Cluster Comput (2017) 20:781-787
DOI 10.1007/s10586-017-0768-9

@ CrossMark

A dynamic CTA scheduling scheme for massive parallel computing

Dong Oh Son! . Cong Thuan Do! . Hong Jun Choi? - Jiseung Nam! .

Cheol Hong Kim!

Received: 27 October 2016 / Accepted: 30 January 2017 / Published online: 14 February 2017

© Springer Science+Business Media New York 2017

Abstract Recent computing devices execute massive par-
allel data requiring huge computing hardware. To satisfy
increasing computing need, GPUs providing powerful com-
putational capability are employed to execute both graphics
and general-purpose applications (GPGPUs). In the GPGPU,
executing multiple applications together can increase the data
parallelism, resulting in high resource utilization. Improv-
ing the resource utilization of the GPGPU can increase
the GPGPU performance. However, various kinds of appli-
cations have different execution time depending on their
workload sizes. Therefore, if one application is completed
earlier than the other ones, resource underutilization prob-
lem may happen because the hardware resource allocated for
the early completed application becomes idle. In this work, a
CTA-aware dynamic streaming multiprocessors scheduling
scheme is proposed for multiple applications execution in the
GPGPU to efficiently manage hardware resources. Simula-
tion results show that the proposed CTA-aware dynamic SM
scheduling scheme can increase the GPU performance by up
to 25.6% on average.

B Cheol Hong Kim
chkim22@jnu.ac.kr

Dong Oh Son
sdo1127@gmail.com

Cong Thuan Do
congthuan.hut@gmail.com

Hong Jun Choi
chj6083 @nsr.re.kr

Jiseung Nam

jsnam@jnu.ac.kr

School of Electronics and Computer Engineering, Chonnam
National University, Gwangju, Korea

2 The Attached Institute of ETRI, Daejeon, Korea

Keywords GPGPU - Multiple applications - SM scheduling
scheme - Resource utilization

1 Introduction

In the recent computing systems market, the proportion
of state-of-the-art embedded systems containing IoT, cloud
computing, smart phone has been increased rapidly. Up-
to-date embedded devices executing massive parallel data
become more complex with increased size, whereas con-
ventional embedded systems are composed of simple and
cheaper hardware to meet the necessities of the target system.
Especially, clouding systems operating heavy tasks require
high parallel computing hardware. In this work, we focus
on the embedded hardware for clouding systems where the
performance is very important.

In order to enhance the throughput of computing systems,
parallel hardware architecture to process massive parallel
computing has been focused. To accomplish this, multicore
architectures, which can provide better performance than
single core architectures, have been proposed [1,2]. As the
size of data processed by computing systems becomes big-
ger, the design cost of multicore architecture is increased
dramatically to support massive parallel data [3]. Contrary
to CPUs, GPUs mainly executing graphics applications can
efficiently execute massive parallel data by employing pow-
erful computation hardware with cheaper cost [4]. In general,
the cost of CPU to compute hundreds TFLOPS is much
higher than the GPU [5]. Moreover, GPU can execute general
computing by exploiting new technology, leading to general
purpose computation on graphic processing units (GPGPU)
[6]. With the support of new parallel programing models such
as CUDA [7], OpenCL [8], ATI Streaming [9], etc., GPG-
PUs are recognized more and more powerful in executing

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-017-0768-9&domain=pdf

782

Cluster Comput (2017) 20:781-787

general-purpose applications. Unfortunately, resource under-
utilization problem may occur in GPGPUs, even though
GPGPUs can concurrently process thousands of threads to
increase data parallelism [5]. For this reason, many studies
have focused on the techniques to enhance the parallelism of
GPGPU [3,10-15].

