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Abstract Divide-and-conquer is one of the most important
patterns of parallelism, being applicable to a large variety
of problems. In addition, the most powerful parallel sys-
tems available nowadays are computer clusters composed of
distributed-memory nodes that contain an increasing num-
ber of cores that share a common memory. The optimal
exploitation of these systems often requires resorting to
a hybrid model that mimics the underlying hardware by
combining a distributed and a shared memory parallel pro-
gramming model. This results in longer development times
and increased maintenance costs. In this paper we present
a very general skeleton library that allows to parallelize
any divide-and-conquer problem in hybrid distributed-shared
memory systems with little effort while providingmuch flex-
ibility and good performance. Our proposal combines a
message-passing paradigmat the process level and a threaded
model inside each process, hiding the related complexity
from the user. The evaluation shows that this skeleton pro-
vides performance comparable, and often better than that of
manually optimized codes while requiring considerably less
effort when parallelizing applications on multi-core clusters.
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1 Introduction

Parallelism, whose exploitation is never trivial, is nowadays
ubiquitous in every kind of software. In addition, many appli-
cations require the usage of clusters either because their
memory requirements exceed the capacity of a single node
or because they need a large number of processors to com-
plete their computations in a reasonable time or both. Since
the appearance of multi-core processors every cluster is a
hybrid distributed-shared memory system, as each node con-
tains its own separate memory, which is shared by one or
more local multi-core processors. The applications that run
in these clusters require a programming paradigm suitable
for distributed memory in order to cope with the distributed
memory nodes, while they can take advantage of the par-
allelism inside each node by means of either distributed or
shared memory programming models, the latter ones usu-
ally providing the best performance thanks to the reduced
communication and synchronization costs within the shared
memory of a node. The usage of two programming mod-
els in order to achieve the best performance, where one
or both are often relatively low-level, results in low pro-
grammability and therefore increased programmer effort and
costs. This has motivated extensive research on the improve-
ment of the programmability of these systems, which has
led to proposals such as the partitioned global address space
(PGAS) paradigm [46], which offers a global view of the data
in an application together with information on the locality
of each portion of the data to each processors. Unfortu-
nately these approaches have not been widely adopted for
different reasons, important ones being their suboptimal per-
formance [31] and code reusability, sincemany proposals are
new languages. As a result, most current high performance
codes for hybrid distributed-shared memory systems are still
written usingmessage passing (typically onMPI), often com-
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bined with shared memory solutions such as OpenMP, and
the best strategy to program these systems is still an open
problem.

In this paper we explore the efficient programming of
hybrid distributed-shared memory systems following the
algorithmic skeleton approach [8], which identifies typical
patterns of parallelism [32] and automates their management
by means of predefined skeletons that hide the complexity of
the parallel implementation from the programmer. Namely,
we propose an algorithmic skeleton for the well-known
divide-and-conquer pattern of parallelism,which parallelizes
the divide-and-conquer problem resolution strategy [1]. We
chose to parallelize this strategy for two reasons. The first one
is that it is widely applicable, appearing in fact in many cru-
cial algorithms in different fields [4,15,23,26,34,39,48,49].
The second one is that, if properly designed, this skeleton
also allows to express simpler common computation patterns
such as the ones provided by the higher-order functions map
and reduce [19], thus covering even more problems.

Our proposal is a substantial extension of [16], which was
restricted to sharedmemory systems.Our newalgorithm tem-
plate not only efficiently combines two programmingmodels
in order to try to achieve the best performance in hybrid
distributed-shared memory systems, but it also provides an
enormous flexibility for the execution of the divide-and-
conquer algorithms in these systems, as we will see. All
this is achieved with an easy-to-use high-level interface that
requires small effort from the user. The main contributions
of this work are:

– We present the first divide-and-conquer skeleton opti-
mized for hybrid distributed-shared memory systems we
know of.

– The skeleton has a large configurability that allows it to
adapt to the required input and output conditions as well
as to control its internal behavior in several ways.

– Our proposal allows to define, build and operate on
arbitrary distributed data structures, even with partial
replications, that are amenable to the application of this
skeleton.

– Our library provides novel and handy mechanisms to
optimize data transfers of complex data structures.

– We present a demanding evaluation of our algorithm tem-
plate that compares it both in terms of performance and
programmability with hand-optimized versions based on
two of the most popular tools used in applications paral-
lelized for computer clusters, MPI and OpenMP.

– The library is also favorably compared to two state-of-
the-art tools that are particularly well suited to parallelize
the divide-and-conquer pattern, namely Cilk Plus [24]
and the most recent skeleton for divide-and-conquer that
we found [10].

– The software package is made publicly available at
https://github.com/fraguela/dparallel_recursion under an
open-source license.

The remainder of this manuscript is organized as follows.
Section 2 reviews the related work. Then, Sect. 3 discusses
the key aspects of the divide-and-conquer pattern of paral-
lelism and presents an algorithm template that implements
this pattern in sharedmemory systems. Section 4 analyses the
challenges of the implementation of this skeleton in hybrid
memory systems and presents our new skeleton. This is fol-
lowed by an evaluation in Sect. 5 and our conclusions and
future work in Sect. 6 .

2 Related work

Divide-and-conquer [1], hence denoted D&C, is a very
widely applicable strategy, therefore it has been implemented
in many libraries of skeletal operations. While some of them
are restricted to shared-memory environments [10,16,29],
including the first skeleton designed to parallelize irregu-
lar problems [18], many others support distributed-memory
systems, enabling the use of clusters. This multiplies by the
number of nodes existing in the cluster both the amount
of parallelism and the amount of memory available to the
problem to be solved, having in exchange to deal with the
complexities inherent to distributed memory. Unfortunately,
almost all of the libraries in this second group only provide
distributed-memory parallelism, which can severely restrict
the performance and the scalability in currentmulti-core clus-
ters, as we will see in our evaluation in Sect. 5.1. However,
that is not the only difference with our proposal. For exam-
ple, the fact that eSkel [9] relies on C precludes it from
benefiting from the large advantages that object-oriented
languages provide to the development of libraries such as
encapsulation or polymorphism. As a result its API is some-
what low-level, exposingmanyMPI-specific implementation
details. Lithium [2] is a skeleton library for Java that exploits
a macro data flow implementation schema instead of the
more usual implementation templates, and largely enjoys the
advantages of objects, including runtime polymorphism. Our
library however almost exclusively uses approaches resolved
at compile time, and thus cheaper, such as static polymor-
phism and C++ template metaprogramming. Another library
that heavily relies on these latter techniques is Quaff [13],
as its task graph must be encoded by the programmer by
means of type definitions from which the compiler produces
optimized message-passing code. This static generation of
the tasks implies that, unlike our proposal, Quaff cannot
dynamically generate new parallel tasks depending on run-
time conditions.
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SkeTo [25] and Muesli [7] are the two libraries of skele-
tal operations we know of that have made an effort to better
adapt to multi-core clusters. They also have in common with
our proposal that they are written in C++ and they support
distributed memory parallelism on top of MPI. However,
SkeTo centers around data-parallel skeletons on distributed
data-types it provides and offers no support for task parallel
skeletons. Thus, it does not provide any D&C skeleton. As
for Muesli, its adaption to hybrid memory systems, based on
OpenMP, was only performed on its data-parallel skeletons.
As a result, its D&C skeleton is built for pure distributed-
memory systems. In addition, while our library heavily uses
on template metaprogramming and static polymorphism,
Muesli reliance on runtimepolymorphism leads to large over-
heads for simple applications in [27].

Skeletons are not the only high-level approach suitable
to parallelize D&C algorithms. For example, Cilk [5], and
more recently, Cilk Plus [24], largely simplify their imple-
mentation by means of keywords to spawn and synchronize
parallel tasks. Cilk Plus provides some additional facilities
such as simple loop parallelization or specific support for
reductions, but also only within shared-memory environ-
ments. The Java-based Satin system [43], which also relies
on spawn-sync primitives and was recently extended with
support for heterogenous many-cores [22], allows to paral-
lelize D&C problems in distributed memory environments
adding many additional features such as replicated shared
objects, speculative parallelism, fault tolerance, malleabil-
ity and cluster-aware stealing for load balancing. The lack
of knowledge on the structure of the problem does not allow
Satin to implement global-level optimizations enabled by our
proposal such as broadcasts or gather/scatter operations and
puts the user in charge of the explicit parallelization and syn-
chronization of the required tasks. Tools that simplify the
exploitation of task-level parallelism by analyzing the depen-
dencies between tasks and managing their execution in order
to provide a data-flow model avoid this latter shortcoming
in the parallelization of D&C problems. This is the case
of DepSpawn [17] and ClusterSs [41], although compared
to our skeleton, while the first one is restricted to shared-
memory systems, the second one does not support nested
spawning of tasks.

Finally, many big data processes can be seen as D&C
algorithms, and there are several specialized frameworks to
support them [11,45,47]. These tools operate at a different
level to that of our proposal, not only because they have been
particularly designed tomanipulate large amounts of data, but
also because they provide features that can be critical for this
kind of processes such as high performance distributed file
systems, resource management, or resilience. In situations in
which these features were not required, or our skeleton could
be complemented with modules that provided them, our pro-
posal could be an interesting alternative to these frameworks.

Other contributions and differences of our work with
respect to the approaches discussed above are the possi-
bility of building and supporting arbitrary truly distributed
data structures that can be reused across different algorithms
and the facilitation of several optimizations that can have an
important impact on performance.

