
Cluster Comput (2017) 20:741–748
DOI 10.1007/s10586-017-0759-x

Geometric primitive extraction from LiDAR-scanned point clouds

Nakhoon Baek1 · Woo-seok Shin1 · Kuinam J. Kim2

Received: 5 November 2016 / Accepted: 24 January 2017 / Published online: 4 March 2017
© Springer Science+Business Media New York 2017

Abstract Recently, we have lots of LiDAR (light detection
and ranging) data, for applications of high-resolution maps
including geography, geology, forestry, and others. One of
the current research and industrial issues is efficient ways
of storing the LiDAR data itself, and also elegant ways of
extracting geometric primitives from those LiDAR-scanned
3D point clouds. In this paper, we first analyze the character-
istics of LiDAR data and tis storage schemes. Additionally,
we present an efficient method to extract geometric primi-
tives from those point clouds. Its implementation and results
are also presented.

Keywords LiDAR · Light detection and ranging · Efficient
processing · Geometric primitive · Point clouds

1 Introduction

LiDAR (light detection and ranging) is a surveying tech-
nology that measures distance by illuminating a target with
a laser light [1–4]. Lidar is popularly used as a technology
to make various kinds of geometric and geological data. In

B Kuinam J. Kim
kuinamj@gmail.com

Nakhoon Baek
oceancru@gmail.com

Woo-seok Shin
mell03@naver.com

1 School of Computer Science and Engineering, Kyungpook
National University, Taegu 41566, Republic of Korea

2 Department of Convergence Security, Kyonggi University,
Suwon 16227, Republic of Korea

some cases, it is simply referred to as laser scanning or 3D
scanning, with terrestrial, airborne and mobile applications.

Typical LiDAR systems produce large-scale data sets,
with lots of 3D sampling points. Sometimes, they refer these
data point sets as point clouds. Figure 1 shows a typical
airborne LiDAR acquisition system for large landscape-
scale data sets. Figure 2 shows another terrestrial LiDAR
acquisition system, for ground structures like buildings, rock
formations, and others.

One of the fundamental problems with LiDAR data is that
there are still no general-purpose, open standard for storing
and analyzing LiDAR data. Thus, the LiDAR system devel-
opers should make decisions on the storing file formats and
fundamental analysis methods.

Another problem occurs with the enormous number of
points captured with LiDAR equipment. A typical large-
scale point cloud consists of millions of points, which makes
it hard to be loaded onto the main memory of commercial
PC’s. To efficiently use these LiDAR data with other appli-
cations including GIS (geographic information system) and
others, extracting abstract information from the LiDAR data
is strongly required.

In this paper, we first present a set of solutions for the
LiDAR data handling. The widely used LiDAR file formats
are also explained. Then, we show our method to extract
geometric representation from cloud points, acquired from
airborne LiDAR devices and also from terrestrial LiDAR
devices.We also showefficientwayof using existing general-
purpose geometric algorithms and their implementation.

Our prototype implementation of the LiDAR framework
was accomplished through combining the LiDAR file for-
mats, our method of extracting geometric primitives, and the
generic versions of geometric algorithms. We finally show
the results of our LiDAR framework.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-017-0759-x&domain=pdf
http://orcid.org/0000-0003-2136-843X


742 Cluster Comput (2017) 20:741–748

Fig. 1 A landscape-scale airborne LiDAR data acquisition system
(courtesy of ASPRS)

Fig. 2 Terrestrial LiDAR data acquisition system

2 LiDAR file formats

Since there are no dominant and/or open standard specifica-
tions for storing LiDAR data, there are various kinds of file
formats such as XYZ, PTS, PTX, PCD, and others. Among
them, we will show two of the most widely used LiDAR data
file formats: LAS and E57. Our practical choices of E57
handling library is also explained.

2.1 LAS file format

The LAS file format (short for LASer) is a data format
designed to store 3D point cloud data, especially for airborne
LiDAR scanning devices. It was developed by the American
Society for Photogrammetry and Remote Sensing (ASPRS)
[5,6]. The LAS format is a sequential binary format used
to store data from sensors and as intermediate processing
storage by some applications.