In traditional GPUs, single application is executed at a
time, because an application includes enough threads to fully
utilize hardware resources on the GPU [16]. In recent GPUs
such as Kepler architecture model GTX 780 Ti [17], hardware
resources are growing with new generation. Therefore, most
applications cannot fully utilize hardware resources in recent
GPUs. In other words, one application cannot utilize maxi-
mum hardware resources on the GPU. Please note that GPUs
generate kernels to execute applications. Therefore, we know
that all GPU hardware resources are not fully utilized, if one
kernel is executed [16]. To alleviate this problem, GPUs can
support concurrent execution of multiple kernels, either from
the same application or from different applications.

Execution time of an application depends on the workload
size. In our previous work [18], we analyze the performance
and resource utilization efficiency on GPGPU when multiple
applications are executed concurrently compared to single
application execution.

Based on the previous work, this paper proposes a
CTA-aware dynamic streaming multiprocessors scheduling
scheme to manage the hardware resources efficiently when
multiple applications are executed concurrently.

The rest of this paper is organized as follows: Section 2
describes the GPU architecture, GPGPU application hierar-
chy and the Cooperative Thread Array. Section 3 describes
the proposed CTA-aware Dynamic Streaming Multiproces-
sors Scheduling Scheme. Section 4 presents our experimental
methodology and detailed results. Finally, Sect. 5 concludes
this work.

2 Background
2.1 GPU architecture

In this section, we describe the GPU architecture and GPGPU
application hierarchy briefly. In this work, we explain the tar-
get GPU architecture based on NVIDIA Fermi series [19].
GPU is a representative parallel architecture based on Sin-
gle Instruction Multiple Data (SIMD). SIMD architecture
has been widely used to maximize the hardware parallelism.
Figure 1 shows the GPU architecture which models a simi-
lar to the NVIDIA Fermi architecture. A GPU consists of a
number of GPU cores (or streaming multiprocessors SMs),
with each SM having a SIMT width of 8-32 (Fermi archi-
tecture has 16 SMs with a SIMT width of 32). This figure
depicts the general structure of Fermi architecture, which

@ Springer

[DRAM][DRAM] [DRAM] [DRAM]
[Memory Controller | [Memory Controller | [Memory Controller | [Memory Controller |
[L2 Cache] [L2 Cache] [L2 Cache] L2 Cache]
[sM || sM |[sM |« | EJIENEA
Interconnect
[SM || M |[sM | e] e [sM [sM][sm |
[Memory Controller | [Memory Controller | [Memory Controller | [Memory Controller |
[L2 Cache][L2 Cache] [L2 Cache] L2 Cache]
7 3t
A
[DRAM] [DRAM] [DRAM] [DRAM |

Fig. 1 GPU architecture

Application
Kernel Kernel Kernel Kernel
) Kernel)
CTA CTA
IO =ee OO
o o
| | W.
ooe T B S arp
et S g i
CTA 1 7 i
- \%
‘ Warp || Warp H Warp }' \/
| Warp || Warp H Warp | Thread

Fig. 2 GPGPU application hierarchy

consists of DRAM, L2 cache and streaming multiprocessors
(SMs). SMs and DRAMs are connected via interconnection
networks. Each SM consists of many streaming processors
(SPs), a huge register file, shared memory, L1 cache, warp
schedulers and dispatch units.

2.2 GPGPU application hierarchy

Figure 2 shows the hierarchy of a typical GPGPU applica-
tion which consists of many kernels; each kernel is divided
into many cooperative thread arrays (CTAs). Each CTA is
sub-divided into groups of threads (called warps). The max-
imum number of threads per warp is usually 32 in modern
GPGPU architectures. In the GPGPU architecture, GigaTh-
read scheduler can schedule thread block in a round-robin
fashion. Traditional GPUs execute single application at one
time. In this paper, we focus on the recent GPU architecture
where multiple applications are launched at the same time.

