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Abstract Recent computing devices execute massive par-
allel data requiring huge computing hardware. To satisfy
increasing computing need, GPUs providing powerful com-
putational capability are employed to execute both graphics
and general-purpose applications (GPGPUs). In the GPGPU,
executing multiple applications together can increase the data
parallelism, resulting in high resource utilization. Improv-
ing the resource utilization of the GPGPU can increase
the GPGPU performance. However, various kinds of appli-
cations have different execution time depending on their
workload sizes. Therefore, if one application is completed
earlier than the other ones, resource underutilization prob-
lem may happen because the hardware resource allocated for
the early completed application becomes idle. In this work, a
CTA-aware dynamic streaming multiprocessors scheduling
scheme is proposed for multiple applications execution in the
GPGPU to efficiently manage hardware resources. Simula-
tion results show that the proposed CTA-aware dynamic SM
scheduling scheme can increase the GPU performance by up
to 25.6% on average.
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1 Introduction

In the recent computing systems market, the proportion
of state-of-the-art embedded systems containing IoT, cloud
computing, smart phone has been increased rapidly. Up-
to-date embedded devices executing massive parallel data
become more complex with increased size, whereas con-
ventional embedded systems are composed of simple and
cheaper hardware to meet the necessities of the target system.
Especially, clouding systems operating heavy tasks require
high parallel computing hardware. In this work, we focus
on the embedded hardware for clouding systems where the
performance is very important.

In order to enhance the throughput of computing systems,
parallel hardware architecture to process massive parallel
computing has been focused. To accomplish this, multicore
architectures, which can provide better performance than
single core architectures, have been proposed [1,2]. As the
size of data processed by computing systems becomes big-
ger, the design cost of multicore architecture is increased
dramatically to support massive parallel data [3]. Contrary
to CPUs, GPUs mainly executing graphics applications can
efficiently execute massive parallel data by employing pow-
erful computation hardware with cheaper cost [4]. In general,
the cost of CPU to compute hundreds TFLOPS is much
higher than the GPU [5]. Moreover, GPU can execute general
computing by exploiting new technology, leading to general
purpose computation on graphic processing units (GPGPU)
[6]. With the support of new parallel programing models such
as CUDA [7], OpenCL [8], ATI Streaming [9], etc., GPG-
PUs are recognized more and more powerful in executing
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general-purpose applications. Unfortunately, resource under-
utilization problem may occur in GPGPUs, even though
GPGPUs can concurrently process thousands of threads to
increase data parallelism [5]. For this reason, many studies
have focused on the techniques to enhance the parallelism of
GPGPU [3,10-15].

In traditional GPUs, single application is executed at a
time, because an application includes enough threads to fully
utilize hardware resources on the GPU [16]. In recent GPUs
such as Kepler architecture model GTX 780 Ti [17], hardware
resources are growing with new generation. Therefore, most
applications cannot fully utilize hardware resources in recent
GPUs. In other words, one application cannot utilize maxi-
mum hardware resources on the GPU. Please note that GPUs
generate kernels to execute applications. Therefore, we know
that all GPU hardware resources are not fully utilized, if one
kernel is executed [16]. To alleviate this problem, GPUs can
support concurrent execution of multiple kernels, either from
the same application or from different applications.

Execution time of an application depends on the workload
size. In our previous work [18], we analyze the performance
and resource utilization efficiency on GPGPU when multiple
applications are executed concurrently compared to single
application execution.

Based on the previous work, this paper proposes a
CTA-aware dynamic streaming multiprocessors scheduling
scheme to manage the hardware resources efficiently when
multiple applications are executed concurrently.

The rest of this paper is organized as follows: Section 2
describes the GPU architecture, GPGPU application hierar-
chy and the Cooperative Thread Array. Section 3 describes
the proposed CTA-aware Dynamic Streaming Multiproces-
sors Scheduling Scheme. Section 4 presents our experimental
methodology and detailed results. Finally, Sect. 5 concludes
this work.

2 Background
2.1 GPU architecture

In this section, we describe the GPU architecture and GPGPU
application hierarchy briefly. In this work, we explain the tar-
get GPU architecture based on NVIDIA Fermi series [19].
GPU is a representative parallel architecture based on Sin-
gle Instruction Multiple Data (SIMD). SIMD architecture
has been widely used to maximize the hardware parallelism.
Figure 1 shows the GPU architecture which models a simi-
lar to the NVIDIA Fermi architecture. A GPU consists of a
number of GPU cores (or streaming multiprocessors SMs),
with each SM having a SIMT width of 8-32 (Fermi archi-
tecture has 16 SMs with a SIMT width of 32). This figure
depicts the general structure of Fermi architecture, which
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Fig. 2 GPGPU application hierarchy

consists of DRAM, L2 cache and streaming multiprocessors
(SMs). SMs and DRAMs are connected via interconnection
networks. Each SM consists of many streaming processors
(SPs), a huge register file, shared memory, L1 cache, warp
schedulers and dispatch units.