3 A divide-and-conquer skeleton for shared
memory systems

The divide-and-conquer strategy applies to problems whose
solution can be obtained from solutions of smaller separate
subproblems into which the problem can be divided. Since
the subproblems usually have the same nature as the origi-
nal one, this strategy gives place to a recursive subdivision
that stops when a base case is detected. Also, the indepen-
dence of the subproblems naturally enables parallelism, the
D&C pattern of parallelism [32] being in fact one of the most
commonly applicable and used. For this reason this pattern
is supported by several libraries of algorithmic skeletons,
as we have seen in Sect. 2. In the remainder of this sec-
tion we describe in detail the approach taken by [16], a C++
D&C algorithm template for shared-memory systems called
parallel_recursion, as it is the base for our work.

A simple analysis of the D&C parallel pattern shows that
it consists of four basic blocks: the determination of whether
a problem is a base case that must be solved at once or a
decomposable one, the resolution of a base case, the subdi-
vision of a non-base case, and finally the combination of the
results of the subproblems of a decomposable problem. A
more careful analysis reveals that these components can be
classified in two groups. One of them, which is comprised
of the identification of the base case and the subdivision in
subproblems of non-base cases, is more strongly related to
the structure of the problem, which is usually directly related
to the data structure(s) used to represent it. This way, if we
apply different algorithms that can be accommodated to the
D&C strategy (e.g. finding theminimumvalue, adding all the
values, etc.) to different data structures (e.g. a binary tree, a
vector, etc.) we will find that these components will be nat-
urally different for the different data structures, but they will
be often reusable for different computations on the same data
structure. As a result [16] proposes to use an object called
info object whose aim is to provide information on the struc-
ture of the problem, including these two D&C components.
The second group comprises the other components of the
algorithm, i.e., the resolution of the base case and the com-
bination of partial solutions, which are more strongly related
to the concrete problem at hand to be solved, and they are
encapsulated in a second object called the body object.

The C++ templates Info and Body in Fig. 1 describe the
requirements and signatures for the info and body objects
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template<typename T, int N>

struct Info : Arity<N> {

bool is base(const T& t) const; //base case detection

//number of subproblems of t
int num children(const T& t) const;

//get i−th subproblem of t
T child(int i, const T& t) const;

};

template<typename T, typename S>
struct Body : EmptyBody<T, S> {

void pre(T& t); //preprocessing of t

S base(T& t); //solve base case

S post(T& t, S ∗r); //combine children solutions
};

Fig. 1 Class templates with pseudo-signatures for the info and body
objects used by parallel_recursion

discussed above, respectively. Since an info object only
deals with the problem input, its template depends on the
datatype T of the input, but not on the type of the algorithm
result, which we call here S, possibly with both types being
the same. As expected, the info object has a method that
returns a boolean specifying whether a problem is a base
case or not. The non-base case decomposition is split in two
methods: num_children, which specifies the number of
subproblems identified, and child, which given an inte-
ger i between 0 and num_children−1 and the current
problem t, returns an object that holds the i-th subproblem
of t. This design was chosen so that when a non-base case
is split, each subtask can be in charge of building its sub-
problem from the parent. The info object must derive from
a provided class Arity<N> that is parameterized by the
number N of subproblems in which a non-base case can be
subdivided, which we call the arity of the problem. When
N is a fixed value known in advance, Arity<N> provides
the num_children method. When the arity is variable or
unknown, the argument for Arity must be the predefined
variable UNKNOWN and the user is responsible for imple-
menting a proper method for num_children.

Regarding the Body object, it has the expected method
base to solve a base case, and post, which combines the
solutions of the subproblems of a non-base case (provided
by means of a pointer in order to facilitate the support for
variable numbers of children) into a single one. This latter
method also receives the parent problem in case it has infor-
mation required to compute the global solution that is not
found in the children solutions, a situation we have found to

1 struct TreeAddInfo: public Arity<2> {
2 bool is base(const tree t ∗t) const
3 { return t−>level == 1; }
4
5 tree t ∗child(int i, const tree t ∗t) const
6 { return t−>child[i]; }
7 };
8
9 struct TreeAddBody: public EmptyBody<tree t ∗,int>{

10 int base(tree t ∗ t) { return t−>val; }
11
12 int post(tree t ∗ t, int ∗r)
13 { return r[0] + r[1] + t−>val; }
14 };
15 ...
16 int r = parallel recursion<int> (root, TreeAddInfo(),

TreeAddBody(), auto partitioner());

Fig. 2 Reduction on a binary tree using parallel_recursion

be very common. Finally, the body also has a method pre
that is invoked on the problem object before any process-
ing, or even checking whether it is a base case, is performed
on it. This method is motivated by the observation that in
some algorithms it is useful to perform some processing on
the input before considering it for the first time in the D&C
algorithm. The parallel_recursion library provides
a utility class template EmptyBody<T, S> from which
body object classes can be derived, which provides empty
definitions of all the body object methods, so that the users
does not need to define those that are not required.

Besides the input problem, and the info and the body
objects, this skeleton supports a fourth optional argument,
called the partitioner, that controls the parallelism depending
on its data type. Three classes of partitioners are supported.
The simple_partitioner just runs a new parallel
task for each child identified in any level of subdivision
of the recursive processing of the D&C algorithm. The
auto_partitioner is a smarter partitioner that tries to
launch just enoughparallel tasks to keep all the cores busy and
allow them to balance their load by means of a work-stealing
mechanism that is automatically provided by the underly-
ing Intel TBB library [37], whichparallel_recursion
uses to define and run its parallel tasks. Finally, there
is a custom_partitioner class that must implement
a method do_parallel(const T& t) that returns a
boolean specifying whether the children of the problem t
must be processed in parallel, if true, or sequentially, other-
wise.

Figure 2 illustrates the parallelization, using this skele-
ton, of the treeadd benchmark from the Olden benchmark
suite [38], which adds the values in all the nodes of a binary
tree. The arity of the D&C algorithm is 2, since every decom-
posable node will have two children, and this is reflected in
the definition of the info object in line 1. The problem inputs
are pointers to tree nodes (tree_t *). Each node has a
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value val, its level in the tree and an array of two point-
ers to children called child. The base case of the recursion
are the nodes at level 1 (lines 2–3), which just return the value
they store (line 10). Getting the i-th child of a decomposable
node just involves returning the i-th element of its child
array (lines 5–6), while reducing the values computed by
the two children subtasks of a node with the node value itself
involves adding these three values (lines 12–13). The usage of
an algorithm template with arguments that are objects whose
template classes are available to the compiler allows the inlin-
ing of the requiredmethods in the code generation and a large
degree of optimization. The result is that users do not need a
separate definition of the algorithm steps for the sequential
and the parallel cases. Rather, the skeleton is able to inter-
nally build separate high-performance parallel and sequential
components from this specification, achieving a performance
similar, and often even better than that of more burdensome
approaches such as the native TBB algorithm templates, or
standard compiler directives such as OpenMP [16].

4 Supporting divide-and-conquer in hybrid
memory systems

The presence of a distributed memory, and even further, a
hybrid distributed-shared memory system, noticeably com-
plicates the implementation of a D&C parallel algorithm.
The most important consideration is probably the distribu-
tion of the input problem on the distributed-memory nodes.
In this regard we have three possible situations, all of which
should be efficiently supported by a skeleton for maximum
generality. The first one is that the input is replicated in all
the nodes that participate in the computation. In this situation
no initial data distribution is needed and all the nodes will
work in parallel on their local copies, taking care that each
one of them solves a different portion of the problem.

Another common situation is that the input is located in
a single source node. Depending on the relative cost of the
broadcast of the input to all the nodes and the problem sub-
division component of the D&C algorithm we may choose
between two possibilities. If the broadcast is cheaper, the
algorithm should replicate the input in all the nodes bymeans
of a broadcast and the proceed as in the situation when the
input is replicated. Most often however the best policy will
be to decompose the input problem until at least one sub-
problem per each participating node is obtained, and send to
each node its subproblem(s).

The last possibility is that the data structure that repre-
sents the initial problem is already distributed among the
participating nodes, possibly with some partial replication
(for example, the top part in the case of a tree). In this case,
the distribution stage can be skipped and each node can just
work on its local portion.

In all the situations the parallelism within each node
should be exploited to the fullest. Besides, this should be
usually done using a shared-memory (threaded) strategy in
order to facilitate load balancing and avoid message passing
between its parallel tasks, rather exploiting the fast com-
munication and synchronization facilities enabled by shared
memory. The usage of multiple processes per node should
be also supported, as in some applications this may perform
better than a purely threaded approach. For this reason during
the rest of our explanation we will refer to processes rather
than to nodes when talking about the executing entities that
have distributed memory. Relatedly, if the application were
run using a single process, the skeleton should automati-
cally only rely on a threaded strategy for its parallelization.
Also, the skeleton should be able to support any arbitrary data
types, and hide the details of interprocess communication as
much as possible. Finally, regarding the result of the D&C
algorithm, users should be able to choose between obtain-
ing it only in the source process, letting it distributed on the
processes that participated in the computation, or getting it
replicated in all the processes.

Our dparallel_recursion skeleton was designed
having all these requirements in mind. Let us now discuss its
syntax and functionality, followed by some implementation
details.