2.3 Cooperative thread array

In the conventional GPU, an application consists of many
kernels and each kernel is divided into many CTAs which
include many threads. In the architecture, only one single
kernel can be executed at one time. CTAs are assigned to SMs

Cluster Comput (2017) 20:781-787

783

by a CTA scheduler—Giga Engine. CTA scheduler monitors
the status of all CTAs within a CTA pool and then selects
the CTA based on CTA scheduling schemes based on round
robin fashion. Modern GPUs use Fine-Grained Multithread-
ing (FGMT) which allows multiple CTAs to interleave their
execution on one SM. This can increase the resource uti-
lization and parallelism by hiding long memory access [20].
The number of CTAs assigning to one SM is limited by SM
resource. In this work, the maximum number of CTAs assign-
ing to one SM cannot exceeds 8. In the SM architecture,
Single Instruction Multiple Threads (SIMT) execution model
is employed, with the width of SIMT ranges from 8 to 32 that
is equal to the warp size [4]. For NVIDIA GPU architecture,
the warp size is 32. In this paper, our target GPU is modeled
based on NVIDIA Fermi series.

3 CTA-aware dynamic streaming multiprocessors
scheduling scheme

3.1 Multiple applications execution

In this section, we provide a detailed description for multiple
applications execution in the GPGPU. Traditional GPUs exe-
cute only one single kernel at a time. However, recent GPUs
can support concurrent execution of multiple kernels, either
from the same application or from different applications. We
assume that concurrently executing kernels are originated
from multiple applications. Therefore, in this paper, appli-
cation means the concurrently executing kernels. Figure 3
shows the conventional GPU architecture executing single
application and multiple applications.

3.2 CTA-aware dynamic streaming multiprocessors
scheduling scheme

Figure 4 presents the example of multiple applications exe-
cution for the baseline scheme. As shown this figure, CTAs
are assigned to SMs based on the SM scheduling scheme at
the starting time. After then, SMs are running until all allo-
cated CTAs are executed completely. If some SMs become
idle (called idle SM), the idle SMs cannot be assigned to
any CTAs. In the baseline GPU architecture, execution time
of application varies due to different workload size. This
causes underutilization of computational resources, result-
ing in GPU performance degradation.

To solve the problem, we propose a CTA-aware dynamic
SM scheduling scheme that can reduce the allocable number
of SMs of an application when the number of allocated CTAs
is small (smaller application). Afterwards, CTA assignment
from the smaller application is stopped. Several SMs previ-
ously assigned to the smaller application can be allocated to
the other application after completing the remaining work-

IE' Application 1
SM || SM || SM || SM || SM || SM || SM || SM

! $ $ [[] $ ¢
| On Chip Network |

| DRAM | DRAM | DRAM | DRAM | DRAM ‘ DRAM |
(A)
Application 2

SM || SM |[SM || SM

$ & T § 1 =3
| On Chip Network |

| Application 1

| DRAM | DRAM | DRAM l DRAM | DRAM | DRAM |
(B)

Fig. 3 Conventional GPU architecture executing, a single application,
b multiple applications

Application 1 IEI Application 2 E Idle SM

SM1 SM2 SM3 SM4 SM5 SMé SM7 SMs8

(CTAs : 196) E EI ﬂ ﬂ E E E (CTAs: 384)
[]
[]
[|

oro A EEEFFEE oo
[]
n
L}

e o]][] [[] o] o] o

Fig. 4 Baseline scheme in multiple applications execution

Execution time

loads. Therefore, this can increase the resource utilization. To
illustrate the sequence of operations for the proposed CTA-
aware dynamic SM scheduling scheme, we provide examples
in multiple applications execution in Fig. 5.

In the GPGPU, execution time of CTA is different. To
illustrate this, we assume that the execution time of CTA is
equal. In Fig. 5, we assume that Application 1 has 196 CTAs
and Application 2 has 384 CTAs.

(1) Each application is allocated 4 SMs at the starting time.

(2) Allocable SM of Application 1 is reduced when number
of allocated CTAs is small (number of CTAs is 48). CTA
assignment to the 4th SM is stopped. The 4th SM runs
until it completes the remaining number of CTAs.

(3) Allocable SM of Application 1 is reduced when number
of allocated CTAs is small (number of CTAs is 24) as
shown above. CTA assignment to the 3rd SM is stopped.