2.2 GPGPU application hierarchy

Figure 2 shows the hierarchy of a typical GPGPU applica-
tion which consists of many kernels; each kernel is divided
into many cooperative thread arrays (CTAs). Each CTA is
sub-divided into groups of threads (called warps). The max-
imum number of threads per warp is usually 32 in modern
GPGPU architectures. In the GPGPU architecture, GigaTh-
read scheduler can schedule thread block in a round-robin
fashion. Traditional GPUs execute single application at one
time. In this paper, we focus on the recent GPU architecture
where multiple applications are launched at the same time.

2.3 Cooperative thread array

In the conventional GPU, an application consists of many
kernels and each kernel is divided into many CTAs which
include many threads. In the architecture, only one single
kernel can be executed at one time. CTAs are assigned to SMs
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by a CTA scheduler—Giga Engine. CTA scheduler monitors
the status of all CTAs within a CTA pool and then selects
the CTA based on CTA scheduling schemes based on round
robin fashion. Modern GPUs use Fine-Grained Multithread-
ing (FGMT) which allows multiple CTAs to interleave their
execution on one SM. This can increase the resource uti-
lization and parallelism by hiding long memory access [20].
The number of CTAs assigning to one SM is limited by SM
resource. In this work, the maximum number of CTAs assign-
ing to one SM cannot exceeds 8. In the SM architecture,
Single Instruction Multiple Threads (SIMT) execution model
is employed, with the width of SIMT ranges from 8 to 32 that
is equal to the warp size [4]. For NVIDIA GPU architecture,
the warp size is 32. In this paper, our target GPU is modeled
based on NVIDIA Fermi series.

3 CTA-aware dynamic streaming multiprocessors
scheduling scheme

3.1 Multiple applications execution

In this section, we provide a detailed description for multiple
applications execution in the GPGPU. Traditional GPUs exe-
cute only one single kernel at a time. However, recent GPUs
can support concurrent execution of multiple kernels, either
from the same application or from different applications. We
assume that concurrently executing kernels are originated
from multiple applications. Therefore, in this paper, appli-
cation means the concurrently executing kernels. Figure 3
shows the conventional GPU architecture executing single
application and multiple applications.

3.2 CTA-aware dynamic streaming multiprocessors
scheduling scheme

Figure 4 presents the example of multiple applications exe-
cution for the baseline scheme. As shown this figure, CTAs
are assigned to SMs based on the SM scheduling scheme at
the starting time. After then, SMs are running until all allo-
cated CTAs are executed completely. If some SMs become
idle (called idle SM), the idle SMs cannot be assigned to
any CTAs. In the baseline GPU architecture, execution time
of application varies due to different workload size. This
causes underutilization of computational resources, result-
ing in GPU performance degradation.

To solve the problem, we propose a CTA-aware dynamic
SM scheduling scheme that can reduce the allocable number
of SMs of an application when the number of allocated CTAs
is small (smaller application). Afterwards, CTA assignment
from the smaller application is stopped. Several SMs previ-
ously assigned to the smaller application can be allocated to
the other application after completing the remaining work-
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Fig. 4 Baseline scheme in multiple applications execution

Execution time

loads. Therefore, this can increase the resource utilization. To
illustrate the sequence of operations for the proposed CTA-
aware dynamic SM scheduling scheme, we provide examples
in multiple applications execution in Fig. 5.

In the GPGPU, execution time of CTA is different. To
illustrate this, we assume that the execution time of CTA is
equal. In Fig. 5, we assume that Application 1 has 196 CTAs
and Application 2 has 384 CTAs.

(1) Each application is allocated 4 SMs at the starting time.

(2) Allocable SM of Application 1 is reduced when number
of allocated CTAs is small (number of CTAs is 48). CTA
assignment to the 4th SM is stopped. The 4th SM runs
until it completes the remaining number of CTAs.

(3) Allocable SM of Application 1 is reduced when number
of allocated CTAs is small (number of CTAs is 24) as
shown above. CTA assignment to the 3rd SM is stopped.
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Fig. 5 Example of proposed scheme in multiple applications execution

Application 2 can assign the 4th SM when it completes
all CTAs in the 4th SM.

(4) Application 1 reduces the number of SMs sequentially.
To the contrary, Application 2 increases the number of
SMs sequentially.

SM(n) = "k M

k=1

In this work, we measure the number of assigned SMs using
Eq. (1). This number is reduced when the number of CTAs
of the application is equal to SM (n) where “SM(n)” is the
number of remaining CTAs and “CTAmax” is the maximum
number of CTAs that is limited by SM hardware resource.