Public Header Block
Variable Length Records (VLR)

Point Data Records
Extended Variable Length Records 

(EVLR)

Fig. 3 LAS file format

X, Y, Z (4 bytes for each)
Intensity (4 bytes)

Return Number (3 bits)
…

Scan Angle (1 byte)
…

Red, Green, Blue (2 bytes for each)

Fig. 4 An example point data record format stored in the LAS file

Figure 3 shows theglobal viewof aLASfile format. Figure
4 shows an example format of single point data record stored
in the LAS file, containing intensity, scan angle, color value.
Those data are typically specialized to detect and extract fea-
tures from the area-based LiDAR data.

The libLAS is a library for reading and writing geospa-
tial data encoded in the LAS file format [7]. It consists of
base library with multiple application programming inter-
faces available for programming languages like C, C++,
Python as well as languages available in .NET Framework.
Also, a variety of useful command-line utilities is provided
for translating LAS files from one version of the LAS for-
mat to another, inspectingheader information, and translating
LAS data to and from text.

2.2 E57 file format

The E57 file format is a compact, vendor-neutral format for
storing point clouds, images, and metadata produced by 3D
imaging systems, such as laser scanners [8,9]. This file for-
mat is specified by the ASTM, an international standards
organization, and it is documented in the ASTME2807 stan-
dard. The E57 format is intended to be a more general format
that is well-suited for storing data across a variety of appli-
cation domains.

At a high level, the structure of an E57 file is a hierarchical
tree structure, as shown in Fig. 5. The format of the hierarchy
is based on the XML data format. At a low level, the actual
point data is represented using a compressed binary format.
Other large data blocks, such as images, are also represented
efficiently in binary. In this way, the format supports flexibil-
ity and extensibility using text-based XML, while enabling
efficient input/output and storage using compressed streams
of binary data.

An E57 file is divided into three parts: a header, a set of
optional binary sections, and anXMLsection. The header is a
small, 48-byte binary structure that contains critical file-level
information, such as the version number and the location of

123



Cluster Comput (2017) 20:741–748 743

Fig. 5 E57 file format Header
Binary Section 

(points)
Binary Section 

(points)
…

Binary Section 
(points)

XML Section

the XML section. The XML section contains the hierarchical
tree structure describe above. If the file contains point data
or images, these portions of the hierarchy are referenced by
the XML section, and the actual data is stored in the binary
sections, with a separate section for each set of points or
image.

2.3 libE57: an existing implementation

The libE57 system consists of a library, supporting utilities
and example programs, and documentation. The software
includes two separate application programming interfaces
(APIs) for reading, writing, and manipulating E57 files—the
foundation API and the Simple API [9].

The foundation API is a full-featured interface that oper-
ates at a relatively low-level, allowing control over all aspects
of an E57 file, including custom extensions.

The simpleAPI is a simplified interface (built on top of the
foundation API) that supports the most common use cases
for reading and writing E57 files. The library also includes
tools for converting LAS format files into E57 files, and a tool
for validating E57 file correctness is under development.

3 Geometric primitive extraction

From the point data in either of LAS and E57 file formats, we
can reconstruct the LiDAR scanned point cloud, as shown in
Fig. 6. In this section, we show two implementation schemes
to extract geometric primitives from the point clouds. The
existing geometric library of CGAL [12] are used to realize
our schemes.

3.1 DEM extraction

In this section,we present our scheme to extractDEM(digital
elevationmodel) data from airborne LiDARdata.Digital ele-
vationmodel (DEM) represents bare ground surfaceswithout
any objects like plants and buildings. To extract DEM data
from the LiDAR point clouds, not only reconstruction of
the point clouds but also object removals are needed [10].
However, this method takes a large amount of time to find
neighboring points for each points. Thus, it is not appropriate
for large-scale airborne LiDAR point clouds which typically
consists of millions of points.

Fig. 6 An example LiDAR scanned point cloud (courtesy of
UNAVCO)

To generate DEM’s, we used height maps, which can
be extracted from the height information of point clouds.
Height maps are actually the projection of point clouds onto
2D planes. Initially, a height map is constructed as a two-
dimensional array with zero values. For every points in the
target point cloud, we project those points onto the 2D plane.
During the projection, we can store the original height of
those points as floating point numbers. In our system, we
digitized the Z values to integer values between 0 and 255,
for more simplicity and efficiency. Since we will use these
heightmapsmainly for visualization purposes, we can accept
these rough approximation.

If needed, we can use floating-point values for more accu-
racy. Since the Z values in our height map is restricted to
integers between 0 and 255, the height map can be inter-
preted as an intensity map, as shown in Fig. 7.