@ Springer

784

Cluster Comput (2017) 20:781-787

ﬂ Application 1

=]

Application 2

SM1 SM2 SM3 SM4 SM5 SMé SM7 SM8
SEEReE E ﬂ m E |E| E S
- I' *:
el n n =u:|E| E E L
=
o r :’ H
g (A28 n =H: E E D
= "
£ =
$ e H:E:El |E| E| |E| E RESSeS
S VI
H i
s O)luiﬁ El |E| |E| E Ll
)

Appllcatlon 1
e o]][] (][] [o][3] o]

i : Application 1 CTA assigned stop

Fig. 5 Example of proposed scheme in multiple applications execution

Application 2 can assign the 4th SM when it completes
all CTAs in the 4th SM.

(4) Application 1 reduces the number of SMs sequentially.
To the contrary, Application 2 increases the number of
SMs sequentially.

SM(n) = "k M

k=1

In this work, we measure the number of assigned SMs using
Eq. (1). This number is reduced when the number of CTAs
of the application is equal to SM (n) where “SM(n)” is the
number of remaining CTAs and “CTAmax” is the maximum
number of CTAs that is limited by SM hardware resource.

4 Experimental methodology and results
4.1 Experimental methodology

In this section, we describe the details of our experimen-
tal methodology. To implement the proposed CTA-aware
dynamic SM scheduling scheme, we modified the cycle-
accurate simulator, GPUWattch [21]. This simulator is inte-
grated GPU performance evaluation simulator GPGPU-SIM
[22] and power measurement simulator McPAT [23]. We used
the TeslaC2050 in NVIDIA Fermi architecture [19]. Table 1
presents the hardware parameters of the baseline GPU used
in our experiments. In this simulation, maximum number of
concurrent CTAs is 8. The benchmarks were selected from
NVIDIA SDK [24] (see Table 2).

In this work, we mixed four workloads for simulation with
short-term applications and long-term applications. Table 3
shows the configurations of mixed benchmark program using
four benchmark programs.

@ Springer

Table 1 Hardware parameters

Parameter Value

Number of SM 8

Warp size (SIMD width) 32

Number of threads/SM 1024

Shared memory/SM 48KB

Constant cache/SM 8KB, 2-way 64byte lines,
read-only

Texture cache/SM 12KB, 24-way 128byte

L1 data cache
Unified L2 cache

Clock (core:

lines, read-only
16KB, 4-way, 128byte lines
64KB, 8-way, 128byte lines
575MHz: 575MHz:

interconnection: DRAM) 750MHz

Number of memory 8
controller

Number of memory 2
chip/controller

Memory channel bandwidth 4 bytes

GDDR3 memory timing

Warp formation
CTA&warp scheduler

(scheduling scheme)

tCL=12, tRP =12,
tRC=40,tRAS=28,
tRCD=12, tRRD=6
post dominator

two-level scheduler
(Round-Robin)

Table 2 Benchmark programs

Benchmark program Abbreviation CTAs Execution time
Dct8x8 DC 4096 Short-term
SimpleTexture ST 4096 Short-term
AsyncAPI AA 32768 Long-term
BlackScholes BS 4096 Long-term
Table 3 Workloads

Small size benchmark Large size Abbreviation benchmark
Dct8x8 AsyncAPI DC-AA

Dct8x8 BlackScholes DC-BS

SimpleTexture AsyncAPI ST-AA

SimpleTexture BlackScholes ST-BS

4.2 Experimental results

In this section, we present and discuss the simulation results
of CTA-aware Dynamic SM Scheduling Scheme. Figure
6 shows GPGPU performance with CTA-aware dynamic
SM scheduling compared to the baseline architecture. On
average, CTA-aware dynamic SM scheduling scheme can
improve the IPC of GPGPU by 25.6% without performance
degradation in executing any benchmarks (50.4% for DC-

Cluster Comput (2017) 20:781-787

785

BBaseline BCTA-aware

500

400

300

200

Instruction Per Cycle

100

ST-AA ST-BS
Mixed Benchmarks

DC-AA

Fig. 6 IPC (instruction per cycle)

@ Baseline ECTA-aware

Normalized Instructions Per Second

09 +
DC-AA DC-BS ST-AA ST-BS AVG

Mixed Benchmarks

Fig. 7 1PS (instructions per second

AA, 39.0% for DC-BS, 5.6% for ST-AA, 7.5% for ST-BS).
This demonstrates that the proposed CTA-aware dynamic
SM scheduling scheme can provide higher resource utiliza-
tion than the baseline architecture by executing multiple
applications simultaneously.

