Cluster Comput (2017) 20:1149-1154
DOI 10.1007/s10586-017-0788-5

@ CrossMark

Massively parallel acceleration methods for image handling

operations

Nakhoon Baek!'2@ - Kwan-Hee Yoo3

Received: 9 July 2016 / Revised: 27 December 2016 / Accepted: 10 February 2017 / Published online: 24 February 2017

© Springer Science+Business Media New York 2017

Abstract Intheimage handling and image processing areas,
most operations can be executed in a pixel-by-pixel or
cluster-by-cluster manner. These parallel and simultaneous
executions have many benefits, and many researchers showed
remarkable improvements. In this paper, we started from a
specific and practical image handling and feature extraction
sequences. We focused on the detailed design and robust
implementation on the modern massively parallel architec-
ture of CUDA. We present the enhanced features of our
implementation and their design details. Our final result
shows 13 times faster execution speed, in comparison with
its previous CPU-based implementation. These methods can
be applied to the variety of image manipulation processes.

Keywords Massively parallel acceleration -
handling - Accelerated implementation

Image

1 Introduction

In modern computer architectures, we have several kinds
of computational processors, including the traditional CPU
(central processing unit), the graphics-based GPU (graph-
ics processing unit), and others. Traditionally, CPUs are

<1 Kwan-Hee Yoo
khyoo@cbnu.ac kr

Nakhoon Baek
oceancru@gmail.com

School of Computer Science and Engineering, Kyungpook
National University, Daegu 41566, Republic of Korea

Software Technology Research Center, Kyungpook National
University, Daegu 41566, Republic of Korea

Department of Software, Chungbuk National University,
Cheongju, Chungbuk 28644, Republic of Korea

widely used for general computational purposes. In con-
trast, GPUs are originated from the graphics cards, and now,
commonly used for massively-parallel processing and simul-
taneous computations [1,2].

In the case of CPUs, the modern architecture shows the
parallel processing with multiple cores. Those multi-core
CPUs usually focused on the execution of dozens of par-
allel threads. However, GPUs can execute more than million
threads simultaneously, with more than thousands of pro-
cessing cores. Nowadays, these kinds of massively-parallel
processing is ubiquitous [3].

We also have a set of parallel computation models,
even in the commercial markets. For CPU-based paral-
lel processing, MPI (message passing interface) [4,5] and
OpenMP (open multi-processing) [6] are widely used. For
GPU-based massively-parallel processing, CUDA (compute
unified device architecture) [7,8] and OpenCL (open com-
puting language) [9] are the dominant ones.

In this paper, we select CUDA as the massively parallel
execution framework. CUDA is a general purpose program-
ming model, and its users kick off batches of many threads on
the GPUs. In this model, GPUs are dedicated super-threaded,
massively data parallel co-processors. We will show the
details of massively parallel accelerations with CUDA for
image manipulation methods.

In this paper, we will focus on a practical feature extraction
process. The input images, as shown in Fig. 1a, are captured
from grayscale digital cameras in real-time. Our process per-
forms various interpretation and verification steps. Finally,
the verified and extracted features are presented on the out-
put images, as shown in Fig. 1b. These steps have been
implemented with C++ programming language, as a typical
serialized program [10,11].

Our goal is to accelerate these kinds of programs with the
modern massively parallel architectures, more precisely, the

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-017-0788-5&domain=pdf
http://orcid.org/0000-0003-2136-843X

1150

Cluster Comput (2017) 20:1149-1154

(a) an input image

(b) an output image

Fig. 1 Example images from our target process

CUDA architecture. To achieve these goals, we dissolved all
steps in the original programs, and converted them into their
corresponding massively parallel versions. Through fully
optimizing these massively parallel versions, we got much
impressive speedups on the target process. It is a practical
and also an easy-to-extend solution to the image handling
processes.

All the details are shown in the following sections. Imple-
mentation results are followed. Finally, Sect. 4 shows our
conclusions and future work.

2 Design and implementation

As explained in the previous section, we focused on the par-
allel execution on the CUDA architecture, for some image
handling operations. Among many cases of CUDA-based
optimizations, we show some remarkable speed up-cases,

@ Springer

including statistical value calculations, median filtering, and
connected-component labeling. Each will be explained in the
following subsections.