4.1 Syntax and functionality

Since the abstract nature of a D&C parallel algorithm is the
same no matter the kind of system where it is executed,
we wanted our skeleton to experience minimum changes in
order to adapt it to hybrid memory systems. In fact, its syn-
tax only differs in three points from the one described in
Sect. 3. The first difference is that the info object class must
derive from the class template DInfo<T, N>, where T is
the type of the input problem and N is its arity, i.e., the num-
ber of subproblems of a non-base case, or UNKNOWN when
it is variable or not known in advance. The constructor of
this class admits an optional integer that indicates the min-
imum number of tasks in which the user wants to partition
the work in each process when the auto_partitioner
is used. This improvement was motivated by our observa-
tion of the most common requirements for the execution
of this kind of algorithms. The most important property of
the DInfo objects is, however, that they store the informa-
tion on the distribution of the input of the algorithm. This
information is stored in the object after it has been used in
the first dparallel_recursion invocation on a given
input, which will either distribute that input or learn that it
is already distributed, based on user-defined flags that are
described below. The availability of this information in the
DInfo object is useful because once a given data structure
is distributed using our algorithm template, other D&C algo-
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rithms can be directly applied to the same input using our
skeleton and allowing it to optimally exploit the actual data
distribution, just by providing the same DInfo object. The
result is maximum performance with minimum programmer
effort.

The second change is that the skeleton allows a fifth
optional argument that is a bitset of flags used to configure
its behavior. The large variety of behaviors supported by the
skeleton is now explained through the description of some of
the available flags:

– DefaultBehavior implements the behavior applied
when no bitset is provided. In this configuration the skele-
ton assumes that the input is only in the process with id
or rank 0 (called source process), from which it must be
partitioned, and where the only copy of the result of the
algorithm will be located when the computation finishes.

– ReplicatedInput informs that the input problem is
replicated in all the processes. The skeleton partitions the
problem locally in each process making sure that each
process works on a different subproblem once a given
level of subdivision of the initial common parent problem
is reached.

– DistributedInput allows to apply the skeleton to
distributed data structures that have not been created
using our skeleton, and thus, for which the DInfo object
contains no distribution information. Namely, this flag
reports that the input is already distributed among the
processes, and the portion resident in each process is the
input provided to the skeleton by that process. Notice
that the existence of a pre-distributed input in which each
process has an independent portion implies that there is
a not a top-level single element from which to obtain
every level of decomposition of the problem. Therefore
this situation requires that the post operation that com-
bines the results of the subproblems of a given input either
does not use this input for the reduction or accepts one
that is default-constructed by the skeleton to complete
the reduction in the upper levels.

– ReplicateInput indicates that the input is only in the
source process and it requests that instead of partitioning
the input and sending a chunk to each one of the other pro-
cesses, the input is replicated in all the processes and the
algorithm then proceeds as in the ReplicatedInput
case.

– ReplicateOutput affects the placement of the result.
Instead of obtaining the final result only in the source
process, a copy of it is obtained in all the processes.

– DistributedOutput informs the skeleton that there
is no need to gather or replicate the output. Each process
will simply keep its portion of the result.

– GatherInput controls the behavior of the skeleton
with respect to the input problem after the D&C algo-

Process 0

Partitioning

Partitioning

Process 0 Process 1 Process 2 Process 3
Distribution

(a) Prioritizing partitioning

Process 0

2ssecorP0ssecorP

Process 0 Process 1 Process 2 Process 3

Partitioning

PartitioningPartitioning

Distribution

DistributionDistribution

(b) Prioritizing distribution

Fig. 3 Partitioning strategies supported by dparallel_
recursion, assuming 4 processes

rithm execution. By default the skeleton only collects
the result of the reduction of the algorithm, that is, the
value returned by the post method of the body object.
This flag requests that the skeleton also gathers the input
problem in the source process (or all the processes, if
ReplicateOutput is also active). The most relevant
situation when this is interesting is when the D&C algo-
rithmmodifies the initial input problem. This can happen
in any or all the methods of the body object, as one can
see that the model for these methods in Fig. 1 uses a non-
const reference to the user problem, allowing to change
it. Users are nevertheless free to use, and in fact should
use, a const reference when the input is not going to be
modified.

– PrioritizeDM asks to prioritize the distribution and
reduction on distributed memory (DM) rather than on
shared memory. By default the source process parti-
tions the problem until there are subproblems for all the
processes, then gives these problems to the other pro-
cesses to be solved, solves its own portion, and finally
gathers all the sub-results to compute the final one. Fig-
ure 3a represents the partitioning stage of this strategy.
When PrioritizeDM is requested, the source process
follows the strategy depicted in Fig. 3b, which sends sub-
problems as soon as possible to other processes, and all
the processes that have sub-problems continue partition-
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ing them in parallel and sending subproblems to other
processes until all of them have work to do. The reduc-
tion stage follows exactly the reverse order.

Other flags express potential optimizations of different
kinds. For example, some of them indicate that either the
input or the result should be communicated by means of
collective gather/scatter operations rather than point to point
messages. Others help with the balancing of the distribution
of work. Namely, the Balance flag balances the number
of subproblems per process, while UseCost balances the
computational cost of the problems assigned to each process.
This latter functionality requires a user-provided function to
estimate such cost.

The third change has nothing to do with the distributed
nature of the new skeleton, butwith our observations onD&C
algorithms. Namely, we found that sometimes it is useful to
perform some computations on a problem before partitioning
it in subproblems, but not when it is a base case. Since the
premethod of the body objects is always run on a problem,
regardless of whether it is a base or not, it can perform these
tasks, but at the cost of checking before whether the problem
is a base case, which is something the skeleton has also to do
anyway.As a result, better performance and programmability
can be achieved by allowing a new method in bodies that is
run only before problem subdivisions. We call this optional
used-providedmethodpre_rec. An empty implementation
is provided by EmptyBody, so that it need not be defined if
it is not useful.

Figure 4 shows how these new features work together in
the treeadd benchmark used as example in Sect. 3. Unlike
Fig. 2, this code includes not only the reduction but also the
construction of the tree using our skeleton, as it also con-
stitutes a D&C algorithm. This allows to illustrate two uses
of the skeleton and, furthermore, the creation and reuse in
different invocations of distributed data structures using our
library. In addition, the solution is very efficient, as not only
is the tree built in a parallel and distributed fashion, but it also
enables the second D&C algorithm to begin to work locally
on its portion of the distributed structure in each process
without initial communications.

The only value used by this benchmark to allocate the
tree is its number of levels, and in fact it is the only value
required by the constructor of the tree nodes. Also, each
node in the tree, shown in lines 1–9, stores its level in the
tree (variable nlevel), the leaves being at level 1, the
value val to be added, and pointers to its children. The
code in Fig. 4 assumes that the number of levels of the
desired tree is available in all the nodes in the variable
NumLevelsTree. This allows to build a replicated root
for the tree in all the nodes in line 36. It deserves to be men-
tioned that while the constructor of a tree node tree_t
in the sequential version triggers the recursive allocation

1 struct tree t {
2 int val, nlevel;
3 tree t ∗child[2];
4
5 tree(int lvl) : nlevel(lvl) {
6 val = ...;
7 child[0] = child[1] = nullptr;
8 }
9 };

10
11 struct TreeInfo: public DInfo<tree t ∗, 2> {
12 bool is base(const tree t ∗t) const
13 { return t−>nlevel == 1; }
14
15 tree t ∗child(int i, const tree t ∗t) const {
16 return t−>child[i];
17 }
18 };
19
20 struct ParAllocBody : EmptyBody<tree t ∗, void> {
21 void pre rec(tree t ∗t) {
22 t−>child[0] = new tree t(t−>nlevel − 1);
23 t−>child[1] = new tree t(t−>nlevel − 1);
24 }
25 };
26
27 struct TreeAddBody : EmptyBody<tree t ∗, int> {
28 int base(tree t ∗t) { return t−>val; }
29
30 int post(tree t ∗t, int ∗r)
31 { return t−>val + r[0] + r[1]; }
32 };
33
34 TreeInfo tree info;
35
36 tree t ∗root = new tree t(NumLevelsTree);
37
38 dparallel recursion<void>(root, tree info,

ParAllocBody(), auto partitioner(), ReplicatedInput |
DistributedOutput);

39 ...
40 int r = dparallel recursion<int>(root, tree info,

TreeAddBody(), auto partitioner());

Fig. 4 Main elements of a treeadd implementation based on
dparallel_recursion

of all its subtree, in our skeleton-based version each node
allocation (lines 5–8) only creates one node. The reason is
that it is the responsibility of dparallel_recursion
to perform and parallelize the D&C allocation process, thus
filling in the appropriate pointers to children. This task is
performed by the skeleton invocation in line 38, which spec-
ifies that its input is replicated across the processes and the
result will be obtained in a distributed fashion. As we can
see in the figure, the TreeInfo class that describes the par-
titioning of the problem is identical to the TreeAddInfo
class used in Fig. 2 with the exception that it derives from
DInfo<tree_t *, 2> instead of Arity<2>. In the recur-
sive creation of the tree, non-base nodes will fill in their
child components with pointers to nodes of the immedi-
ately lower level. This is achieved in the pre_rec method
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Node 0 Node 1 Node 2 Node 3

Fig. 5 Shape of the local tree built by the code in Fig. 4 in each process
or node, assuming 4 processes

of the class ParAllocBody used by the skeleton. Notice
how in this problem the body object does not generate a sepa-
rate output, but rather modifies the input of the algorithm. As
a result, and since the resulting tree will be available through
the root variable in each process, the return type of this
dparallel_recursion invocation is void, which is
specified as the only template argument to the invocation in
line 38. Therefore in this case the skeleton operates as a pro-
cedure that builds the tree exploiting the property mentioned
above that it can modify its input. This is in contrast with the
invocation in line 40, where the int template argument to
the invocation informs that the skeletonwill return an integer,
which is stored in the destination variable r. Of course, the
return type must be compatible with the operations and types
specified in the body object of the associated invocation.