Figure 7 shows the GPU instructions per Second according
CTA-aware Dynamic SM Scheduling Scheme. Each bar in
the graph is normalized to the instructions per second (IPS) of
baseline GPU architecture. Note that the IPS is used to show
the speed for instruction execution. Our simulation results
show that the proposed CTA-aware dynamic SM scheduling
scheme increases the IPS by 9.7% on average (17.8% for
DC-AA, 14.2% for DC-BS, 3.3% for ST-AA, 3.5% for ST-
BS).

According to our analysis, the CTA-aware dynamic SM
scheduling scheme increases the hardware resource utiliza-
tion by decreasing the proportion of idle SMs. The proposed
scheduling scheme can improve the IPC and IPS when mul-
tiple applications are executed on the GPU simultaneously.
Therefore, we expect that the proposed scheme can be a good
solution for reducing the allocable number of SMs of an

application in small-size application, leading to better over-
all GPU performance.

5 Conclusions

In this paper, we investigated the impact of multiple applica-
tions execution on GPGPU performance. GPGPU hardware
resources can be utilized better by multiple applications
execution. Therefore, the issue of resource utilization on
executing multiple applications should be considered in
designing recent GPGPUs. We proposed a new schedul-
ing scheme which manages the streaming multiprocessors in
the GPGPU more efficiently, resulting in improved resource
utilization. Our proposed CTA-aware dynamic streaming
multiprocessors scheduling scheme can manage the hard-
ware resource of GPGPU considering the workload size
of various applications when multiple applications are exe-
cuted concurrently. According to our experimental results,
our proposed scheduling scheme increased GPGPU hard-
ware resource utilization significantly, resulting in 25.6%
IPC (Instructions Per Cycle) improvement and 9.7% IPS
(Instructions Per Second) improvement on average.

Acknowledgements This research was supported by Basic Science
Research Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education (NRF-2015R1D1A3A010
19454), and it was also supported by the MSIP(Ministry of Science,
ICT and Future Planning), Korea, under the ITRC(Information Tech-
nology Research Center) support program (IITP-2016-R2718-16-0011)
supervised by the IITP(Institute for Information & communications
Technology Promotion).

References

1. Agarwal, V., Hrishikesh, M.S., Keckler, S.W., Burger, D.: CLK rate
versus IPC: the end of the road for conventional microarchitectures,
In: Proceedings of the 27th International Symposium on Computer
Architecture. pp. 248-259 (2000)

2. Olukotun, K., Nayfeh, B.A., Hammond, L., Wilson, K., Chang, K.:
The case for a single-chip multiprocessor. In: Proceedings of 7th
Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 2—11 (1996)

3. Hill, M.D., Marty, M.R.: Amdahls law in the multicore era. [IEEE
Comput. 41(7), 33-38 (2008)

4. Buck, I, Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston,
M., Hanrahan, P.: Brook for GPUs: stream computing on graphics
hardware. In: Proceedings of Computer Graphics and Interactive
Techniques (SIGGRAPH), pp. 777-786 (2004)

5. Lee, V.W,, Kim, C.K., Chhugani, J., Deisher, M., Kim, D.H.,
Nguyen, A.D., Satish, N., Smelyanskiy, M., Chennupaty, S., Ham-
marlund, P., Singhal, R., Dubey, P.: Debunking the 100X GPU vs.
CPU Myth: an Evaluation of Throughput Computing on CPU and
GPU. In: Proceedings of International Symposium on Computer
Architecture, pp. 451-460 (2010)

6. General-purpose computation on graphics hardware. http://www.

gpgpu.org

@ Springer

http://www.gpgpu.org
http://www.gpgpu.org

786

Cluster Comput (2017) 20:781-787

7.

