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Abstract In this paper, we present a novel GPU-based limit
space decomposition collision detection algorithm (LSDCD)
for performing collision detection between amassive number
of particles and irregular objects, which is used in the design
of the Accelerator Driven Sub-Critical (ADS) system. Test
results indicate that, the collisions between ten million par-
ticles and the vessel can be detected on a general personal
computer in only 0.5 s per frame. With this algorithm, the
collision detection of maximum sixty million particles are
calculated in 3.488030 s. Experiment results show that our
algorithm is promising for fast collision detection.
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1 Introduction

Nowadays, nuclear power, as the primary peaceful utilization
of nuclear energy, has been developing at a fast pace. Mean-
while, the quantity of nuclear waste also increases rapidly
in some countries. In order to recycle and store the nuclear
waste, the nuclear power industry strives to develop Accel-
erator Driven Sub-Critical (ADS) system to recycle nuclear
waste.

In the research of reprocessing of nuclear waste, spalla-
tion target is an important part of ADS system. Using GPU
(graphics processing units) technology to concurrently simu-
late the physical process in the spallation target is an effective
way to help with development of the relevant spallation tar-
get. In particular, the simulation of collision between various
particles and different objects is very important.

In our paper, we focus on the collision detection between
same frames. A frame is the essential and smallest part of
the simulation. The process of collision detection in a frame
consists of two parts. The first part is the collisions between
accelerated particles, which has been discussed sufficiently
[1]. Hence, instead of the first part, we concentrate on the
second part: the collisions between particles and the irregular
objects, onwhich there is a scarcity of studies. The simulation
is shown in Fig. 1, which is used in our project (“Strategic
Technology Pilot Project”).

Furthermore, as a limitation of the computing power
of computers, traditional sequential algorithms could only
simulate tens of thousands of particles. The reason is that
the consumption of computing resources shows a linear
relationship to the number of particles with sequential pro-
grams. Meanwhile, GPU is nowadays being widely used in
simulation due to the continuous development of parallel
simulation techniques. Therefore, it is natural to use GPU
parallel computing technology in our issue. In this paper, we
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Fig. 1 The simulation of collision detection between particles and
irregular models

implement the Limit Space Decomposition Collision Detec-
tion (LSDCD) algorithm between the particles and irregular
objects by dividing the collision space into infinitely small
uniform grids and making full use of the parallel processing
ability of GPU.

In the preprocessing stage, we calculate the nearest trian-
glemeshes to the grid and sort the trianglemeshes by distance
to the grid in ascending order. The particles are assigned into
these grids through the position of particle center. When the
length of grid is tending to be infinitely small, the distance
from particle center to the wall would be infinitely close to
the distance from the grid to the wall. With the space data we
get in the preprocessing stage, we are able to make collision
detection easily. Consequently, experimental results demon-
strate that our parallel algorithm is effective in accelerating
the simulation process.

We list some terminologies used in this paper here. The
term “irregular vessel wall” is the container used to store the
particles to be accelerated and collided, which is equivalent
to “irregular object”, “object”, “wall”, and “model”. Gener-
ally, a spatial model is often approximated as many triangle
meshes. Hence, the wall model is made up of many trian-
gle meshes. The triangle mesh has a collision area which
is different from a general meaning of triangle consists of
three lines. The particles are modeled as very small spheres
whose radii are not the same. The collision space is a cube,
whose center is located in the coordinate origin of the three-
dimensional space. In general, the particles and the walls
are just wrapped by the cube to reduce unnecessary compu-
tation. In the implementation of our algorithm, we split the
cube into a number of uniform grids, as shown in Fig. 2. After
defining these terminologies, the problem can be described
as: perform collision detections between a larger number of
spheres (particles) and triangles (walls).

The rest of the paper is organised as follows. In the next
section, we introduce the basic concepts and related work.

Fig. 2 The collision detection in three dimensional coordinate space.
The circles represent the particles and the triangles stand for triangle
meshes of the vessel wall

In Sect. 3, we present our design and implementation of
the particles-irregular wall collision detection algorithm. The
results of experiments are illustrated in Sect. 4. Meanwhile,
the analysis of the effects of different parameters are dis-
cussed here. At last in Sect. 5, we conclude our work and
address the future work.

2 Preliminary and related work

In general, to detect collision between a sphere and the wall,
we need to calculate the shortest distance from the sphere
center to the wall and compare it to the radius of the sphere.
In most cases, we can get the distance by mathematical tech-
niques directly. For example, to get the distance between a
sphere and a plane wall, the distance equation from dot to
plane is used.