When the root of a problem is present in a single process,
unless the user requests to prioritize the distribution across
processes over the partitioning (PrioritizeDM), this pro-
cess recursively subdivides the problem until there is at least
one subproblem for each process, then distributes the work
to the other processes, and later works on the subproblems it
has assigned to itself. When the root is replicated, however,
all the processes subdivide in parallel the original problem
until there is at least one subproblem for each process, then
choose the subproblems they keep for themselves, and con-
tinue working only on them. As a result of this policy, in our
example the local tree built in each process replicates the top
levels of the tree, but just below the level where there are as
many or more vertices than computing processes, each pro-
cess only has one or some of the branches, as Fig. 5 shows.
Our skeleton is totally general, so any number of comput-
ing processes is supported. As a result, in some situations
there can be some imbalance, that is, some processes can
keep more low level portions of the distributed data struc-
tures than others. In any case, users do not need to be aware
of these details. They just need to know that the information
on the concrete partitioning used is stored in the info object,
called tree_info in Fig. 4, and that using it in subse-
quent invocations of dparallel_recursion will allow
the skeleton to operate correctly and optimally on the data
structure. This way, the usage of this object in the invocation
in line 40 to perform the reduction on the values of the tree

ensures that each process will correctly identify the portions
of the structure it owns.

Notice that the invocation in line 40 does not use the
DistributedInput flag for two reasons. The first one
is that tree_info already contains all the information on
the distribution of the input, making the flag useless. The
second and most important one is that, as we explained
above, this flag is actually not suited for this situation, its
purpose being to allow the application of the algorithm tem-
plate to data structures that have not been distributed using
dparallel_recursion. An example input for which
this flag would be appropriate is a distributed array where
each process has a separate portion of the global array fol-
lowing some strategy predetermined by the programmer.

It deserves to be mentioned that the design of this algo-
rithm template allows to use it to provide the functionality of
other very common skeletons. For example the map opera-
tion that applies in parallel some function to the elements
of a list giving place to another list with the results can
be naturally implemented by partitioning the input list until
there are enough chunks to exploit all the parallelism avail-
able, processing these chunks as base cases, and merging the
resulting lists in the post operation of the body object. In
the case of reduce, which reduces to a single value several
elements using an associative operator,postwould perform
the reduction of the partial reductions from several chunks. In
fact this implementation for reduce follows a strategy similar
to the one used by the parallel_reduce template func-
tion of the Intel TBB [37], although ours is more general, the
main advantages of dparallel_recursion being the
support of distributed memory and arbitrary problem arities.

Finally, while the dparallel_recursion skeleton is
the kernel of our library, it also includes some items to facil-
itate its use. The main ones are range classes that provide
automatic partitioning, shallow arrays that allow to partition
arrayswithout replicating their data, andmacros and function
templates to implement parallel loops on top of our skele-
ton using a very simple syntax. The framework also provides
parallel_recursion, our skeleton for shared-memory
parallelization, as well as similar utilities built on top of it.
Also, while they are not part of the public API, it is very
easy to access internal functions that provide communica-
tions between processes on top of MPI using a simple syntax
similar to that of Boost.MPI [20], and more importantly,
applying the optimizations described in Sect. 4.2, which was
in fact the reason for their development.

4.2 Implementation and optimizations

As shown in Fig. 6, our framework, which is the area
enclosed in the thicker black line, relies on three exter-
nal libraries. Both the dparallel_recursion skeleton
proposed in this paper, and the parallel_recursion
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Fig. 6 Library dependences of dparallel_recursion

algorithm template introduced in [16] rely on Intel TBB [37]
for the shared-memory parallelism, using its low level API to
build and synchronize tasks. This is a C++ library for parallel
programming on multi-core processors based on tasks. TBB
provides mechanisms to define, order (i.e., specify depen-
dences) and synchronize tasks, letting the runtime of the
library in charge of the low level details such as managing
thread pools, enforcing the dependences declared by the user,
or stealing tasks between threads for the sake of load balanc-
ing. This library was preferred over other alternatives such
as OpenMP because it provides better control and accord-
ing to studies like [36] its task creation, scheduling and load
balancing mechanisms seem to be more sophisticated and
optimized than those of OpenMP. As an added benefit, a
compiler without support for OpenMP can be used to com-
pile our skeleton1, something that is not trivial and requires
special measures for libraries that rely on OpenMP [7]. The
shortcoming of the Intel TBB librarywith respect toOpenMP
is that even if the user relies on the algorithm templates it pro-
vides, which largely simplify its usage compared with its low
level API, its programming costs are much higher than those
of compiler directives [16]. In our case, all this complexity
is hidden inside our library. The distributed-memory paral-
lelism is supported by means of the MPI standard. A final
dependence of our skeleton is Boost [6], the well-known col-
lection of C++ peer-reviewed libraries, which is mainly used
to serialize data to be transmitted in the MPI messages. This
library is delimited by a dashed line in Fig. 6 because while
its headers are always required, it only needs to be linked to
an application based on our skeleton when its most advanced
features are used.

The implementation follows five stages. First, the prob-
lem is decomposed until there is at least one subproblem for
each MPI process or the load balancing criteria set by the
user are met. This stage is skipped if the input is distributed,
since this implies each process has already a subproblem.
This top level decomposition is stored in the DInfo object

1 One might think that in 2016 every major compiler distribution
should support OpenMP, but as a representative example, during the
development of this work we found that the compilers of the standard
development environment for the current version of Mac OS X do not
support OpenMP.

in case the problem is used in further skeleton invocations.
Then, the subproblems are distributed among the processes,
except if the inputwas replicated or distributed, inwhose case
each process directly takes care of its subproblems. The third
stage processes in each process the problem(s) assigned to
it. This stage is very much the algorithm template presented
in [16] except for the new pre_rec method and the inclu-
sion of new optimizations enabled by C++11. The fourth
stage gathers the partial results in the source process, and
the fifth one performs the final reduction until a single result
is obtained. Of course, these two latter stages are skipped
if the user requested to keep the output distributed. Also, if
PrioritizeDMwas requested, the first two stages happen
in an interleaved way until all processes get work, and the
same happens with the two last stages until a single result is
obtained.

The implementation contains numerous optimizations that
make it very competitive with hand-optimized codes. First,
it extensively relies on C++ template metaprogramming so
that polymorphism is efficiently resolved at compile time
rather than at runtime. Second, we tried to exploit as much
as possible the new optimizations enabled by the C++11
standard, mainly those associated to rvalue references and
move constructors and assignments. Third, every relevant
step inside the library has been parallelized. The only excep-
tion are MPI messages, which can be sent or received from
different threads in a process, but never simultaneously from
several threads. The main reason for this design was ease of
installation and portability, since importantMPI distributions
are not compiled by default to support this possibility, while
others do not even support this feature in popular environ-
ments [12]. Also, the implementation exploitsMPI collective
communication primitiveswhenever it identifies it is possible
and safe to do so.

The parallelization pattern followed in the initial decom-
position proceeds by levels, generating a new level of
subproblems out of the most recently generated one by
decomposing all its elements in parallel. This pattern was
chosen due to the need to (a) generate a minimum num-
ber of subproblems before proceeding to their distribution
among the processes and (b) try to make these subproblems
as similar as possible in terms of size to balance work. Since
by default the skeleton has no information on the cost of
each subproblem, it follows the heuristic of distributing sub-
problems obtained at the same level of decomposition. The
algorithm template stops the initial decomposition either at
the first level with enough problems to feed all the processes,
or when the conditions set by the user for the load balance
by means of the Balance or UseCost flags commented
in Sect. 4.1 are met, or when further problem subdivision is
possible.

As explained before, the MPI calls cannot be made
simultaneously from different threads. Despite this fact, the
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communication stages can also exploit parallelism because
the skeleton tries to parallelize the (de)serialization process
of the data involved in the communications when such pro-
cess is needed. The parallelization is both among different
(de)serialization tasks as well as with the active communica-
tion task in each moment.

Typically the most expensive part of the execution is the
stage in which each process solves its subproblem(s), which
has been parallelized following a recursive pattern. Namely,
whenever a task partitions a problem, it checks whether there
are enough parallel tasks in the system depending on the par-
titioner provided by the user (see Sect. 3). If this is the case,
the children are processed using a purely sequential imple-
mentation of the D&C algorithm. For example, this version
makes no further checks related to parallelism. Otherwise,
the task generates an independent parallel task for the pro-
cessing of each subproblem, launches them to execution, and
awaits their completion. Thiswait is not active; rather the task
simply remains in the stack of the thread that run it until all
its children tasks finish, which allows the thread to return to
it. At that point, the task performs the reduction of the results
using the post method and finishes. Finally, the last stage
naturally follows the same parallelization pattern as the first
one, but in the reverse order, that is, bottom-up.