2.1 Data fetch operations

For a given image, we immediately need a set of fundamental
statistical values, including the total sum, the average value,
the standard deviation value, and others. To calculate any
statistical values for an image, we start from the fetching of
pixel values in the image. Typically, we have a set of grayscale
images and also a set of true-color images. Since the true color
images can be interpreted as three (red, green and blue) or
four (red, green, blue and alpha) independent channels of
grayscale images, we will focus on the handling of grayscale
images, from now on.

To get parallel implementations of these statistical oper-
ations, we first focused on the optimization of data fetch
operations. For grayscale images, a pixel corresponds to a
single byte data. Since modern PC architectures need 32-bit
word data handling, we need to read 32-bit data chunks to get
the 8-bit pixel data, as shown in Fig. 2a. In the case of typical
CUDA parallel implementation, each thread will internally
read a 32-bit data chunk and extract 8-bit pixel data. After
its own processing, the thread will write back the 8-bit data,
and the memory architecture will update a single 32-bit data
chunk four times, by the 4 independent threads. It can cause
serious buffer access delays in the read/write operations.

As a more optimized way, we let a single thread treat
four adjacent pixels, as shown in Fig. 2b. A single 32-bit
data chunk will be read, and then the chunk is divided into
4 bytes. The thread will perform its own processing four
times repeatedly. All the results are combined into a single
32-bit data chunk, and then write back the data once. Since
this optimized thread can read and write exactly once for
processing totally four adjacent pixels, it is much better in its
execution speed. All our operations are intuitively processed
with these 32-bit chunk-based processing, to finally achieve
remarkable speedups.

2.2 Reduction problems

We need to perform a set of reduction processing including
total sum, average values, and others. Reduction processing
means extracting a single numerical value (or a small number
of numerical values) from a large set of input values. In our
case, extracting total sum of pixel values in an image can be
regarded as a typical reduction processing. The most impor-
tant operation in the reduction processing is how to globally
propagate the processed values [12].

To extract the total sum of all pixel values, a typical reduc-
tion processing can be started with invoking a set of threads
for each pixel, and each thread will simultaneously update

Cluster Comput (2017) 20:1149-1154

1151

32bit data chunk

[TTT1]

A

th#O thfead|#1 threalt #2 tre§1#3

write
y

| | 32bit data chunk

(a) typical data flow

32bit data chunk

thread #0
(repeat 4 times)

(b) our new approach

Fig. 2 Data read and write operations in our CUDA architecture

the global sum value through atomic operations. This brute-
force approach results in the bottle-neck phenomena due to
the heavy atomic operations, as shown in Fig. 3a.

In contrast, we use a hierarchical approach to minimize the
number of atomic operations. First, we reduce the number of
threads, and a thread will handle an entire row in the image
rather than a single pixel, as shown in Fig. 3b. Then, the
thread block will invoke a set of threads, and each thread
will update the partial sum variable in the shared memory,
through atomic operations. Though these updates requires
atomic operations, they are performed on the shared memory,
rather than on the global memory. Thus, we can achieve much
speedups. Finally, the thread blocks will get the partial sum,
and updated the total sum on the global memory, with the
global memory access atomic operations. This hierarchical
approach does the same work, with more efficient shared

global memory

> total sum

atomic op

image
(a) typical implementation
global memory
shared memory
total sum
thread partial sum
image atomiic op

shared memory
thread

> partial sum

(b) our new approach

Fig. 3 Propagation of reduction values in our operations

memory uses and casual use of memory access patterns, to
finally get much speedups.

2.3 Standard deviation calculation

Through efficient use of shared memory and reducing the
number of required atomic operations, we can achieve
impressive speedups with CUDA-based reduction processing
implementations. One more remarkable point on the statis-
tics value calculation is the standard deviation calculation.

In the case of standard deviations, typical serialized imple-
mentations use the corrected sample standard deviation s of
the following forms [13]:

s = #Z(xi - %7 ()

where N is the number of sampling points, x; is the pixel
value and X is the mean of the whole pixels.