8.
9.
10.

13.

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

NVIDIA CUDA programming. http://www.nvidia.com/object/
cuda_home_new.html

OpenCL. http://www.khronos.org/opencl/

ATI Streaming. http://www.amd.com/stream

Tanasic, 1., Gelado, 1., Cabezas, J., Ramrez, A., Navarro, N.,
Valero, M.: Enabling preemptive multiprogramming on GPUs. In:
Proceedings of the 41st International Symposium on Computer
Architecture, pp. 193-204 (2014)

. Xie, X., Liang, Y., Wang, Y., Sun, G., Wang, T.: Coordinated static

and dynamic cache bypassing for GPUs. In: Proceedings of 21th
IEEE International Symposium on High Performance Computer
Architecture, pp. 76-88 (2015)

Voitsechov, D., Etsion, Y.: Single-graph multiple flows: energy effi-
cient design alternative for GPGPUs. In: Proceedings of the 41st
International Symposium on Computer Architecture, pp. 205-216
(2014)

Lee, S., Arunkumar, A., Wu, C.: CAWA: coordinated warp schedul-
ing and cache prioritization for critical warp acceleration of
GPGPU workloads. In: Proceedings of the 42st International Sym-
posium on Computer Architecture, pp. 515-527 (2015)

Wu, G.Y., Greathouse, J.L., Lyashevsky, A., Jayasena, N., Chiou,
D.: GPGPU performance and power estimation using machine
learning. In: Proceedings of 21th IEEE International Symposium
on High Performance Computer Architecture, pp. 564-576 (2015)
Lee, M., Song, S., Moon, J., Kim, J., Seo, W., Cho, Y., Ryu, S.:
Improving GPGPU resources utilization through alternative thread
block scheduling. In: Proceedings of 20th IEEE International Sym-
posium on High Performance Computer Architecture, pp. 260-271
(2014)

Jog, A., Bolotin, E., Guz, Z., Parker, M., Keckler, S.W., Kandemir,
M.T., Das, C. R.: Application-aware memory system for fair and
efficient execution of concurrent GPGPU applications. In: proceed-
ings of 7th Workshop on General Purpose Processing Using GPUs
(2014)

NVIDIA GTX 780-Ti.
gtx-700- graphics-cards/gtx-780ti/
Son, D.O., Do, C.T., Choi, H.J., Kim, J.M., Park, J.H., Kim, C.H.:
CTA-aware dynamic scheduling scheme for streaming multipro-
cessors in high-performance GPUs. In: Proceedings of Information
Science and Applications (ICISA 2016), Vol. 376, pp. 1391-1399
(2016)

NVIDIAs Next Generation CUDA Compute Architecture:
Fermi, www.nvidia.com/content/pdf/fermi_white_papers/nvidia_
fermi_compute_architecture_whitepaper

Thornton, J.E.: Parallel operation in the control data 6600. In: Pro-
ceedings of AFIPS Proceedings of FJCC, Part. 2, Vol. 26, pp. 33—40
(1964)

Bakhoda, A., Yuan, G.L., Fung, W.W.L., Wong, H., Aamodt, T.M.:
Analyzing CUDA workloads using a detailed GPU simulator. In:
Proceedings of 9th International Symposium on Performance Anal-
ysis of Systems and Software, pp. 163—174 (2009)

Bakhoda, A.G., Yuan, L., Fung, W.W.L., Wong, H., Aamodt, T.M.:
Analyzing CUDA workloads using a detailed GPU simulator. In:
Proceedings of 9th International Symposium on Performance Anal-
ysis of Systems and Software, pp. 163—-174 (2009)

Li, S., Ahn, J.H., Strong, R.D., Brockman, J.B., Tullsen, D.M.,
Jouppi, N.P.: McPAT: an integrated power, area, and timing mod-
eling framework for multicore and manycore architectures. In:
Proceedings of the International Symposium on Microarchitecture,
pp. 469-480 (2009)

CUDA SDK. http://developerdownload.nvidia.com/compute/
cuda/sdk/website/samples.html

http://www.nvidia.com/

@ Springer

and GPGPU.