In this paper, we mainly focus on the collision detection
between irregular wall and particles.Without loss of general-
ity, particles are considered as spheres. In computer graphics
field, a model is represented by many triangle meshes. We
represent the 3D irregular wall model by STL (STereo Litho-
graph) file format, which is developed by 3D SYSTEM
company in 1988 [2]. The basic collision detection is based
on space partition and the algorithm is implemented on
GPU.

2.1 Collision detection

The technology of collision detection, which could study the
problem of whether two or more objects would collide or
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not, when and where the collisions would occur in the vir-
tual scene, has been widely used in the field of computer
games, physical simulation, virtual technology, computing
and animation. In the past fewdecades,many algorithmshave
been proposed to tackle the challenge of collision detection.
Many of them have been proved to be efficient. In general,
there are two type of collision detection algorithms, spatial
subdivision and bounding box. The bounding box method
is more widely used than spatial subdivision method. The
most widely used boxes are Axis-Aligned Bounding Boxes
(AABB) [3], Sphere, Oriented Bounding Box (OBB) [4].

Recently, the algorithms based on bounding volume
hierarchy (BVH) become widely used. This algorithm recur-
sively constructs bounding volumes and treats each object as
a leaf node. It makes self-collision detection within the same
BVH to detect intersecting objects [5–7].

However, these algorithms mainly focus on the detection
between a small number of objects [8], and it is not suit-
able for fast collision detection that contains massive objects,
especially massive particles [9].

In the field of particle physics and nuclear technology,
especially for spallation target inADS system, the simulation
is mainly related to the collision between particles and irreg-
ular wall. There are extensive researches on collisions among
particles, such as uniform grid spatial subdivision [1]. Based
on GPU technology, Xiong et al. [10] proposed an efficient
implementation of three-dimensional gassolid DNS (Direct
Numerical Simulation). In this paper, we implement the col-
lision detection between particle and irregular wall based on
GPU parallel technology. It should be noted that, while this
algorithm is very efficient on GPU, it is very inefficient with-
out the support of GPU.

2.2 GPU and CUDA

In recent years, big data computing is developing towards
the CPU and GPU co-processing. In 2006, Nvidia intro-
ducedCUDA(ComputeUnifiedDeviceArchitecture),which
has since become a general-purpose embedded GPU parallel
computing platform [11]. CUDA supports C, C++, Fortran,
and Python programing languages. A GPU with CUDA
support contains a number of SMXs (Streaming Multipro-
cessors). The kernel function of the CUDA code is executed
on these SMXs and the serial code is executed on CPU.
When executing code on GPU, some blocks are allocated,
each block contains a large number of threads, which can
be executed in parallel. Hence, for some time-consuming
tasks, like loop statement, it is able to reduce the overall run
time through parallel programming. In general, CPU is more
capable of data caching and flow control, while the GPU is
specialized for highly parallel computation and data process-
ing.

2.3 Related work

General Purpose GPU (GPGPU) is a relatively new research
area. However, the idea of using GPU in the field of colli-
sion detection has been researched longer than the emergence
of GPGPU. Purcell et al. [12] had researched light and tri-
angle intersection test algorithm in ray tracing technology
based on GPU. Baciu et al. [13] and Myszkowski et al. [14]
researched convex body collision detection in the early days.
They regarded pixels in each render buffer as a beam of light
which was perpendicular to the visual plane and tested inter-
section between the light and objects. Govindaraju et al. [15]
presented an algorithm for collision detection between mul-
tiple deformable objects in a large environment using GPU.
Kipfer et al. [16] presented a particle system engine for real-
time animation and rendering. The system rendered large
particle sets using GPU and it implemented inter-particle
collisions and visibility sorting. Zheng et al. [17] showed a
contact detection algorithm based on GPU and they used the
uniform grid method in detection. Based on the vector rela-
tion of point, line segment and rectangle, Shen et al. [18]
implemented a rapid collision detection algorithm.

