+4 4.48E+4 3.58E+5

f16 1.31E+4 1.36E+4 1.56E+4 2.54E+5 7.43E+5 5.0E+5 –

f17 6.65E+3 7.57E+3 9.15E+3 1.29E+4 1.92E+4 4.40E+4 9.84E+4

f18 7.70E+3 8.84E+3 9.65E+3 1.67E+4 7.67E+4 4.50E+4 1.95E+5

f19 3.77E+4 2.84E+4 5.38E+4 7.85E+4 3.97E+4 4.93E+4 2.41E+6

f20 2.48E+5 1.86E+5 3.72E+5 6.21E+5 5.90E+5 1.93E+5

f21 4.59E+4 3.66E+4 8.54E+4 – 2.40E+5 8.43E+4 4.23E+6

Bold values indicate the best one among all results obtained

tion [24,25] are employed to compare with the proposed
COACOR on 21 benchmark functions ( f1 ∼ f21).

The CMA-ES is the state-of-the-art algorithm that is use-
ful for continuous optimization. The CGAR algorithm is a
new framework called CGA with an FPDD-LX crossover
operator. The DE is another state-of-the-art algorithm that
is useful for the real world application, and we select the
classical DE approach called DE/rabd/1 to compare with the
proposed algorithm. The parameter settings and results of
other algorithm is based on the literatures [3,25]. We per-
formed 25 independent runs using the stopping criterions
| f (x) − f (x∗)| <10−7. The mean numbers of the FEs to

achieve the fixed accuracy level 10−7 are recorded in Table
2 for the above algorithm.

As shown inTable 2,ACOBLX , ACOUNDX andACOPN X

are all enable to achieve the fixed accuracy level 10−7 for
21 problems (D=30). In this case, ACOBLX , ACOUNDX

and CMA-ES obtain 8, 5, and 8 champions among 21 test
problems, respectively. ACOBLX , ACOUNDX andACOPN X

are obviously superior to CAM-ES for the multimodal prob-
lems. From Table 2, we also known the ACOR is inferior to
three presenting COACOR when applying to some problems
(D = 30).
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Table 3 Simulation results,
D=500