An issue that can play an important role in performance
and where our library provides very simple and effective
mechanisms to improve the performance is the data seri-
alization. Our framework implements three serialization
policies that the user can choose from. First, arithmetic
types or types marked as bitwise serializable by means of
the BOOST_IS_BITWISE_SERIALIZABLE macro can
be represented just by the consecutive sequence of bytes that
constitutes them. Thus they require no actual serialization
and they are directly sent from, or received in, their original
storage in memory by our algorithm template. Otherwise,
the user has to provide functions to serialize/deserialize the
object in/from an archive provided by the skeleton using the
API supported by the Boost serialization library. Relying on
this library is very convenient given its degree of optimization
and the facilities it provides for the (de)serializationwithmin-
imumeffort of pointers, arrays, STL collections, etc. The user
can choose between two possibilities for the transmission of
non-bitwise serializable data types. If shemarks the typewith
themacroTRANSMIT_BY_CHUNKS, each interaction of the
user (de)serialization function(s) with the archive provided
by the skeleton, i.e., the (de)serialization of each individual
component of the object to transmit, will give place to a sep-
arate message that will transmit only this element. In its turn,
whenever any of these chunks is bitwise serializable, it will
be directly sent/received from/in its existing location avoid-
ing any copy or translation cost. If the type is not labeled with
this macro, the skeleton will serialize all the components of
the object in a single buffer and transmit it in a single mes-

sage. Our implementation has been made in such a way that
serialization functions are written in exactly the same way
for both kinds of serialization, making the process totally
oblivious to users but for the application of the macro to the
data type.

Choosing the best serialization policy can be critical for
performance. A good example is a variable-length vector
whose components are an integer sz with its size and a
pointer ptr to the elements it stores. This type is not bit-
wise serializable, as the bits of its two data members are not
enough to represent all the data associated to it. As a result,
the user has to provide functions that serialize/deserialize
in/from an archive the size sz and the array of sz elements
pointed byptr. By defaultdparallel_recursionwill
copy these two components to/froma single temporary buffer
and send/receive them in a single message. Nevertheless, if
the type is marked with TRANSMIT_BY_CHUNKS, sz will
be transmitted in one message and the array of elements in
another one. If the elements stored in the vector are bitwise
serializable, there will be no need for any temporary alloca-
tion or copy of data, neither in the sender nor in the receiver.

Other simple user-level optimization enabled by our
library are the flags related to collective communications
mentioned in Sect. 4.1 and the usage of DInfo objects
belonging to the subclass BufferedDInfo. These objects
optimize memory usage by keeping the buffers used during
the communication between processes to avoid their repet-
itive allocation and deallocation. Also, they allow the user
to provide those buffers, so that if an existing data struc-
ture can used as temporary storage, even the allocation, and
sometimes more importantly, the extra memory footprint, is
avoided. In a similar fashion, the skeleton has also mech-
anisms to let the programmer specify the location of the
object that will hold the final result in order to avoid the
creation of temporaries as well as unneeded copies or move-
ments.

5 Evaluation

In this section our skeleton is evaluated both in terms of per-
formance and programmability using the eigth benchmarks
described in Table 1. The table provides, for each benchmark,
its arity (number of subproblems in which each problem can
be divided, with ‘var’ standing for variable), whether the
combination of the results of the subproblems is associative
or not or not needed (marked with a dash), whether there
is imbalance between children problems of the same parent,
and the kind of input and output of the algorithm. Let us now
briefly discuss each one of these programs.

The fib benchmark recursively computes a Fibonacci
number f ib(i) = f ib(i − 2)+ f ib(i − 1). Although this is
an inefficient method to compute this value, this benchmark
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Table 1 Benchmarks used and their main characteristics (see descrip-
tion in first paragraph of Sect. 5)

Name Arity Associative Imbalance Input Output

fib 2 Yes Yes Scalar Scalar

quicksort 2 – Yes Array Array

nqueens var Yes Yes Board Scalar

strassen 7 No Yes Arrays Array

treeadd 2 Yes No Tree Scalar

tsp 2 No No Tree Cycle

barnes hut var Yes Yes Array Array

ep var Yes No Range Histogram

is widely used in academia (e.g. [30,42]) as an example of
D&C algorithm with imbalanced tasks. Furthermore, let us
notice that since skeletons execute the same computational
blocks as serial or manually parallelized versions of the same
code, adding the elements needed to connect and run them
in parallel, it is in simple benchmarks such as this one or
treeadd, described in the preceding sections, where skele-
tons are expected to more clearly show their overheads. Our
test assumes that the input is replicated in all the processes
and the result is obtained only in one. Notice that since the
input is a scalar, if it were not initially replicated, it would
be trivial to replicate it with little cost using a MPI broadcast
operation, or just using the ReplicateInput flag in the
case of our skeleton.

Our second example, quicksort, sorts a vector of inte-
gers initially located in a single process using the quicksort
algorithm and leaves the result distributed among the partici-
pating processes. The imbalance of the tasks of this algorithm
is highly variable, as depending on the pivot (randomly) cho-
sen for the partitioning of an array, the resulting children
tasks can be heavily imbalanced.When a subproblem reaches
a size below 104 elements, our implementations resort to
the std::quicksort function provided by the standard
library to complete the sorting process. Since in this bench-
mark the results are left in the participating processes and
quicksort does not need any computation to merge the par-
tial results of the algorithm, this program has no reduction
stage. This is reflected in Table 1 by the dash for the associa-
tivity of the reduction.

Themain interest of the third algorithm,nqueens, which
computes the number of solutions to the N Queens problem,
lays on the variable number of children of each subproblem.
Just as in fib, the input is assumed to be replicated and the
result is obtained only in one process. Again, since the board
object is bitwise serializable, its replication in MPI or with
ReplicateInput would be trivial and inexpensive.

The fourth benchmark is Strassen’s algorithm for matrix
multiplication, which has complexity O(N 2.8074) compared

to the O(N 3) of the traditional algorithm. Our implemen-
tations begin with the input matrices in a single process
and gather in it the final result. The tasks of this algorithm
present very little imbalance, but the fact that its arity is 7
makes recursive over-decomposition necessary to optimally
exploit the number of cores, as it is typically even, and often
a power of 2. When the decomposition reaches matrices of
size 256 × 256 our programs resorts to a standard matrix
product algorithm provided by uBLAS [44].

The next two applications have been taken from the Olden
benchmarks suite [38]. The first one is treeadd, which has
been used as example in the preceding sections. The second
one, tsp, solves the traveling salesman problem on a tree
in which each node represents a city. As in treeadd, tsp
contains two distributedD&Calgorithms that are interrelated
because the result of the first one (tree construction) is the
input of the second one (traveling salesman problem reso-
lution). For this reason the best implementation strategy for
tsp is also to build the tree in a distributed fashion, so that
the second D&C algorithm can proceed in parallel in the dif-
ferent processes without the need of messages to distribute
the input. In our tests the result of treeadd is obtained in
all the processes, while the one of tsp is obtained only in
the source process.

The seventh benchmark is the Barnes–Hut n-body algo-
rithm [3], which classifies the bodies in an octree of cells
in order to reduce the computations. Namely, the octree
agglomerates the bodies in hierarchical cells so that a single
computation representing the whole cell suffices to com-
pute the approximate impact of the bodies within the cell on
bodies that are beyond a given distance threshold. Our imple-
mentation started from the Barnes–Hut code of the Lonestar
suite [28], which only parallelized the computation of the
forces. Our benchmark is more ambitious, as we also par-
allelized the update of the bodies due to those forces and
the computation of the center and the diameter of the space
where the simulation takes place.

The last benchmark is the ep application of theNASParal-
lel Benchmarks [35], which generates independent gaussian
random values using the Marsaglia polar method and then
performs a reduction on them. This benchmark was chosen
for two reasons. First, it illustrates the use of our skeleton
on problems that can be easily expressed as a parallel loop
with a reduction. Second, it is a well-known benchmark with
standard optimized implementations with which to compare
and where the optimal implementation is straightforward.

Five versions of each benchmark, in addition to the one
based on our proposal, were developed for this evaluation.
First, we built, or took from the existing suite, an opti-
mized sequential baseline. Then, in order to compare with
optimized codes that only rely on distributed memory com-
munications, we developed MPI versions. Since the most
widespread approach to exploit hybrid memory systems in
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HPC applications is the combination of MPI with OpenMP,
the well-known standard for shared-memory parallelism, we
also wrote versions that combine these two paradigms. The
main purpose of the other two versions is to compare our
proposal with other high level approaches that provide pro-
grammability advantages for D&C algorithms. As we will
see in Sect. 5.1, the MPI-only implementations considerably
lag behind the dparallel_recursion and the hybrid
MPI/OpenMPversions formanybenchmarks. Thus, compar-
ingwith any approachwithout support formultithreading and
shared-memory parallelism would have been unfair. Also,
as discussed in Sect. 2, we found no skeletons optimized
for multi-core clusters that support the D&C pattern. This
way, in the end we developed versions based on MPI com-
bined with Cilk Plus [24] and with the newest D&C parallel
skeleton we found [10]. This skeleton, which will be called
dac in the following, follows a multi-threaded approach
to parallelize D&C problems in shared-memory environ-
ments, and like ours is a parallel template that uses C++11
features. Since several backends were developed for this
skeleton, all of which provide similar performance in [10],
our experiments use the backed based on Intel TBB [37]
in order to maximize the similarity of the approaches com-
pared. In the rest of this paper we use the term hybrid
versions/codes/implementations to refer to those that com-
bine MPI with a threaded approach, including our skeleton.