There are some other algorithms to optimize the com-
putation of collision detection. Li and Suo [19] researched
the application of particle swarm optimization in randomly
collision detection algorithm and increased real-time capac-
ity, compared to the classic Oriented Bounding Box (OBB)
bounding box algorithm. Similarly, Qu et al. used parallel ant
colony optimization algorithm in randomly collision detec-
tion algorithm to improve the real-time characteristic and
precision in collision detection [20]. With spatial projection
transformation method, Li and Tao mapped irregular objects
from three dimensional space to regular two-dimensional
objects to carry on collision detection [21]. Based on MPI
(Message Passing Interface) and spatial subdivision algo-
rithm, Huiyan et al. researched an advanced algorithm to
improve the performance and accuracy of collision detec-
tion [22]. Tang et al. [23] proposed a GPU-based streaming
algorithm to perform collision queries between deformable
models by using hierarchical culling. Zhang et al. presented a
parallel collision detection algorithm with many-core com-
putation by CPUs or GPUs [24]. Wang et al. proposed an
image-based optimization algorithm for collision detection
[25].

Green et al. implemented a sample program about the
simulation of a particle system documented in the white
paper [1]. It uses a cube as the wall and concentrates on
the parallelization of collision detection between particles.
Our research differs from [1] and our focus is on the colli-
sion detection algorithm between particles and wall. Xu et al.
[26] designed a G-Octree based fast collision detection for
large-scale particle systems. Zou et al. [27] designed a col-
lision detection algorithm based on GPGPU. Fan et al. [28]
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explored the collision between two objects by finding inter-
sections between a collection of line segments and a set of
triangles. Although many of these collision detection algo-
rithms based on GPU have been researched, the research on
the collision between irregular walls and massive number of
small objects (particles) is rarely discussed so far. Hence, in
this paper, we design the LSDCD algorithm for this kind of
scenario, and apply it to the collision detection between rigid
bodies.

3 Collision detection algorithm

We will describe our parallel LSDCD algorithm and present
the detailed steps of the algorithm in this section. It contains
the data structure subsection, limit space decomposition and
preprocessing subsection, collision detection and accuracy
verification subsection, N-triangles method subsection and
the extension subsection.

3.1 Overview

The basic idea of the algorithm is to divide the collision space
into infinitely small uniform grids. The reason to use uniform
grid is because it is simple and similar for each grid, hence,
it is suitable for GPU implementation [9]. As shown in Fig.
2, for each grid, if the grid length is small enough, the grid
will act as a point and the points in the grid are similar in
distance feature to the triangles. For example, for all points
in grid O1, the nearest triangle mesh is triangle T 1, this is
decided by their spatial features. Hence, when we calculate
the shortest distance from a point to the wall, we can firstly
get the triangle mesh that is closest to the grid. Then we can
calculate the distance from the point to the triangle directly.

For a large number of particles, the collision detection is
independent for each particle and it can be implemented in
parallel based on GPU. The basic process of the collision
algorithm is as follows: firstly, we get the position of these
triangles from the model file (STL format). Secondly, the
large number of particles are initialized. The next phase is
limit space decomposition. We use a large quantity of small
uniform grids to divide the collision space. In this phase,
we should make sure that the length of grid is as small as
possible to get a high-precision, and this is different from the
traditional uniform grid. In reality, as we can see from the
latter experimental part, the correct rate of collision detection
is relevant to the grid length. Next we calculate the nearest
triangles to each grid in parallel and store the information
in array (named grid array). Finally, the collision for each
particle are detected in threads on GPU-based code. This
step is achieved by comparing the distance between particle
and triangle to the radius of each particle.

Start

Read STL file (CPU)

Init particles (CPU)

Spatital subdivision (GPU)

Calculate nearest triangle meshes (GPU)

Collison detection (GPU)

Update velocities (GPU)

Update positions (GPU)

Next frame ?

Stop

no

yes

Fig. 3 The flow chart of simulation of collision based on LSDCD

The flow chart of the algorithm is shown in Fig. 3. In
the whole process, the steps from ’Read STL file’ to ’Init
particles’ is the initialization phase, which is executed on
CPU only. The steps from ’Spatial subdivision’ to ’Calculate
nearest triangle meshes’ is the preprocessing stage, which
is executed mainly on GPU. And the steps between ’Colli-
sion detection’ and ’Update positions’ is the collision stage
for a frame executed on GPU. For initialization phase, it is
similar and simple for different computing platforms. Hence,
we focus on the preprocessing stage and the collision stage,
which are executed on GPU.

In the preprocessing stage, for each triangle we start up
a thread on GPU, to find the several grids whose center are
nearest to the triangle and write the grid numbers to array.
In fact, we save the array to disk to execute preprocessing
stage faster next time. In the collision stage, we open a thread
for a sphere to find the nearest several triangles to the grid
where the sphere is. And then we make collision detection
and change the status (velocity and position) of the sphere
according to Discrete Element Method (DEM) model. These
two steps are implemented in parallel on GPU to reduce the
mainly time cost by loop operation on CPU. The collision
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between a sphere and the walls is simply as the interaction
between a sphere and a triangle mesh directly without much
iteration, what is the reasonwe divide the space into infinitely
small uniform grid, and the difference from traditional uni-
form grid methods. Hence, for a massive number of particles
and suitable GPU, the time cost is reduced greatly.