For the deviation calculation, alternatively, we can use the
standard deviation o of the following formula:

2

where the mean w is calculated as:

1 N
M:NZ)CI'.

i=1

@ Springer

1152

Cluster Comput (2017) 20:1149-1154

In this case, we can calculate the standard deviation some-
what differently, as follows:

]

E|(X —w)

X?|+E

[—2uX]+ E [14?]

X2 = 2uE[X]+ u?

E
E
E

Il
>§
7;

E

=\/E X2

where E(X) is the expected value of X.

In CUDA-based implementations, the standard devia-
tion o can be calculated simultaneously for each pixel, and
more efficiently for the parallel executions. Actually, we
implemented two independent versions of standard deviation
calculation: the corrected sample standard deviation, using
Eq. 1, and the standard deviation, using Eq. 2. Users can
freely select one of them, where the standard deviation cal-
culation of Eq. 2 can enjoy the parallel calculation on each
thread, to get final speedups.

[
[
[
[
[
[

]

1-
XZ]—ZM + u?

1-

1-

(E [X])?

2.4 Median filtering

Median filters are basically selections of the median values
among its neighboring pixels [14, 15]. As an example, in the
3 x 3 pixel case, we pick up a pixel and its neighboring
8 pixels, and get the median as the final output pixel, as
shown in Fig. 4. During its calculations, the core action will
be to pick up the median of 9 pixel values. In CPU-based
calculations and even straight-forward CUDA-based imple-
mentations, they usually use sorting operations to get the
median value.

In contrast, CUDA-based implementations show one of
the most inefficient operations, when we use any kind of
sorting operations. Actually, to sort 9 elements with typical
O (n?) sorting algorithms, we need at most 56 swap opera-
tions for each pixel [16]. However, median selection does not

‘/—% filtering)—-\‘

input image output image

Fig. 4 Calculation of median filters, for 9 pixels case

@ Springer

requires the whole sorting of the 9 elements. More optimized
median selection algorithm can be used, and it requires only
19 swapping operations. Similarly, we can cleverly performs
minimized number of swapping operations, for median selec-
tion. Practically, they need 104 swaps rather than 625 swaps,
for 5 x 5 median finding [17,18].

However, for general case median finding, it is not easy to
implement a median finding operation efficiently. Theoreti-
cally, median finding can be easily achieved through sorting
the whole elements, and then selecting the middle position
value. Generally, the sorting operations can be achieved in
O(nlogn) or O (n?) time, and it is too inefficient, in com-
parison with other median finding techniques. We focused
that our input domain is only grayscale pixel values, ranged
between 0 and 255. In this case, we can use the counting sort,
with O (n) worst case time complexity. Through applying the
counting sort technique, we achieved a remarkably efficient
median filtering operations even for general filter sizes [19].

2.5 Connected-component labeling operations

Connected-component labeling (shortly, CCL) is an algorith-
mic application of graph theory, where subsets of connected
components are uniquely labeled, based on a given heuris-
tic. It is also known as connected-component analysis, blob
extraction, region labeling, blob discovery, or region extrac-
tion. Connected-component labeling is used in the area of
image handling to detect connected regions in binary or
grayscale digital images.

Inimage handling applications, CCL algorithms start with
classifying the pixels with the same properties. For a pixel,
we can apply 4-connectivity or 8-connectivity, as shown in
Fig. 5, to connect the pixels with the same properties. After
globally connecting all the pixels with the same property, we
can extract the connected components as shown in Fig. 6.

!

(b) 8-connectivity

(a) 4-connectivity

Fig. 5 4-connectivity and 8-connectivity for CCL operations

Fig. 6 Input grayscale image and two connected components

Cluster Comput (2017) 20:1149-1154

1153

The CCL operation itself is widely known and many effi-
cient implementations are already available [20-22]. We also
have CUDA-based implementations [23,24]. Among them,
we chose the most stable implementation [25], and modified
it for integer pixel values in the grayscale images.

Based on the CUDA-based CCL implementation, we
extend it to find our interest regions. For example, after the
first path of CCL operations, we remove all the connected
components with smaller region sizes, regarding them as
noise areas. The remaining connected components are now
regarded as meaningful image segments, and assign its own
identification number for further processing.