We actually developed many more than six versions of
many benchmarks, because several parallelization strategies
were tested for the codes in which the best one was not obvi-
ous, seeking the implementation with the best performance.
For example we found that the best MPI-only implementa-
tion of quicksort followed the decomposition strategy
in Fig. 3b, while the best dparallel_recursion and
hybrid implementations followed Fig. 3a, which besides
facilitates the use of MPI_Scatterv to optimize the data
distribution. The final manually developed hybrid versions
apply exactly the same optimizations and patterns of paral-
lelization, which are equivalent to those of our skeleton, or
sometimes better thanks to hand-made optimizations. Also,
the parallelizationwas not restricted to the kernel of theD&C
algorithms. Rather, it was applied to all the meaningful parts
of the applications. For example, the deserialization of the
cycles of cities built in the tsp problem can be accelerated
with a parallel loop. Following with this code, even with this
improvement, it is very important for performance to paral-
lelize the deserialization processwith the receipt of the cycles
of cities that come from other processes in the reduction
stage of the computation. The MPI + OpenMP implementa-
tions parallelized these portions of the code using OpenMP
directives; the dparallel_recursion and MPI + dac
versions resorted to the TBB facilities for this, and the codes
based on MPI and Cilk Plus relied on Cilk tasks, including
those generated by _Cilk_for loops. The Cilk Plus and

OpenMP versions follow very similar schemes because omp
for pragmas parallelize loops in a similar way to that of
_Cilk_for, and the OpenMP tasking mechanism intro-
duced in version 3.0 of the standard was used to parallelize
recursive processes. This enables a style, which although
based on directives, is similar to the one provided by Cilk
Plus keywords. The schemes are only slightly different in
that the parallel loops that contain nested parallelism based
on tasks were parallelized in OpenMP by means of tasks
from a single common ancestor in order to try to facilitate
the load balancing of all the tasks involved in the parallel
computation.

All our parallel versions arewritten to support any number
of processes. In addition, the threaded versions, that is, all of
them except the sequential and theMPI-only version, support
any number of threads per process and allow to choose the
number of tasks per thread. In several algorithms it is impos-
sible to generate an exact number of tasks per thread unless
those tasks correspond to different levels of decomposition
of the initial problem, which could imply heavy imbalances
between tasks. For this reason, the threaded versions are
designed to generate all their sequential tasks at the same
level of decomposition of the original problem. As a result,
they stop the parallel partitioning and generation of tasks
when they reach the first level of decomposition that allows
to generate at least the number of tasks per thread requested
by the user. This means that the actual number may be larger
than the requested one.

5.1 Performance evaluation

Our experiments were performed in the Linux cluster
described in Table 2, which consists of 32 nodes with 24
cores each, totaling 768 cores. The optimization levelO3was
used in all the compilations. Table 3 shows the relevant con-

Table 2 Experimental environment

Feature Value

#Nodes 32

CPUs/Node 2 × Intel Xeon E5-2680 v3

CPU Family Haswell

CPU Frequency 2.5 GHz

#Cores/CPU 12

Total #Cores 32 × 2 × 12 = 768

Memory/Node 64GB DDR4

Network Infiniband FDR

Compiler g++ 6.1

OpenMP version 4.0

MPI OpenMPI 1.10.2

TBB 4.4
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Table 3 Problem sizes and
common configuration for
performance evaluation

Name Problem size Seq. time Procs/node

fib 54st Fibonacci number 390.79 1

quicksort 500 million 32-bits integers 50.38 1

nqueens 16 × 16 board 175.23 1

strassen 8192 × 8192 double-precision matrix 137.05 4

treeadd allocate Binary tree with 30 levels 25.99 2

treeadd compute 100 reps. of the tree reduction 415.76 2

tsp allocate Binary tree with 27 levels 29.60 2

tsp compute Traveling salesman problem 281.41 2

barnes hut 10 iter. 5 × 105 bodies in 3D space 232.13 2

ep Class D (236 values) 2758.86 2

figuration parameters that describe the problem size of each
benchmark tested, the runtime of the sequential execution
and the number of processes per node that gave place to the
shortest runtime of each application when using the 32 nodes
available. The treeadd and tsp benchmarks contain two
very differentD&Ckernels that are parallelized in our experi-
ments: one that builds the tree (allocate) and another one that
performs the computations (compute). While the compute
kernels are interesting for clear reasons,we think that the allo-
cate kernels also deserve attention because they illustrate how
dparallel_recursion can build distributed data struc-
tures (in this case, with partial replication) that can be used
in other D&C kernels, as our example based on treeadd
in Sect. 4.1 showed. Also, the two allocation kernels differ
among themselves, as the one in treeadd is very intensive
on memory operations, with almost no computations, while
the one in tsp contains several double-precision floating
point operations, including non-trivial calculations such as
logarithms.

In what follows, unless otherwise stated, in the executions
that use several nodes, which are all the ones that involve
more than 24 cores, the number of threads used by each pro-
cess was fixed to 24/N where N is the number of processes
per node shown in Table 3. In the executions using c ≤ 24
cores, which always use a single node, the number of pro-
cesses was set to p = �c/(24/N )�, with c/p threads each.
It also deserves to be mentioned that the degree of variabil-
ity observed in the runtimes was the normal one. This way,
the standard deviations were below 1% of the average for
the large runtimes and they were under 10% for the shortest
runtimes, which are below 10 ms for the allocate kernels of
treeadd and tsp when using the whole cluster.

Several combinations of flags for those benchmarks for
which the best combination was not obvious were tried in
order to decide the best implementation of each algorithm.
Figure 7 shows the results of these experiments, plotting the
average speedup achieved by 16 executions with at least

4 subtasks per thread with respect to the optimized serial
implementation for different numbers of nodes. Notice that
all the combinations for fib use ReplicatedInput
because, in order to evaluate different situations, the input
scalar is assumed to be available in all the nodes for this
experiment. Similarly, DistributedOutput appears in
all the combinations forquicksort because in order to test
different possibilities, our codes assume that the user wants
the resulting vector distributed across the processes that par-
ticipate in the computation.Wemust also note that the flags in
Fig. 7d apply to the only stage of the algorithm that requires
communications in our implementation, namely the update
of the bodies with the previously computed forces. In our
implementation all the bodies exist in all the processes so
that each process can build the whole octree and the force
computation stage can access any arbitrary body found in
the octree. For this reason, the flags for this stage include
ReplicatedInput. The flagReplicateOutputmust
also be used, because the bodies must be replicated again in
all the processes for the next iteration of the simulation.

In order to interpret the results we must remember that
Balance just balances the number of subproblems per pro-
cess, while UseCost balances the cost of the subproblems
assigned to each process. This latter flag requires the user to
provide a function to estimate this cost. Since fib has an
arity 2, its number of subproblems is always a power of 2,
andBalance does not have any influence on performance in
Fig. 7a. The quicksort kernel has also arity 2, and for this
reason we skipped trying this flag in this benchmark. Nev-
ertheless, both fib and quicksort are very imbalanced
in the cost of their subproblems, and therefore UseCost
can improve their performance. It must be mentioned that
our template allows to configure several parameters related
to the load balancing process, including the maximum time
spent in it or the maximum imbalance allowed, measured as
the ratio of additional subproblems/cost of the process with
more load with respect to the process with less load. All our
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Fig. 7 Impact of different optimization flags on the speedup of dparallel_recursion over the sequential version as a function of the number
of nodes used in the execution. Notice that the y-axes do not necessarily start at 0

experiments use the default configuration, which allows a
maximum imbalance of 20%. While cost-based load balanc-
ing is very positive for fib, its effects are not consistent in
quicksort. The reason is that in this algorithm the ini-
tial partitioning stage is very expensive, and the imbalance
can be very large even after many levels of subdivision. As
a result, requesting to balance the load among the processes
can force the threads of the source process to perform many
levels of decomposition of the problem that would have been
otherwise parallelized among the threads of all the processes.
A second problem is that without UseCost the skeleton
partitions the problem until there is at least a subproblem
per each process, and then sends a single subvector to each
process, but with UseCost there are several subproblems
per process, each process in general receiving a different
number of subproblems. This leads to many more mes-
sages, which results in additional performance degradation.
This is the reason why the Scatter flag, which informs
dparallel_recursion that the input is a vector that can
be distributed by means of MPI_Scatterv, almost does

not help when load balancing is not requested, but clearly
improves the execution of the algorithm for most numbers
of nodes when UseCost is applied. This latter combination
(DistributedOutput|Scatter|UseCost) is the one
with the best average performance, and thus the chosen one.
Althoughnqueens is an imbalanced algorithm,we have not
experimented with the application of UseCost to it because
we do not know of a heuristic that allows to estimate the cost
of a subproblem for this benchmark.

As for strassen, this is an algorithm where the
PrioritizeDM partitioning algorithm is clearly needed
to obtain the best performance. Also, since the number of
subproblems is always a power of 7, and thus not divisible
by the number of processes used, which is a power of 2, the
Balance flag is useful for this algorithm.

Regarding barnes hut, as explained before, by default
communications take place by means of point-to-point mes-
sages. Since all the bodies of this application are located in a
consecutive vector, collective communications based on the
MPI_Gatherv family can speedup the execution if the pro-
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Table 4 Configuration of
dparallel_recursion for
performance evaluation

Name Partitioner Flags

fib Automatic ReplicatedInput|UseCost
quicksort Automatic DistributedOutput|Scatter|UseCost
nqueens Custom ReplicatedInput|Balance
strassen Automatic PrioritizeDM|Balance
treeadd alloc Automatic ReplicatedInput|DistributedOutput
treeadd comp Automatic ReplicateOutput

tsp alloc Automatic ReplicatedInput|DistributedOutput
tsp comp Automatic DefaultBehavior

barnes hut Simple ReplicatedInput|ReplicateOutput|ReusableGather
ep - – (dpr_pfor_reduce was used)

grammer uses theGatherflag. In addition, since the number
and relative position of the bodies assigned to each pro-
cess within the vector remain constant during the execution,
the communications that prepare the collective communica-
tion ensuring that every process knows how much to receive
and send from/to any other process can be performed just
once instead of in every iteration of the simulation. The user
can provide this information to the skeleton by means of
the ReusableGather flag. We can see in Fig. 7d that
collective communications are increasingly important for
barnes hut as the number of processes grows, while
the ReusableGather optimization plays a minimal role.
Notice that since ReusableGather implies a gather col-
lective, its use makes unnecessary the specification of the
Gather flag.