3.2 Data structure

In the implementation of the algorithm, the data structures
are organized as array, which is efficient for data operations
and replication. They include particles array (pa), triangles
array (ta), and grid array (ga). These data structures are shown
in the later pseudo-code function (1) and function (2). The
particles array is organized every eight float data for each
particle, including three position coordinate values, three
velocity coordinate values, a radius value and the grid number
where the particle is. The triangles array is organized every
12 float data for each triangle including three points (9 coor-
dinate values) and a normal vector. The grid array contains
N (cf. N-triangles method in subsection F) integer number
that stand for N numbers of triangle meshes that are nearest
to the grid center, and three coordinate values of the grid cen-
ter. The collisions are detected based on GPU, where at the
beginning, we copy these data structures from CPU memory
to GPU memory.

To find the number of triangles that are nearest to
every space region, we apply the limit space decomposition
described in next section.

3.3 Limit space decomposition and preprocessing

The world space will be cut into small enough uniform grids
to represent the distance feature to the triangle meshes of
the wall as shown in Fig. 2. The number of grids in three
dimensions is denoted by (NUMx , NUMy , NUMz), the
grid length is L , the lengths of the space in three dimensions
are denoted by (LENx , LENy , LENz), the volume of the
space is V, and the total number of grids is denoted by NUM .
Simply, we get formula (1).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

NUMx = LENx
L

NUMy = LENy
L

NUMz = LENz
L

V = LENx × LENy × LENz

NUM = NUMx × NUMy × NUMz

(1)

From formula (1), we get formula (2).

NUM = V

L3 (2)

The number of these grids will be arranged from number 0
to number (NUM-1) in grid array, hence, for grid coordinates
(x, y, z), the grid number is calculated through formula (3).

index = z × NUMy × NUMx + y × NUMx + x (3)

In our implementation, we use the grid center (set as P) as
a representative feature of distance. Hence, as an important
part in preprocessing, the nearest triangle mesh is derived by
iteratively calculating the distance from point P to every tri-
angle mesh and selecting the nearest several triangle number
to fill in the grid array. As for the space shown in Fig. 2, after
the preprocessing, the grid array is organized as Table 1. The
first row stands for the index of grid from 0 to NUM−1. The
second row stands for the nearest triangle number to this grid,
and the third row stands for the next-closest triangle number
and so on. For example, for points in grid O3, the nearest tri-
angle mesh is T 3, and the next-closest triangle mesh is T 1,
and T 2 is the farthest triangle mesh from grid O3.

From formula (2) we can know that the number of grids,
NUM , is inversely proportional to the cube of grid length
L . So a decrease in grid length will obviously increase the
computation and memory to be occupied. Here we designed
a method to reduce the computation. The core idea is that,
for the bigger grids that are too far from the wall that can
not collide with any triangle even for the largest particles, we
can filter them out. Based on this idea, as shown in Fig. 4, we

Table 1 The grid array after preprocessing

GridNum O1 O2 O3

Tri1 T1 T2 T3

Tri2 T2 T3 T1

Tri3 T3 T1 T2

... ... ... ...

Fig. 4 The length to cull space. R is the maximum radius of particles
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firstly divide the space with grids whose length are 2∗ L and
compute the distances from these triangles to the grid center.
In reality, if the shortest distance is larger than CD, we can
judge that the particles in this gridwillmake no collisionwith
any triangle mesh. In the next step, when we divide the space
into uniform grids whose length are L , it is not necessary to
compute the grid in the bigger grid. The filter length CD can
be calculated by formula (4):

Filter Length = R + √
3l (4)

Suppose the number of bigger grids is n, the computation
cost of one grid is 1, the ratio of filtered grids is λ, the number
of grids that are not filtered is (1 − λ)n. From formula (1),
these non-filtered grids will be divided into 8(1− λ)n grids.
Hence, the total computation is n + 8n(1 − λ). If we divide
the grids into 8n grids directly, the computation is 8n. By
a simple computation we know that when λ is greater than
0.125, using this method will reduce overall computation
cost. If λ reaches 0.5, it will reduce 37.5% computation.