We extracts the contours through connecting projected
points on height map with the same height value as shown in
Fig. 8. However, using these contours directly for the DEM’s
has some problems, since generated height map contains
lots of small contours, which represents objects like trees
and buildings, while DEM should represent the bare ground
without any objects.

Our system can update generated height map to remove
objects, instead of manipulating point cloud itself. Since
height maps can be represented as 2D intensity maps, it is
much concise to read, and it can be manipulated as bitmap
images.

Height maps can not only be manipulated itself, but also
can be applied image based filters. For example, we can apply
median filter to remove noises captured during LiDAR data

123



744 Cluster Comput (2017) 20:741–748

Fig. 7 Heightmaps presented as intensitymaps. (a)An example height
map of airborne LiDAR data in rural area. (b) An example height map
of airborne LiDAR data

Fig. 8 Contour extraction from the height map of Fig. 7b.

acquisition, Gaussian filter to remove small object like trees
and many another image based filters. Figure 9a shows the
median filter applied version of height map. Figure 9b rep-
resents the generated contours using filtered height maps.
Newly generated version of contour shows much smaller

Fig. 9 Height maps and contours after filtering operations. a The
median filtered height map. b Generated contours from the filtered
height map

number of partial contours, which means small objects are
automatically removed and in a proper way.

Additionally, for LiDAR data that have color informa-
tion, we also construct texture maps from color information
of point clouds. Texture maps are represented as two-
dimensional array. To construct a texture map, we initially
clear it with zero color values. Then, for every points in point
clouds, we project that point to the 2D-plane with the size of
the given texture map. The color values of those points are
stored at the corresponding locations. We used this texture
map as an aerial photograph to render precise terrain. An
example of constructed texture map is shown in Fig. 10.

3.2 3D Model reconstruction

In this section,wepresent our implementation scheme to con-
struct the 3D geometric models from cloud points acquired
with terrestrial LiDAR equipment. Our final goal is to build
3D model of real-world constructions, from their scanned

123



Cluster Comput (2017) 20:741–748 745

Fig. 10 A texture map extracted from the LiDAR data

LiDAR data. Those geometric models will be used on other
application systems including 3DSMax, 3DGIS, and others.

Although there are lots of researches on 3D model recon-
struction from point clouds [11], it is hard to adopt those
methods to reconstruct surfaces for large-scale point clouds,
which typically correspond to buildings and real-world con-
structions. According to [11], the biggest number of cloud
points used for surface reconstruction is approximately 6mil-
lion, and reconstruction from these 6 million points took
at least 30 seconds to get reasonable results. However,
our captured data of building point clouds consist of more
than 248 million points, as shown in fig 11a. Considering
almost reconstruction algorithms show the time complexity
of O(n2), it would take tremendous time to reconstruct those
point clouds.

Another problem we can’t adopt precedent methods is
they assume that point clouds would be in a single closed
surface. Though buildings should be in closed surface like
cube, LiDAR scanner can’t scan bottom side of the building,
and finally we have big holes at the bottom. Figure 11b shows
a typical sample point cloud of a specific building. Figure
fig11c shows the hole at the bottom of that building.

So, our scheme is to manually pick geometric primi-
tives like triangles, squares, cylinders and/or cubes out of
point clouds to generate 3D Models. After picking basic
attributes, we grabbed framebuffer to generate texture of
generated basic primitives. Figure 12 shows a sequence of
semi-automatically extracting geometric primitives from a
large-scale point cloud.

3.3 Geometric primitive extraction with CGAL

In this section, we introduce CGAL, the Computational
Geometry Algorithms Library. CGAL is a software library
of computational geometry algorithms [12]. CGAL is a soft-

Building Name Number of points Raw File size
Bangwha 318,046,967 15.9 GB
Seobook 248,031,609 12.4 GB

Hwaseo-moon 385,000,039 19.3 GB
Hwahong-moon 430,944,637 21.6 GB

a

b

c

Fig. 11 Statistics and samples of our terrestrial LiDAR data. a LiDAR
scanned data of buildings in Suwon, Korea. b A sample point cloud of
a building. c The point cloud have a big hole in the bottom side

ware project that provides easy access to efficient and reliable
geometric algorithms in the form of a C++ library. CGAL is
used in various areas needing geometric computation, such
as geographic information systems, computer aided design,
molecular biology, medical imaging, computer graphics, and
robotics.