4 Experimental methodology and results
4.1 Experimental methodology

In this section, we describe the details of our experimen-
tal methodology. To implement the proposed CTA-aware
dynamic SM scheduling scheme, we modified the cycle-
accurate simulator, GPUWattch [21]. This simulator is inte-
grated GPU performance evaluation simulator GPGPU-SIM
[22] and power measurement simulator McPAT [23]. We used
the TeslaC2050 in NVIDIA Fermi architecture [19]. Table 1
presents the hardware parameters of the baseline GPU used
in our experiments. In this simulation, maximum number of
concurrent CTAs is 8. The benchmarks were selected from
NVIDIA SDK [24] (see Table 2).

In this work, we mixed four workloads for simulation with
short-term applications and long-term applications. Table 3
shows the configurations of mixed benchmark program using
four benchmark programs.

@ Springer

Table 1 Hardware parameters

Parameter Value

Number of SM 8

Warp size (SIMD width) 32

Number of threads/SM 1024

Shared memory/SM 48KB

Constant cache/SM 8KB, 2-way 64byte lines,
read-only

Texture cache/SM 12KB, 24-way 128byte

L1 data cache
Unified L2 cache

Clock (core:

lines, read-only
16KB, 4-way, 128byte lines
64KB, 8-way, 128byte lines
575MHz: 575MHz:

interconnection: DRAM) 750MHz

Number of memory 8
controller

Number of memory 2
chip/controller

Memory channel bandwidth 4 bytes

GDDR3 memory timing

Warp formation
CTA&warp scheduler

(scheduling scheme)

tCL=12, tRP =12,
tRC=40,tRAS=28,
tRCD=12, tRRD=6
post dominator

two-level scheduler
(Round-Robin)

Table 2 Benchmark programs

Benchmark program Abbreviation CTAs Execution time
Dct8x8 DC 4096 Short-term
SimpleTexture ST 4096 Short-term
AsyncAPI AA 32768 Long-term
BlackScholes BS 4096 Long-term
Table 3 Workloads

Small size benchmark Large size Abbreviation benchmark
Dct8x8 AsyncAPI DC-AA

Dct8x8 BlackScholes DC-BS

SimpleTexture AsyncAPI ST-AA

SimpleTexture BlackScholes ST-BS

4.2 Experimental results

In this section, we present and discuss the simulation results
of CTA-aware Dynamic SM Scheduling Scheme. Figure
6 shows GPGPU performance with CTA-aware dynamic
SM scheduling compared to the baseline architecture. On
average, CTA-aware dynamic SM scheduling scheme can
improve the IPC of GPGPU by 25.6% without performance
degradation in executing any benchmarks (50.4% for DC-
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AA, 39.0% for DC-BS, 5.6% for ST-AA, 7.5% for ST-BS).
This demonstrates that the proposed CTA-aware dynamic
SM scheduling scheme can provide higher resource utiliza-
tion than the baseline architecture by executing multiple
applications simultaneously.

Figure 7 shows the GPU instructions per Second according
CTA-aware Dynamic SM Scheduling Scheme. Each bar in
the graph is normalized to the instructions per second (IPS) of
baseline GPU architecture. Note that the IPS is used to show
the speed for instruction execution. Our simulation results
show that the proposed CTA-aware dynamic SM scheduling
scheme increases the IPS by 9.7% on average (17.8% for
DC-AA, 14.2% for DC-BS, 3.3% for ST-AA, 3.5% for ST-
BS).

According to our analysis, the CTA-aware dynamic SM
scheduling scheme increases the hardware resource utiliza-
tion by decreasing the proportion of idle SMs. The proposed
scheduling scheme can improve the IPC and IPS when mul-
tiple applications are executed on the GPU simultaneously.
Therefore, we expect that the proposed scheme can be a good
solution for reducing the allocable number of SMs of an

application in small-size application, leading to better over-
all GPU performance.

5 Conclusions

In this paper, we investigated the impact of multiple applica-
tions execution on GPGPU performance. GPGPU hardware
resources can be utilized better by multiple applications
execution. Therefore, the issue of resource utilization on
executing multiple applications should be considered in
designing recent GPGPUs. We proposed a new schedul-
ing scheme which manages the streaming multiprocessors in
the GPGPU more efficiently, resulting in improved resource
utilization. Our proposed CTA-aware dynamic streaming
multiprocessors scheduling scheme can manage the hard-
ware resource of GPGPU considering the workload size
of various applications when multiple applications are exe-
cuted concurrently. According to our experimental results,
our proposed scheduling scheme increased GPGPU hard-
ware resource utilization significantly, resulting in 25.6%
IPC (Instructions Per Cycle) improvement and 9.7% IPS
(Instructions Per Second) improvement on average.
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