In essence, this is a kind of ideal situation if considering
only the computation for searching nearest triangle. It also
indicates that if the triangles of collision wall is very few, the
method will decrease computation significantly.

Although massive calculation is involved in this step, for
each grid, it is parallel to get its triangle list ordered by dis-
tance and there is no influence among each other. Hence,
with the help of concurrent computation based on GPU, this
step could be achieved in a reasonable time frame even if the
length of grid has a very small value.

The pseudo-code of kernel function for preprocessing
is shown in function (1), which uses 1-triangle method
simply.

3.4 Collision detection

Oncewe have finished preprocessing, the required data struc-
tures, such as particles array, triangles array and grid array
are established correctly in memory of GPU. The particle-
wall interactions can be detected easily. It should be noted
that a few seconds may be needed in preprocessing stage.
In the continuous simulation, the concrete physical colli-
sion model (Such as a DEM [29,30]) is considered. In our
whole project, we used DEM soft ball model to simulate and
calculate the process of collision. However, in this paper,
we focus on the collision detection between particles and
irregular vessel wall only. The way to simulate collision
detection, as mentioned above, is mainly to calculate the dis-
tance from the particle center to the nearest triangle, which
can be indexed directly and efficiency from the grid array.
If the distance is smaller than the radius, then we assume
that there is a collision between the particle and the triangle
(wall).

Function (1)
Input:
1: ng number of grids,
2: nt number of triangles,
3: ga grid arraywith center point coordinates and nearest triangle num-

bers,
4: ta triangle array with vertex coordinates
Output: ga update nearest triangle numbers
5: function KernelPreprocessing(ng, nt, ga, ta)
6: index ← thread Id
7: if index >= ng then return
8: else
9: P ← ga[index].center
10: min ← FLOAT MAX
11: for i = 1 to nt do
12: T ← ta[i].coordinates
13: dis ← DI ST ANCE(P, T )

14: if dis < min then
15: min ← dis
16: ga[index].num ← i
17: end if
18: end for
19: end if
20: return ga
21: end function

Fig. 5 The distance from sphere center O to triangle ABC

As shown in Fig. 5, the last issue is the calculation of
the shortest distance between the sphere core (set as O) and
the triangle (set as ABC). Our solution to this problem is as
follows: when the point O is projected in the triangle, the
shortest distance point must be the point of projection. If the
projective point is out of the triangle, the shortest distance
point must be in the edge of the triangle. Hence, we can
simply get the shortest distance to each edge of the triangle
and select the smallest one. Next, we only need to determine
whether the projection is inside or outside of the triangle. It
is based on the spatial geometry relationship between these
points. If the projection is inside of the triangle, for point A,
the angle between vector �AO and vector �AC , vector �AO and
vector �AB must be both acute angles. Concretely, this could
be determined simply by the vector dot product:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

�AO · �AC ≥ 0
�AO · �AB ≥ 0
�BO · �BA ≥ 0
�BO · �BC ≥ 0
�CO · �CA ≥ 0
�CO · �CB ≥ 0

(5)

That is, if the point A, B, and C satisfy the formula 5, the
projection of point O is projected in the triangle mesh ABC .

Some other approaches can be used to get the shortest
distance between a point and a triangle. For example,Voronoi
area method and vector calculus method were researched in
[31]. This is beyond the scope of this paper.

The pseudo-code of kernel function for collision detection
is shown in function (2).

3.5 Accuracy verification

In our work, the algorithm LSDCD is generally applicable
to any regular or irregular wall. In some cases, we can not
calculate the distance from a particle to the wall directly so
as to make collision detection. As shown in Fig. 6, we herein
choose a cylinder (which is located at the origin and is parallel
to the Z axis) as the basic wall. Using such a model can
help us to calculate the distance in mathematics method and
calculate accuracy easily. Subsequently, it is more easily to
verify the accuracy of collision. The function to calculate the
distance from a point (x , y, z) to the cylinder is shown in
function (3).