The CGAL library offers data structures and algorithms
like triangulations, convex hull algorithms, point set pro-
cessing, arrangements of curves, surface and volume mesh
generation, geometry processing, alpha shapes, shape anal-
ysis, axis-aligned bounding boxes (AABB) and k-D trees.

In this famous geometry library, we focused on the fol-
lowing three components:

• Point set processing component:This component imple-
ments methods to analyze and process unorganized point
sets. The input is an unorganized point set (un-oriented
or oriented). The point set can be analyzed to measure
its average spacing, and processed through functions
devoted to the simplification, outlier removal, smooth-
ing, normal estimation, normal orientation and feature
edges estimation.

• Point set shape detection component: This component
implements an efficient RANSAC-based primitive shape
detection algorithm for un-oriented point sets.

123



746 Cluster Comput (2017) 20:741–748

Fig. 12 Sequence of extracting geometric primitives frompoint clouds
to construct the 3D geometric model. a selecting a specific geometric
primitives from the point cloud. b a simply extracted geometric primi-

tive from a. c Generating a set of geometric primitives from the point
clouds. d The final result of geometric primitives

RANSAC (random sample consensus) is an iterative
method to estimate parameters of a mathematical model
from a set of observed data which contains outliers. It is a
non-deterministic algorithm in the sense that it produces
a reasonable result only with a certain probability, with
this probability increasing as more iterations are allowed
[13,14].

• Estimation of local differential properties of point-
sampled surfaces component: For a surface discretized
as a point cloud or a mesh, it is desirable to estimate
pointwise differential quantities. This component allows
the estimation of local differential quantities of a surface
from a point sample.

We tried to use it for our geometric primitive extraction
from cloud points that have closed surface. Figure 13 shows
examples of surface reconstruction of point cloudwith closed
surface. Figure 13a shows a raw point cloud, and Fig. 13b–
d is its geometric mesh representation, with respect to the
difference resolution settings.

4 Implementation and its results

Originally, our fundamental strategy for the geometric data
extraction was to develop in-house versions of the well-

Fig. 13 Examples of surface reconstruction with closed surface. a
Original point cloud, 2,503 points. b Mesh representation with 2648
points. c Mesh representation with 932 points. d Mesh representation
with 432 points

123



Cluster Comput (2017) 20:741–748 747

Laser Scanners (or 3D scanning devices)

LiDAR data acquisition

E57 file stored (with libE57)

Point Clouds

Geometric primitive extraction

Graphical Output

Fig. 14 Our over-all system design for LiDAR data handling

Fig. 15 Integrating the geometric extraction with an existing GIS
application program

known registration algorithms. However, we rapidly recog-
nized that preceding well-known algorithms are inefficient
for both airborne and terrestrial LiDAR data.

We developed new schemes to extract geometric primi-
tives from LiDAR data and adopted them to our prototype
implementation. Additionally, we also tried to use CGAL
which is one of widely-known well-known implementation,
in our implementation. The basic steps in our prototype
implementation are presented in Fig. 14. From the imple-
mentation of our prototype system, we acquired results in
Figs. 9, 12, and 13 with reasonable performances.

The acquired geometric primitives are combined to con-
struct the geometric representation of real-world construc-
tions, from their corresponding point clouds. The geometric
primitives can be used in various application programs.
Figure 15 shows an example integration of our extracted geo-
metric model with existing GIS navigation platform.

5 Conclusions and future work

Nowadays, we havemany requirements for LiDAR data han-
dling. We started to find an efficient way of handling LiDAR
data and its related information. Actually, we focused on two
technical issues:

• Storing the LiDAR data itself
• Extracting geometric primitives from those point clouds.

Our analysis shows that the E57 file formats and some
registration algorithms are good solutions to these issues.
Additionally, we found that some algorithms are already
available in public domain, especially in the geometry han-
dling libraries including CGAL.

Wedeveloped two new implementation schemes to extract
geometric primitives. With these new schemes, we achieved
the final prototype of LiDAR data handling framework.
Through combining these methods, we got the geometric
models remarkably efficiently, even in a cost-effective way.

Our prototype system still need some more technical
improvements in its practical implementations. In near
future, we will accelerate our implementation with GPU-
based parallel executions with CUDA and/or OpenCL.