Table 4 shows the partitioner and the flags used for our
dparallel_recursion experiments. The partitioners
have been chosen so that they simplify the implementation
of a program that allows the user to control the number of
tasks per thread. Algorithms that basically parallelize loops
are well served by a single level of subdivision in which each
loop is divided in as many tasks as desired, which are con-
sidered base cases. This situation, found in barnes hut,
is easily expressed with a simple partitioner. Algorithms
that necessarily require a recursive subdivision in order to
generate different numbers of subproblems are better served
by an automatic partitioner, because it allows users to
specify the number of tasks they want and then it computes
and manages the number of subdivisions required to achieve
the desired granularity. Finally, a problem with variable arity
in which several levels of subdivision may be needed to gen-
erate the desired number of tasks demands a more complex
approach. For this reason nqueens is the only algorithm
that relies on a custom partitioner. Regarding the flags, as
explained before, some of them correspond to the assump-
tions made on the initial input conditions, such as whether
the inputs are already available in all the processes. Other
flags indicate the desired output conditions; for example
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Fig. 8 Performance comparison with other high level approaches in
a single node (24 cores). Bars below zero indicate negative speedups
(slowdowns)

whether the output must be distributed or replicated. The
flags related to collective communications, partitioning strat-
egy (PrioritizeDM) and load balancing have been chosen
for performance reasons, as explained during the discussion
of Fig. 7. The table shows that ep, rather than making a stan-
dard invocation to the dparallel_recursion function
template, resorts to dpr_pfor_reduce. This is a macro
provided by our framework that relies on our algorithmic
skeleton to parallelize the very common pattern consisting
in a parallel loop with a reduction, which is in fact the
nature of theep benchmark. Themacro efficiently distributes
the iterations and the reductions both across processes and
threads.

Since the most comparable high-level solutions chosen,
thedac skeleton [10] and Cilk Plus [24], do not natively sup-
port multiple processes, the performance comparison with
them, shown in Fig. 8, uses a single process and a single
node in our cluster. The figure shows the percentile speedup
achieved by each implementation with respect to the sequen-
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tial code when using the 24 cores available. In order to
find this speedup, an exhaustive search allowing 2i , with
0 ≤ i ≤ 30, tasks per thread was made. Each execution
with each different number of subtasks was repeated 4 times,
and the minimum time of the series for each benchmark
was taken. All the benchmarks were initially implemented
following the scheme illustrated in our examples in Fig. 4,
meaning that theD&Calgorithmwas onlywritten once using
the tool of choice, with the recursion finishing in the actual
base case. While this policy perfectly fitted our skeleton,
the other high level solutions suffered from reduced per-
formance in algorithms with many levels of recursion and
light computations such as fib or treeadd. In the case
of the dac skeleton, strong slowdowns with respect to the
serial version were observed in several cases, as the neg-
ative bars in Fig. 8 show. As a result, we optimized the
dac and Cilk Plus versions of the algorithms that require
a recursive decomposition to achieve parallelism, which are
all of them except barnes hut and ep, by writing the
D&C algorithm in two stages. Namely, in these versions the
execution of each algorithm begins at the top level with an
implementation parallelized with dac or Cilk Plus that stops
its recursion not in the actual base case of the algorithm, but
in one in which we want to switch from the parallel recursive
decomposition to a sequential one. At that level, the resolu-
tion of the problem is entrusted to a serial implementation
of the algorithm. This is in fact the usual strategy followed
to make manual optimized parallel implementations of this
kind of algorithms [42]. It deserves to be mentioned that
while some algorithms favor the development of the two
stages as separate entities,mainly for performance reasons, in
others, particularly in the most complex ones, it is possible
to reuse most of the code, just choosing a different execu-
tion path depending on the level of decomposition of the
problem. The improved versions, labeled as optimized
in Fig. 8, allowed dac and Cilk Plus to reach a perfor-
mance similar to that of dparallel_recursion in all
the benchmarks except fib. In fact, we can notice that the
speedup of dparallel_recursion for this algorithm is
super-linear, reaching a value of 39 on 24 cores. The main
reason is that the object code that the compiler generates from
our skeleton is much more efficient than the one it generates
from the typical recursive implementation used by the other
versions. This way, the sequential computation of the 54th
Fibonacci number using our algorithm template is 80.3%
faster than the sequential implementation.

On average, dparallel_recursion was 6.7 and
4.7% faster than the optimized dac and Cilk Plus versions,
respectively, or 2.6 and0.5% iffib is not considered because
of the favorable treatment that the compiler provides to the
version generated by our skeleton. These values, aswell as all
the other averages of ratios and speedups in this paper have
been computed as geometric means [14]. Since our skeleton

allows to exploit multi-process parallelism with very little
effort, a final piece of data shown in Fig. 8 is the speedup
that it can achieve on the same system when using the num-
ber of processes indicated in Table 3, which is labeled as
dparallel_recursion MP (for multi-process) in the
figure. The ability to exploit multi-process parallelism allows
our proposal to be on average 24.1 and 21.7% faster thandac
and Cilk Plus, respectively, or 21.4 and 18.9% without fib,
respectively.

Figure 9 shows the speedup of the parallel versions of
each D&C algorithm with respect to the sequential time for
a varying number of cores. The versions that combine MPI
with OpenMP, dac and Cilk Plus apply the optimized recur-
sive implementation motivated in the previous experiment.
The configuration of the runs was the one explained at the
beginning of this Section, based on the number of processes
per node reflected in Table 3. The speedups for the MPI
versions correspond to the average of 12 executions. The
multithreaded versions were also run 12 times, but in their
case the tests were performed generating at least one, two,
or four tasks per thread, and repeating the execution with
each number of subtasks 4 times. The figure plots for each
version and number of cores the average speedup achieved
by the degree of partitioning that offered the best average
performance for that configuration.

The reason for the large advantage of our algorithm tem-
plate with respect to the other approaches in fib has already
been discussed. The behavior of the MPI implementation for
768 cores is due to the cost of the balancing algorithm, which
is more expensive as the number of processes among which
to subdivide the work grows. While the other implementa-
tions split the computation among 32 processes, and then
let each process freely assign its subtasks to its threads, this
one has to deal with 768 processes. Also, since at this level
of parallelism the runtime of the problem is very short, the
relative impact on it of the partitioning algorithm we imple-
mented, which is the same in all the versions, is very strong
despite being below a couple of seconds in this worst-case
situation. Implementing a more efficient partitioning algo-
rithm, from which our skeleton would also benefit, is part
of our future work. The MPI versions also underperform
with respect to the hybrid implementations for several other
benchmarks for different reasons. For example, the best par-
titioning strategy for MPI quicksort, which prioritizes
distribution over partitioning (see Fig. 3) not only makes
very complex and expensive the load balancing but also
makes it impossible to benefit from collective communica-
tion primitives. The larger requirements for communications
and related data (de)serialization processes are common to
all the MPI implementations, but while in some kernels the
impact is negligible, in others it totally precludes the appli-
cation from scaling. This is the case of the computational
kernel of tsp.
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Fig. 9 Speedup of the parallel versions with respect to the sequential executions as a function of the number of cores/threads used

The hybrid versions have a pretty similar performance for
most benchmarks, the largest difference happening in fib
because of the better code that the compiler generates for
our skeleton. Despite being the only alternative that applies
a high-level programming model both for the inter-process

and inter-thread parallelization of the applications and that
avoids having to write two versions of the D&C algorithms
in all the situations, our framework is on average 10.6, 5.8
and 5% faster than optimized hand-made codes that com-
bine MPI with OpenMP, the dac skeleton and Cilk Plus,
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Fig. 10 Geometric mean of the speedup (as a percentage) achieved
thanks to over-decomposition in the parallel executions

respectively across the set of parallel executions. If we dis-
card fib because of the advantage the compiler provides
to our proposal, the average improvement is still 2.9, 0.2
and 0.5%, respectively. This way, the qualitative conclu-
sion is that the skeleton is competitive with hand-optimized
codes.

The impact of problem over-decomposition on perfor-
mance is explored in Fig. 10, which shows for each bench-
mark and implementation the geometric mean of the speedup
shown in Fig. 9 with respect to the one achieved generat-
ing the minimum number of tasks required to have at least
one task per thread. Notice that in many benchmarks it is
impossible to generate exactly one task per thread, as for
example if the arity is 2, the number of subproblems will be
a power of 2, while our nodes have 24 cores. As expected,
the importance of problem over-decomposition is stronger in
the problems that exhibit large imbalances between tasks, the
biggest imbalance corresponding to fib and quicksort.
It also favors benchmarks whose tasks are balanced but for
which it is not possible to generate exactly one task per core
–for the reason just explained–, such as treeadd or tsp.
In these applications the generation of a larger number of
more fine-grained tasks thanks to over-decomposition helps
reduce the imbalance of work among the cores. We also see
that in general OpenMP is the approach that benefits less
from this technique. This suggests that its task management
mechanisms are less optimized than those of other threading
approaches, something which has been pointed out by previ-
ous works [36]. These problems for OpenMP do not appear
when the code does not need taskwait clauses, which is
the case of quicksort.