Function (2)
Input:
1: np number of particles,
2: pa particle arraywith position coordinates, velocities, radii, and grid

number
3: ga grid array with nearest triangle num,
4: ta triangle array with point coordinates
Output: pa update position coordinates and velocities
5: function KernelCollision(np, pa, ga, ta)
6: index ← thread Id
7: if index >= np then return
8: else
9: P ← pa[index].coordinates
10: num ← CalcGridNum(P)

11: T ← ta[num].coordinates
12: dis ← DI ST ANCE(P, T )

13: if dis < pa[index].radius then
14: pa[index].veloci ties ← UpdateV eloci ties()
15: else
16: pa[index].coordinates ← UpdatePosi tion()

17: end if
18: end if
19: return ga
20: end function

Function (3)
Input: x, y, z spatial coordinates, r radius, h height
Output: d distance
1: function CalcDistance(x, y, z, r, h)
2: d ← 0
3: if z <= 0 then
4: if x ∗ x + y ∗ y < r ∗ r then
5: d ← −z
6: else
7: t ← sqrt (x ∗ x + y ∗ y) − r
8: d ← sqrt (t ∗ t + z ∗ z)
9: end if
10: else
11: if z >= h then
12: if x ∗ x + y ∗ y < r ∗ r then
13: d ← z − h
14: else
15: t ← sqrt (x ∗ x + y ∗ y) − r
16: d ← sqrt (t ∗ t + (z − h) ∗ (z − h))

17: end if
18: else
19: if x ∗ x + y ∗ y < r ∗ r then
20: d ← min(r − sqrt (x ∗ x + y ∗ y), z)
21: d ← min(d, h − z)
22: else
23: d ← sqrt (x ∗ x + y ∗ y) − r
24: end if
25: end if
26: end if
27: return d
28: end function

From function (1) we can calculate the collision statuses
via mathematical method, and we get the accuracy of colli-
sion detection by comparing it with the results of our LSDCD
algorithm. The accuracy formula is shown as the following
formula (6).

accuracy =
∑n

i=1 Si
n

(6)

Where n is the total number of particles, Si is the status of
the collision detection of the i th particle. If collision result
of i th particle by our algorithm is consistent with the result
by mathematical method, the value is set as 1, otherwise the
value is set as 0.

It is also a matter of concern that the model represented
by STL file format uses many triangles to approximately
describe the cylinder. It is inevitable that a little error occurs
between the STL model and the real cylinder model in dis-
tance calculation. Hence, the real accuracy of collision may
be smaller than 1.0. In order to get the relative accuracy
between our LSDCD algorithm and the real mathematical
method, we define the error rate as formula (7).

error = best − accuracy

best
× 100% (7)
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Fig. 6 The model of irregular wall and the divided model

Fig. 7 The possible problem in
the algorithm

Where best is themaximumvalue of accuracywhen using
all triangles, and accuracy is the actual value of precision
by our LSDCD algorithm.

3.6 N-triangles method

There is an issue when the grid is too small and the points
in the grid are similar to all triangles with respect to the
distance. As shown in Fig. 7, the center of the grid has the
same distance to triangle T 1 and triangle T 2. For points in
region A, they are nearer to triangle T 1. However, for points
in region B, they are nearer to triangle T 2. To deal with this

type of deviation, we use more than one nearer triangles to
calculate the shortest distance. In other words, for points in
region A and B, we calculate the distances to both triangle
T 1 and triangle T 2 and select the smaller value. In fact, as
can be seen from the experimental part, when we choose the
nearest two or three triangles, the accuracy is almost the same
as that when we use all triangles. If all triangles are used to
iteratively obtain the minimum value of these distances, the
accuracy is the real accuracy (it may be less than 1.0). The
algorithm using only N triangles is denoted as N-triangles
method. Essentially, our preprocessing process is designed
to sort the space information respecting the principle that,
the nearer triangles are more important to a grid. We select
the nearest N triangles and cull those triangles that are too
far away to collide.

3.7 Collision detection between rigid bodies

The idea of our algorithm can be widely applied to collision
detection for various situations. The collision determination
between near colliding objects is widely used in accurate
collision detection system. We can also assume the objects
as rigid bodies, and give an instance of collision detection
between two rigid bodies with our LSDCD algorithm.

When simulating the collision between two rigid bodies,
we still divide the space into infinitely small uniform grids.
The difference herein is to regard one model (Fig. 6, usu-
ally the simpler one) as the irregular wall and divide another
model (for example as a lion in Fig. 8) into very small trian-
gles.

In the preprocessing stage, we divide the triangles of
another rigid body model until the longest edge of these

Fig. 8 The model of lion
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triangles are smaller than the length of the grids. The data
structures of the triangles include one left triangle and one
right triangle, that is the left and right subtrees of a binary
tree. Firstly, we check if the longest edge of the triangle is
larger than the length of grids. If true, we split the triangle
into two smaller triangles from the midpoint of this edge and
add the two triangles to the left tree and right tree. At last,
we recursively divide the two subtrees. Fig. 6 also shows the
divided model. The image in the left is the original model,
and the right is the divided model.