Dong Oh Son received the
B.S. degree and M.S. in elec-
tronics and computer engineer-
ing from Chonnam National
University, Gwangju, Korea in
2010 and 2012 respectively.
He received the Ph.D. degree
in computer engineering from
Chonnam National University
in 2016. Currently, he works
as a postdoctoral researcher at
Chonnam National University.
His research interests include
computer architecture, embed-
ded systems and GPGPU.

Cong Thuan Do received the
Engineer’s degree from Hanoi
University of Science and Tech-
nology, Hanoi, Vietnam in 2012,
the M.S. degree in electrical
and computer engineering from
Chonnam National University,
Gwangu, Korea in 2014. Cur-
rently, he is pursuing his Ph.D.
in Electrical and Computer Engi-
neering at Chonnam National
University. His research inter-
ests include computer architec-
ture, parallel processing, micro-
processors, embedded systems

Hong Jun Choi received the B.S. degree and M.S. in electronics and
computer engineering from Chonnam National University, Gwangju,
Korea in 2009 and 2011 respectively. He received the Ph.D. degree
in computer engineering from Chonnam National University in 2014.
From Sept 2014 to Jan 2015, he worked as a postdoctoral researcher
at Chonnam National University. Currently, he works at the Attached
Institute of ETRI. His research interests include computer architecture,

low-power processors and GPGPU.

Jiseung Nam received the B.S.
Degree in electrical engineering
from Inha University, Korea, in
1981, the M.S. degree in elec-
trical engineering from Univer-
sity of Alabama in 1986, and
Ph.D. degree in electrical and
computer engineering from Uni-
versity of Arizona in 1992. He
worked as a researcher in Elec-
tronics and Telecommunications
Research Institute (ETRI), Dae-
jeon, Korea from 1992 to 1995.
Currently, he is a professor in
Chonnam National University,

Gwangju, Korea. His research interests include Computer Network,
IPTV, Smart TV, Multimedia Communication and Digital Media Arts.

http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://www.khronos.org/opencl/
http://www.amd.com/stream
http://www.nvidia.com/gtx-700-graphics-cards/gtx-780ti/
http://www.nvidia.com/gtx-700-graphics-cards/gtx-780ti/
www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper
www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper
http://developerdownload.nvidia.com/compute/cuda/sdk/website/samples.html
http://developerdownload.nvidia.com/compute/cuda/sdk/website/samples.html

Cluster Comput (2017) 20:781-787

787

Cheol Hong Kim received the
B.S. degree in Computer Engi-
neering from Seoul National
University, Seoul, Korea in 1998
and M.S. degree in 2000. He
received the Ph.D. in Electri-
cal and Computer Engineering
from Seoul National University
in 2006. He worked as a senior
engineer for SoC Laboratory
in Samsung Electronics, Korea
from Dec 2005 to Jan 2007.
Now is working as an Associate
Professor at School of Electron-
ics and Computer Engineering,

Chonnam National University, Korea. His research interests include
embedded systems, mobile systems, computer architecture, SoC design,
low power systems, and multiprocessors.

@ Springer

	A dynamic CTA scheduling scheme for massive parallel computing
	Abstract
	1 Introduction
	2 Background
	2.1 GPU architecture
	2.2 GPGPU application hierarchy
	2.3 Cooperative thread array

	3 CTA-aware dynamic streaming multiprocessors scheduling scheme
	3.1 Multiple applications execution
	3.2 CTA-aware dynamic streaming multiprocessors scheduling scheme

	4 Experimental methodology and results
	4.1 Experimental methodology
	4.2 Experimental results

	5 Conclusions
	Acknowledgements
	References