Acknowledgements This research was supported by Basic Science
Research Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and Technology
(Grant 2016R1D1A3B03935488). This study was also supported by
the 2015 Technology Innovation Development program (project name:
“Development of 3D GIS Platform for the LiDAR Data Utilization”)
funded by the Small and Medium Business Administration, Korea
(project number: S2306348). The authors thank to Mr. Byeonguk Im
and Mr. Joongin Lee for their contributions to the early-stage experi-
ments on the prototype implementations of our schemes.

References

1. Heritage, G., & Large, A. Laser Scanning for the Environmental
Sciences. Wiley, New York. ISBN 1-4051-5717-8. (2009)

2. Maltamo, M., Næsset, E., & Vauhkonen, J. Forestry Applications
of Airborne Laser Scanning: Concepts and Case Studies (Vol. 27).
Springer, Dordrecht. ISBN 9-4017-8662-3. (2014)

3. Shan, J., & Toth, C. K. Topographic Laser Ranging and Scanning:
Principles and Processing. CRC press, Boca Raton. ISBN 1-4200-
5142-3. (2008)

123



748 Cluster Comput (2017) 20:741–748

4. Vosselman, G., & Maas, H. G. Airborne and Terrestrial Laser
Scanning. Whittles Publishing, Boca Raton. ISBN 1-4398-2798-2.
(2010)

5. A. Samberg, “An implementation of the ASPRS LAS standard,”
IAPRS, vol. XXXVI, (2007)

6. The American Society for Photogrammetry & Remote Sensing,
LAS Specification Version 1.4, ASPRS, (2011)

7. The LAS ASPRS LiDAR data translation toolset, http://www.
liblas.org/. (2016)

8. Daniel Huber, “The ASTM E57 file format for 3D imaging data
exchange”, Proceedings of the SPIEVol. 7864A, Electronics Imag-
ing Science and Technology Conference (IS&T), 3D Imaging
Metrology, January, (2011)

9. libE57: Software Tools forManaging E57 files. http://www.libe57.
org/. (2016)

10. Yuan Feng, et. al. UrbanDEMgeneration from airborne Lidar data.
Urban Remote Sensing Event ISSN 2334-0932. (2009)

11. Matthew, Berger., et al. A Benchmark for Surface Reconstruction.
ACM Transactions on Graphics, Vol.32 (2013). April 2013

12. CGAL homepage, http://www.cgal.org/. (2016)
13. Strutz, T.: Data Fitting and Uncertainty, 2nd edn. Springer Vieweg,

Berlin (2016)
14. Hast, Anders, Nysjö, Johan, Marchetti, Andrea: Optimal

RANSAC—towards a repeatable algorithm for finding the opti-
mal set. J. WSCG 21(1), 21–30 (2013)

Nakhoon Baek is currently
a professor in the School of
Computer Science and Engi-
neering at Kyungpook National
University, Korea. He received
his B.A., M.S., and Ph.D.
degrees in Computer Science
from Korea Advanced Insti-
tute of Science and Technology
(KAIST) in 1990, 1992, and
1997, respectively. His research
interests include graphics stan-
dards, graphics algorithms and
real-time rendering. He is now
also the Chief Engineer of Das-

somey.com Inc., Korea.

Woo-seok Shin is currently
in M.S. course in the School
of Computer Science and Engi-
neering at Kyungpook National
University, Korea. He received
his BS in Computer Science
and Engineering from Kyung-
pook National University (KNU)
in 2016. His research interests
include real-time rendering and
large scale parallel processing.

Kuinam J. Kim received the
B.S. degree from Mathematics,
University of Kansas in 1989.
He received the M.S. degree of
Statistics and Ph.D. degree of
Industrial Engineering fromCol-
orado State University. He is
currently Professor of Industrial
Security Department, Kyonggi
University, Korea. His research
interests include industrial secu-
rity.

123

http://www.liblas.org/
http://www.liblas.org/
http://www.libe57.org/
http://www.libe57.org/
http://www.cgal.org/

	Geometric primitive extraction from LiDAR-scanned point clouds
	Abstract
	1 Introduction
	2 LiDAR file formats
	2.1 LAS file format
	2.2 E57 file format
	2.3 libE57: an existing implementation

	3 Geometric primitive extraction
	3.1 DEM extraction
	3.2 3D Model reconstruction
	3.3 Geometric primitive extraction with CGAL

	4 Implementation and its results
	5 Conclusions and future work
	Acknowledgements
	References