The preprocessing of grid array is the same as mentioned
in part .C. While making collision detection, we firstly get
the center point of the triangle and assign the triangle into
one grid by its center point. Then we get the grid index by
formula (3). Next we get the nearest two or three triangles
from grid array through index. At last, we make triangle-
triangle intersection test between the triangle of the second
model and the triangles of the wall. It should be noted that
the number of triangles of the wall would only affect the time
of preprocessing in our algorithm.

We implement triangle-triangle intersection test with the
algorithm proposed by Devillers and Guigue [32]. This algo-
rithm firstly calculates the determinant, which is composed
of the vertices of the triangles. And then it judges the relative
position between the points, lines and surfaces of the trian-
gles by the signs of the determinant. At last, intersection of
the two triangles is judged by the relative position. In fact,
our LSDCD algorithm is applicable not only for rigid body.
The principle is, we should make sure that one body is left
relatively unchanged, so as to keep the grid array unchanged.

4 Experimental results and analysis

The Fig. 1 showed the visualization of collision detection
tests between different number of particles and the spallation
target. The experimental environment and analysis for our
algorithm are as discussed in this section.

4.1 Experimental environment

In the next subsections, we mainly focus on the experimental
results and analysis. We tested the computational efficiency
and accuracy, the influence of grid length, the difference
between N-triangles methods. We further investigated the
performance of LSDCD algorithm when running on differ-
ent GPUs. The result of collision detection between rigid
bodies would also be given. At last, we would analyze the
best accuracy of collision detection.

The experimental environment is set as follows: a server
with Intel Xeon E5-2620 processor and 8GB RAM and a
Tesla K40 GPU. The operating system is selected as Ubuntu
15.04 with CUDA version 7.5 installed. The algorithm was

Fig. 9 Timings and accuracy of different number of particles

also executed on a personal computer with Intel Core i3 pro-
cessor and 4GBRAMand aGTX480GPU andUbuntu 15.04
with CUDA version 7.5 installed, to verify the generalization
of the algorithm.

We use a cylinder (STL format, height 100 and radius 50,
as in Fig. 6) as the irregular collision wall drawn by a 3D
modeling software. The rigid body is a lion whose size is
about 25× 12× 25, as Fig. 8. The particles are initialized in
different size but the maximum radius of the particles is set
as 1.

4.2 Computational efficiency and accuracy

We tested the computational efficiency and accuracy using a
fixed grid length 0.2 and two-triangles method. As shown in
Fig. 9, the number of particles is denoted as 10x .

When the number of particles is less than one million, the
time is at most several milliseconds (ms). When the number
of particles is more than a million, the time is approximately
proportional to the number of particles. Even so, when the
number of particles reach ten million, we can see that the
time of collision detection is only 564 ms. It indicates that
our LSDCD is an efficient algorithm.

The accuracy of collision detection reduces a little with
the increase of particles number, but it keeps constant (0.994)
when the number of particle is more than a million. It indi-
cates that, although it is an approximation algorithm, our
LSDCD is sufficiently accurate for applications, especially
for collision simulation of particles-irregular-wall.

4.3 The influence of grid length

We tested the influence of grid length by fixing the number of
particles as 107 and using two-triangles method. As shown
in Fig. 10, when the length of grid increases, the accuracy
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Fig. 10 The influence of grid length

begins to fall, which is consistent with our algorithm design.
While we stress the importance of an infinitely small value
of grid length, it has a high degree of accuracy, when the
grid length is reduced to 0.2 only. On the other hand, as
shown in the right of Fig. 10, with the decrease of the grid
length, the time of preprocessing increases drastically. This
is consistent with formula (2) where the time increases in
inversely proportional scale to the cube of grid length. As we
mentioned above, the whole process of collision detection
contains two stages, preprocessing stage and collision detec-
tion stage. Although it takes a few seconds in preprocessing,
the time of collision detection spent in each frame is reduced
greatly and it takes about 0.5 second for collision detection
for 107 particles regardless of the length of grid.

4.4 The accuracy improved by N-triangles methods

In order to test the difference between N-triangles methods,
we experimented them based on one-triangle, two-triangles,
three-triangles and all-triangles methods. We fixed the num-
ber of particles as 107, and the grid length is set as 0.2, 0.3,
0.4 and 0.5.

The experimental result is shown in Table 2. The label
accuracy1 stands for the accuracy calculated by one-triangle
method and t iming1 stands for corresponding execution
time. Similarity, accuracy2 and accuracy3 represent accu-
racy for two-triangles and three-triangles, timing2 and
timing3 represent time used with two-triangles and three-
triangles.