2.6 Flood filling

Flood filling is an algorithm that determines the area con-
nected to a given start pixel in the image. When applied on
an image to fill a particular bounded area with color, it is also
known as boundary filling. In general cases, they use the
scan-line filling algorithms for fast flood filling. Instead of
testing each potential pixels, this scan-line filling algorithm
processes each scan-line in the image as a chunk, and get the
global result more efficiently.

In our case, we need faster implementation base on CUDA
parallel architecture. After carefully considering several can-
didates, we finally use the previous CUDA-based CCL
implementation as the underlying operations to achieve flood
filling. Our idea is simply applying CUDA-based CCL oper-
ations on the input image. If a target pixel is selected, its
corresponding connected component and all the indirectly
connected components for the pixel are combined to get the
final flood filling result. Through these combinations, we
achieved much faster flood filling operation.

3 Implementation results

As shown in the previous section, we designed and imple-
mented all the CUDA-based image handling operations. As
an example application, we use a feature extraction appli-
cation, as shown in Fig. 1. From the input image of a
camera-captured grayscale image, it get some intermediate
results, and finally produce the final feature extracted image
of Fig. 1b. The example application process internally per-
forms totally 4 times of CCL operations, one flood filling
operation, several statistical operations including average and
standard deviation calculations.

For the test purpose, our previous CPU-based implemen-
tation works on a dual Xeon 3.10GHz CPU workstation, with
64GB RAM. On this machine, the overall process works in
779 millisecond, excluding any input/output processing.

Our CUDA-based implementation works on another
workstation with Intel i5 3.40GHz CPU and 8GB RAM. In

contrast, this machine has equipped with a single NVIDIA
GTX 980 graphics card. With combining CUDA 5.2 compu-
tation library, it provides 16 parallel processors, which totally
support 2,048 simultaneous thread executions. Our CUDA-
based implementation shows the final execution speed of 60
millisecond.

Actually, we need to transfer the original input data on the
RAM area to CUDA graphics memory area. Those transfer
operations are performed in asynchronous copy operations,
and achieved in 98 millisecond. Finally, it shows that the
pure processing time was reduced from 779 millisecond to
60 millisecond, which is 12.98 times speedup, for the overall
processing, even including some CPU-specific operations.

4 Conclusions and future work

We applied the speed up techniques to the CUDA-based
implementations. The over-all process accepts the input
image shown in Fig. la, and finally, it produces the output
image shown in Fig. 1b. We checked the output image with
respect to the original CPU-based implementations, and we
have confirmed it is exactly the same to the previous results.

Our current implementation is based on CUDA archi-
tecture, and makes 12.98 times faster, in comparison to
the previous CPU-based implementation. We can achieve
much more speedups with more and more optimizations. The
presented methods can be applied to the variety of image
manipulation processes.

Acknowledgements This research was supported by Basic Science
Research Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and Technology
(Grant 2016R1D1A3B03935488). This study was also supported by
the 2015 Technology Innovation Development program (project name:
“Development of 3D GIS Platform for the LiDAR Data Utilization™)
funded by the Small and Medium Business Administration, Korea
(Project Number: S2306348).

References

1. Malizia, A.: Mobile 3D Graphics. Springer-Verlag New York Inc,
Secaucus (2006)

2. Pulli, K., Vaarala, J., Miettinen, V., Aarnio, T., Roimela, K.: Mobile
3D Graphics: with OpenGL ES and M3G. Morgan Kaufmann Pub-
lishers Inc., San Francisco (2007)

3. Sutter, H., Larus, J.: Software and the concurrency revolution. ACM
Queue 3(7), 54-62 (2005)

4. Aoyama, Y., Nakano, J.: RS/6000 SP: Practical MPI Programming.
ITSO (1999)

5. Pacheco, P.S.: Parallel Programming with MPI. Morgan Kaufmann
(1997)

6. ARB, O.: OpenMP Application Programming Interface, Version
4.5. OpenMP.org (2015)

7. NVIDIA CUDA Home page http://www.nvidia.com/object/cuda_
home_new.html

@ Springer

http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html

1154

Cluster Comput (2017) 20:1149-1154

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

NVIDIA: CUDA C Programming Guide. NVIDIA (2016)
Munshi, A.: The OpenCL Specificaiton, Version 1.0. Khronos
OpenCL Working Group (2012)