Func. ACOUNDX ACOBLX ACOPN X ACOR

Accuracy FESMean Accuracy FESMean Accuracy FESMean Accuracy FESMean

f1 1.00e−7 1.78e+5 7.92e−2 5.00e+6 7.90e−2 5.00e+6 7.50e−7 5.00e+6

f2 1.20e+0 5.00e+6 3.22e+3 5.00e+6 1.45e+3 5.00e+6 5.00e+1 5.00e+6

f3 6.00e−2 5.00e+6 4.25e+2 5.00e+6 2.13e+2 5.00e+6 4.10e−3 5.00e+6

f4 1.00e−6 4.73e+6 5.80e−6 5.00e+6 4.60e+0 5.00e+6 2.12e+1 5.00e+6

f5 1.60e+0 5.00e+6 1.60e+0 5.00e+6 9.31e−1 5.00e+6 8.51e−5 5.00e+6

f6 6.10e−1 5.00e+6 1.96e+0 5.00e+6 2.11e+0 5.00e+6 2.12e+1 5.00e+6

f7 1.00e−7 9.02e+5 1.53e+1 5.00e+6 6.80e+0 5.00e+6 1.00e−3 5.00e+6

f8 4.10e−1 5.00e+6 2.16e+2 5.00e+6 6.40e+2 5.00e+6 9.78e+0 5.00e+6

f9 1.00e−7 1.38e+5 9.50e−4 5.00e+6 1.06e−3 5.00e+6 1.00e−7 3.97e+6

f10 1.00e−7 3.50e+5 1.58e+6 5.00e+6 1.11e+5 5.00e+6 2.85e+1 5.00e+6

f11 1.00e−7 6.64e+5 1.00e−7 9.34e+5 1.17e−5 5.00e+6 5.91e−1 5.00e+6

f12 1.00e−7 2.99e+5 1.00e−7 4.38e+5 1.00e−7 3.38e+6 8.80e−2 5.00e+6

f13 1.00e−7 7.41e+5 1.00e−7 5.79e+5 1.00e−7 4.58e+6 1.65e+1 5.00e+6

f14 1.00e−7 1.15e+5 3.14e−4 5.00e+6 1.38e−4 5.00e+6 1.00e−7 3.55e+6

f15 1.00e−7 3.03e+5 1.00e−7 4.27e+5 1.00e−7 3.28e+6 7.95e−2 5.00e+6

f16 1.00e−7 4.07e+5 1.00e−7 5.82e+5 1.00e−7 4.98e+6 6.68e+2 5.00e+6

f17 1.00e−7 1.16e+5 2.22e−4 5.00e+6 3.33e−4 5.00e+6 1.00e−7 4.03e+6

f18 1.00e−7 1.65e+5 8.51e−3 5.00e+6 6.25e−3 5.00e+6 1.00e−7 4.71e+6

f19 1.00e−7 3.99e+5 1.00e−7 5.62e+5 1.00e−7 4.66e+6 5.35e+0 5.00e+6

f20 8.00e+7 5.00e+6 4.50e+2 5.00e+6 7.96e+2 5.00e+6 1.18e+3 5.00e+6

f21 1.00e−7 5.01e+5 1.00e−7 7.83e+5 1.69e−5 5.00e+6 4.34e+0 5.00e+6

Bold values indicate the best one among all results obtained

Table 4 Simulation results,
D=1000

Func. ACOUNDX ACOBLX ACOPN X ACOR

Accuracy FESMean Accuracy FESMean Accuracy FESMean Accuracy FESMean

f1 1.00e−7 3.78e+5 4.36e−1 1.00e+7 5.41e−1 1.00e+7 5.68e−4 1.00e+7

f2 4.60e+0 1.00e+7 6.26e+3 1.00e+7 1.90e+3 1.00e+7 1.02e+2 1.00e+7

f3 3.32e−2 1.00e+7 2.97e+3 1.00e+7 3.22e+3 1.00e+7 1.19e+1 1.00e+7

f4 1.00e−7 8.28e+6 2.24e+1 1.00e+7 4.30e+1 1.00e+7 4.17e+2 1.00e+7

f5 8.61e+0 1.00e+7 1.24e+1 1.00e+7 1.50e+1 1.00e+7 7.15e−2 1.00e+7

f6 7.31e−1 1.00e+7 2.31e+0 1.00e+7 2.10e+0 1.00e+7 2.04e+0 1.00e+7

f7 1.00e−7 2.43e+6 2.41e+2 1.00e+7 2.77e+2 1.00e+7 2.90e−1 1.00e+7

f8 3.81e+0 1.00e+7 1.11e+3 1.00e+7 2.27e+3 1.00e+7 1.90e+2 1.00e+7

f9 1.00e−7 2.82e+5 8.05e−3 1.00e+7 1.10e−2 1.00e+7 1.03e−1 1.00e+7

f10 1.00e−7 3.50e+5 5.94e+6 1.00e+7 6.48e+6 1.00e+7 2.27e+4 1.00e+7

f11 1.00e−7 7.35e+5 1.00e−7 2.95e+6 6.65e−3 1.00e+7 8.49e−1 1.00e+7

f12 1.00e−7 1.33e+6 1.00e−7 1.39e+6 3.01e−4 1.00e+7 3.11e−7 1.00e+7

f13 1.00e−7 6.40e+6 1.00e−7 1.70e+6 2.58e−2 1.00e+7 2.25e+0 1.00e+7

f14 1.00e−7 2.23e+5 6.02e−4 1.00e+7 8.81e−4 1.00e+7 2.32e−4 1.00e+7

f15 1.00e−7 6.22e+5 1.00e−7 1.38e+6 6.71e−6 1.00e+7 2.00e−1 1.00e+7

f16 1.00e−7 8.21e+5 1.00e−7 1.91e+6 2.95e−2 1.00e+7 1.08e+3 1.00e+7

f17 1.00e−7 2.22e+5 3.69e−4 1.00e+7 1.00e−3 1.00e+7 1.17e−4 1.00e+7

f18 1.00e−7 3.32e+5 7.31e−2 1.00e+7 6.71e−2 1.00e+7 3.70e−3 1.00e+7

f19 1.00e−7 8.35e+5 1.00e−7 2.06e+6 9.11e−3 1.00e+7 1.64e+1 1.00e+7

f20 1.51e+3 1.00e+7 1.38e+3 1.00e+7 1.53e+3 1.00e+7 2.47e+3 1.00e+7

f21 1.00e−7 1.03e+6 1.00e−7 2.45e+6 3.75e−1 1.00e+7 9.74e+1 1.00e+7

Bold values indicate the best one among all results obtained
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4.4 Performance evaluation for 500–1000
dimensionality problems

Nowadays, high dimensional optimization problems are an
interesting field of research. Although these approaches such
as CMA-ES and DE have shown excellent search abili-
ties when applying to some 30–100 dimensional problems,
many of them suffer from their performance deteriorates
quickly as the dimensionality of search space increases.
CMA-ES is an algorithm that uses several operations with
a complexity of O(n3), where n is the dimension value, and
although there are versions that try to reduce this problem,
it has not been actually resolved [24]. This behavior makes
CMA-ES does not scale well for large scale optimization
problems. To further challenge and evaluate the proposed
algorithms,we apply them to 500–1000 dimensionality prob-
lems.

Tables 3 and 4 record the reached accuracy level ( f (x) −
f (x*)) to terminate before reaching the stopping criterions:
| f (x) − f (x∗)| <10−7, or the number of function evalua-
tions (FES) is larger than 10,000*D. The mean FES needed
in each run to achieve the fixed accuracy level (see the “Accu-
racy” column in Tables 3, 4) are also indicated in Tables 3
and 4. As shown in Tables 3 and 4, ACOUNDX has excellent
performance for large scale optimization problems. There
are fourteen 500 dimensionality problems to reach the accu-
racy level 10−7 and one to 10−6 when using ACOUNDX . As
for 1000 dimensionality problems, ACOUNDX has 15 prob-
lems to reach the accuracy level 10−7. Other two algorithms
ACOBLX and ACOPN X are also superior to ACOR for large
scale optimization problems. With regard to the mean FES
needed in each run,ACOUNDX also obviously less than other
algorithms.

5 Conclusion

In this paper, we evaluated the performance of the ACO
algorithms with different crossover operations for CnOPs.
A large number of simulations on 21 benchmark problems
were carried out. Simulation results showed ACOR with
crossover operation is far well the typical ACOR from 30
to 1000 dimensionality problems. So we can draw a con-
clusion that crossover operators can effectively improve the
global exploration ability of ACOR. ACOBLX has the most
excellent performance for 30 dimensionality problems and
it is superior to CAM-ES for the multimodal problems.
ACOUNDX has the most excellent performance for large
scale optimization problems. The proposal is a very compet-
itive optimization algorithm for large scale problems, both in
results and in processing time. In future works, we will focus
cooperative coevolution between ACORand EA.
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