Another optimization enabled by our framework that can
be easily applied is the transmission by chunks of data items
whose storage is not consecutive. Figure 11 shows the per-
centage of speedup growth achieved by the skeleton by using
this optimization for the benchmarks where it can be applied.
The values reported for strassen and tsp are the actual
ones, as these benchmarks use this optimization. In the case
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Fig. 11 Speedup increase of the skeleton thanks to the transmission
by chunks for different numbers of nodes

ofquicksort andbarnes hut, the best version of these
benchmarks does not use this optimization. The reason is that
in these codes dparallel_recursion is invoked with
flags that request to perform scatter or gather operations (see
Table 4), which require, and thus assume, that the data to
transmit is stored in a vector and can be therefore transmit-
tedwith a single collective communication primitive. For this
reason, in their case the figure plots for informative purposes
which would have been the impact on these benchmarks if
they had not enjoyed the optimization based on collective
communications, whichwould have implied sending the data
by means of point to point messages with the associated seri-
alization process for the data to communicate. We can see
that this optimization is critical for strassen, and it would
have been so for barnes hut if our framework could not
exploit the collective gather optimization. The impact on
quicksort would have been smaller because, as shown
in Fig. 9b, this benchmark has low scaling due to the fact
that most of its cost is concentrated in its initial stages, in
which the reduced number of subproblems allows to exploit
little parallelism. Finally, although on average the optimiza-
tion is positive for tsp, it introduces a small performance
degradation when more than 8 nodes of the cluster are used.
The reason is that there is a tradeoff between this optimiza-
tion and the parallelism in the reception and deserialization
of messages. Namely, the transmission by chunks implies
that these chunks are received and deserialized in a given
sequence by the receiver, as often the unpacking of a mes-
sage must precede the processing of the next one. A good
example is the transmission of a vector, in which the size
must be obtained before allocating memory to receive and
store the contents. Because tsp is the algorithm with the
more expensive deserialization process, and it is also among
the ones with the largest messages, the reduction of paral-
lelism available when this optimization is applied outweighs
its advantages by a narrow margin when the number of mes-
sages (and thus, the parallelism lost) is large.
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Fig. 12 Halstead programming effort comparison

5.2 Programmability comparison

The ideal strategy to compare the programmability of differ-
ent approaches would be to ask a team of programmers to
use them and compare the development times, the quality of
the results and their opinions [40]. Unfortunately this is sel-
dom possible. For this reason another widely used approach
is to rely on objective metrics automatically extracted from
the codes. The best known metric of this kind is probably
the number of the source lines of code excluding comments
and empty lines (SLOCs). Unfortunately this is a quite rough
measure, as lines of code can widely vary in terms of length
and complexity, which makes SLOCs a somewhat unreliable
estimator. A more accurate metric is the Halstead program-
ming effort [21], which estimates the development cost of a
code bymeans of a reasoned formula based on the number of
unique operands, unique operators, total operands and total
operators found in the code. For this, the formula regards
as operands the constants and identifiers, while the symbols
or combinations of symbols that affect the value or order-
ing of operands constitute the operators. Another interesting
metric is the cyclomatic complexity [33], which is defined
as V = P + 1, where P is the number of decision points
or predicates in a program. There is one predicate for each
condition in the program that leads to a different execution
branch, there being one for each if, while, for, or case
statement as well as for each ternary conditional (?: opera-
tion). The larger V , the more complex the program is. Our
programmability analysis will be based on these two latter
metrics.

Figures 12 and13 show the increase in programming effort
and cyclomatic complexity of the different parallel versions
of our benchmarks as a percentage of the corresponding ones
of the sequential version of the algorithm, respectively. The
figures represent in the same column the metrics for the
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Fig. 13 Cyclomatic complexity comparison

MPI-only version and the increase that appears when paral-
lelization based on OpenMP, the dac skeleton and Cilk Plus
is performed too. Also, in the case of these two latter codes,
the figure shows separately the increase when developing the
basic and the optimized versions discussed in Sect. 5.1 and
evaluated in Fig. 8. The MPI parallelization exhibits high
costs when the optimal version involves balancing mecha-
nisms and/or a relatively complex implementation such as
the one required by the interleaving of partitioning and dis-
tribution of data favored by strassen. It is also natural
that the simpler the kernel, the higher the relative cost and
viceversa. This, together with the balancing algorithm is the
reason why the complexity metrics increased in fib much
more than in any other benchmark. In the opposite part of
the scale, algorithms that can be parallelized with few MPI
calls and a distribution of loop iterations among the threads of
each process, such asbarnes hut orep, experience small
complexity increases due to parallelization. When interpret-
ing the results of quicksort we must take into account
that since the MPI-only implementation could hardly benefit
from a balancing algorithm in the distribution, this was inte-
grated in the threaded versions and is thus attributed to the
OpenMP, dac and Cilk Plus parallelization. Regarding the
programming cost of the threading approaches, it is much
smaller than the one of MPI, and since compiler directives,
skeletons andCilk Plus keywords aremechanismswith a rea-
sonable high level of abstraction, the difference between the
three alternatives is small when the code is fully optimized.

Themetrics show a similar situation in all the benchmarks.
Both the Halstead programming effort and the cyclomatic
number for our skeleton are always similar or clearly better
than those of the MPI-only version. When multithreading is
incorporated to optimally exploit the resources within each
node, the advantage ofdparallel_recursionbecomes
even larger. Altogether, all the hybrid codes that are not based
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on our skeleton present a very similar complexity metrics.
This way, no matter OpenMP, dac or Cilk Plus is consid-
ered, these codes have roughly about 150% more Halstead
programming effort and a 90% higher cyclomatic number
(geometric means) that those based on the skeleton proposed
in this paper.

While the programmabilitymetrics just discussed are very
positive for our proposal, we really think that these figures
do not make justice to the programmability advantages of
dparallel_recursion. The reason is that they do not
reflect the effort that a programmermay have to spend during
the exploration of the implementation space of an algorithm,
seeking the best one in a given hardware and software envi-
ronment. While making changes to manually try different
strategies for load balancing, serialization, communication,
etc. can take large amounts of time depending on the problem
at hand, with our library it is possible to quickly experiment
with different alternatives just by changing the behavior bit-
set, and sometimes providing small support functions. In our
experience based in the development of the codes for this
paper, this is an enormous qualitative advantage.

6 Conclusions

Every cluster nowadays is composed of distributed mem-
ory nodes whose memory is shared by the cores of one or
more processors. The optimal exploitation of these systems
requires combining parallel programming models that are
suited to these two situations, resulting in increased program
complexity and cost, both for development andmaintenance.
A promising approach to deal with this situation is to encap-
sulate this complexity in skeletal operations that automate
important parallel patterns, as long as they provide flexility
to accommodate a reasonable range of situations and their
performance is comparable with that of hand-tuned codes.
However, there has not been much research on the develop-
ment of skeleton libraries optimized for these environments.

In this paper we present dparallel_recursion, a
C++ algorithm template with some supporting classes that
implements the ubiquitous divide-and-conquer pattern of
parallelism in current multi-core clusters. The skeleton was
designed to provide a modular API based on simple seman-
tics. It also supports large flexibility in the location of the
data involved in the processing, allowing the parallelization
of complex algorithms with reduced effort. This way, it not
only supports the usage of existing data structures that can be
distributed, replicated, or placed in a single node, but it can
also distribute existing ones, or create in a distributed fashion
new data structures. The distribution details are encapsulated
in objects that allow to reuse the data structures in the skeleton
invocations. Its design also makes it easy to use this algo-

rithm template to implement simpler skeletons such as map
or reduce, thus increasing its scope of application.

Much effort was put into making our skeleton as effi-
cient as possible so that it could be competitive with
hand-optimized implementations. The vast majority of the
optimizations, such as its extensive internal parallelization
or its exploitation of template metaprogramming to resolve
polymorphism at compile time, are automatically provided
by the library. Users can sometimes further optimize their
codes with small hints. Examples are indicating whether the
objects to be transmitted need no serialization or whether
they benefit from sending separately each one of their com-
ponents rather than packing them all in a single message.

Experiments using up to 768 cores show that the perfor-
mance of our proposal is comparable to —and often better
than– that of manually fine-tuned codes parallelized com-
bining MPI with other approaches to exploit parallelism in
shared memory. Even if we disregard one benchmark where
the compiler gives a strong advantage to our skeleton, the
codes based on it were on average between 0.2 and 2.9%
faster than optimized manual implementations, depend-
ing on the tool chosen for thread parallelism. Regarding
programmability, an evaluation based on objective met-
rics extracted from the codes indicates that the effort in
the parallelization of an application for multi-core clusters
using dparallel_recursion is on average between
47% (cyclomatic number) and 60% (Halstead programming
effort) of the one involved by the other alternatives tested.
Based on these results, we conclude that our algorithm tem-
plate is an excellent alternative for the implementation of
D&C algorithms in multi-core clusters from both the perfor-
mance and the programmability points of view.

While other improvements are possible, we envision two
main possible lines of future work for this library. One is
extending it with implementations of other relevant skele-
tons following the same philosophy. Another possibility is
to design mechanisms that allow the algorithm template to
exploit hardware accelerators.

The library is publicly available under an open source
license at https://github.com/fraguela/dparallel_recursion.
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