Josuttis, N.: The C++ Standard Library, 2nd edn. Addison-Wesley
Professional, Boston (2012)

Stroustrup, B.: The C++ Programming Language, 4th edn.
Addison-Wesley Professional, Boston (2013)

Harris, M.: Optimizing Paralle] Reduction in CDUA. NVIDIA
(2016)

Reid, H.: Introduction to Statistics. SAGE Publications, New York
(2013)

Burger, W., Burge, M.: Digital Image Processing. Springer, London
(2016)

Gonzalez, R.: Digital Image Processing, 3rd edn. Pearson Educa-
tion Inc., New Delhi (2014)

Devillard, N.: Fast median search: an ansi ¢ implementation. http://
ndevilla.free.fr/median/median/

Smith, J.: Implementing median filters in xc4000e fpgas. XCell 23,
16 (1996)

Paeth, A.W.: Median finding on a 3-by-3 grid. In: Graphics Gems,
pp. 171-175 (1993)

Huang, T.S., Yang, G.J., Tang, G.Y.: A fast two-dimensional
median filtering algorithm. IEEE Trans. Acoust. Speech Signal
Process. ASSP 27(1), 13-18 (1979)

Suzuki, K., Horiba, I., Sugie, N.: Linear-time connected-
component labeling based on sequential local operations. Comput.
Vis. Image Underst. 89, 1-23 (2003)

He, L., Chao, Y., Suzuki, K., Wu, K.: Fast connected-
componentlabeling. Pattern Recognit. 42, 1977-1987 (2009)
Wenke, H., Kolodzey, S., Vornberger, O.: A work-optimal par-
allel connected-component labeling algorithm for 2d-image-data
using pre-contouring. In: Scientific Cooperations International
Workshops on Electrical and Computer Engineering Subfields, pp.
154-161 (2014)

Paravecino, F., Kaeli, D.: Accelerated Connected Component
Labeling Using Cuda Framework. Lecture Notes in Computer Sci-
ence, vol. 8671, pp. 502-509 (2014)

Kalentev, O., Rai, A., Kemnitz, S., Schneider, R.: Connected com-
ponent labeling on a 2d grid using cuda. J. Parallel Distrub. Comput.
71, 615-620 (2011)

Stava, O., Benes, B.: Connected Component Labeling in CUDA.
GPU Computing Gems (2010)

@ Springer

somey.com Inc., Korea.

Nakhoon Baek is currently
a professor in the School of
Computer Science and Engi-
neering at Kyungpook National
University, Korea. He received
his B.A., M.S. and Ph.D.
degrees in Computer Science
from Korea Advanced Insti-
tute of Science and Technology
(KAIST) in 1990, 1992, and
1997, respectively. His research
interests include graphics stan-
dards, graphics algorithms and
real-time rendering. He is now
also the Chief Engineer of Das-

Kwan-Hee Yoo is a profes-
sor working for the Depart-
ment of Computer Science at
Chungbuk National University,
Korea. He received his BS in
Computer Science from Chon-
buk National University, Korea,
in 1985, and his MS and Ph.D.
degrees in Computer Science
from Korea Advanced Insti-
tute of Science and Technol-
ogy, Korea, in 1988 and 1995,
respectively. His research inter-
ests include computer graphics,
integral imaging system, den-

tal/medical systems, and smart learning.

http://ndevilla.free.fr/median/median/
http://ndevilla.free.fr/median/median/

	Massively parallel acceleration methods for image handling operations
	Abstract
	1 Introduction
	2 Design and implementation
	2.1 Data fetch operations
	2.2 Reduction problems
	2.3 Standard deviation calculation
	2.4 Median filtering
	2.5 Connected-component labeling operations
	2.6 Flood filling

	3 Implementation results
	4 Conclusions and future work
	Acknowledgements
	References