FromTable 2wecan see that usingmore triangleswill gen-
erally get higher accuracy. However, when using N-triangles
method, the time cost will be N times of one-triangles.
accuracyN stands for the best accuracy when using all-
triangles. We can see that the accuracy is the same value
as best = 0.994025 even for the different values of grid

Table 2 Experimental results of accuracy based on N-triangles meth-
ods of 107 particles

gridlen 0.2 0.3 0.4 0.5

accuracy1 0.963049 0.963002 0.961837 0.962520

timing1 0.362065 0.367259 0.372562 0.372499

accuracy2 0.993950 0.993887 0.993887 0.993817

timing2 0.564954 0.581134 0.591163 0.595089

accuracy3 0.994015 0.993997 0.993982 0.994011

timing3 0.937022 0.956412 0.970890 0.976490

accuracyN 0.994025 0.994025 0.994025 0.994025

timingN 57.899280 58.054784 58.001506 57.737152

Fig. 11 The comparison of preprocessing time between different
GPUs

length. The t imingN becomes 57.899280 seconds which is
fairly unacceptable, and that is why we do not naively use
the all-triangles method.

In essence, the best accuracy is more related to the num-
ber of particles. We calculated error rate as formula (7). For
example, when the grid length is 0.2, compared to using
one-triangle, using two-triangles will improve accuracy from
0.963049 to 0.993950, and the error rate reduces from 3.11 to
0.0075%.Whenusing3 triangles, accuracy reaches 0.994015
and the error rate reduce to 0.001%. Considering the time
factor, the execution time is proportional to the number of
triangles. So basically, using two triangles is a better choice
to achieve the trade-off between accuracy and computational
efficiency. In general purpose, the two-triangles method is
used by us as default.

4.5 On different GPUs

In order to test the applicability of the algorithm, we also
tested the code on a low capacity personal computer with
a GTX480 GPU. Because of the limitation of computation
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Fig. 12 The comparison between different GPUs

capacity, the minimum value of the grid length is set as 0.6.
The time is composedof twoparts by summingpreprocessing
time and collision detection time during one frame.

From Fig. 11, we know that the time spent in preprocess-
ing stage is similar. For example, when the grid length is
set as 0.5, the timings are both 9 s on two kinds of GPUs.
However, with amore capableGPUwe can even calculate the
situation, where the length of grid is smaller, so as to improve
overall accuracy. In fact, given the fixed number of particles
randomly, the maximum accuracy is almost fixed and it is
actually related to the degree of approximation of the model
that is composed of triangles. For example, if we fixed the
number of particles as 107, the maximum value of accuracy
is 0.994025. When the grid length is reduced to 0.179 by
running on a more powerful K40 GPU, the accuracy reaches
0.993847 and the error rate is only 0.0015%.

From Fig. 12, we know that a more powerful GPU will
reduce a little time for collision detection. However, the accu-
racy is almost the same for the same grid length. This proves
that our algorithm is stable.

4.6 Result of collision between rigid bodies

We also tested the collision between the wall and the lion
model shown inFig. 8. Themodel of lion ismade up of 1.77M
triangles after triangle division. The triangles are divided into
smaller triangles, whose lengths of sides are less than 0.1.

As a benchmark, in [23], Tang et al. detected collision of
1.6M triangles in about 316.6 ms with GTX480. We used
LSDCD for a similar collision detection and it needed 22.9
ms only to detect collisions of 1.77M triangleswithGTX480.
Although they are not the exactly same applicable environ-
ments and the focus is not directly comparable, we can see
that our LSDCD algorithm is also very efficient to deal with
a large number of collision detections.

5 Conclusion

In the field of physics simulation, it is meaningful to imple-
ment the collision between particles and irregular walls. In
this paper, we implemented the LSDCD algorithm to deal
with this type of collision based on the idea of limit space
decomposition. We tested the efficiency and accuracy of the
algorithm and discussed the influence of the length of grid.
An improved N-triangles method was also experimented and
we analyzed the influence of different N-triangles methods.
We also explored the applicability of this algorithm on differ-
ent GPUs. As a generalization of this algorithm, we finally
performed the collision detection between rigid bodies.

The experimental results prove that our algorithm is fea-
sible and efficient. In general, this method can be widely
extended into the problems of large number of space compu-
tation. For example, this method can be used to compute
the distances from massive points to an irregular surface
or object efficiently. These promotional applications will be
undertaken in the future.
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