
Cluster Comput (2017) 20:909–924
DOI 10.1007/s10586-016-0700-8

An approach for scaling cloud resource management

Dan C. Marinescu1 · Ashkan Paya1 · John P. Morrison2 · Stephen Olariu3

Received: 30 May 2016 / Revised: 15 August 2016 / Accepted: 18 November 2016 / Published online: 27 January 2017
© Springer Science+Business Media New York 2017

Abstract Given its current development trajectory, the com-
plexity of cloud computing ecosystems are evolving towhere
traditional resource management strategies will struggle to
remain fit for purpose. These strategies have to cope with
ever-increasing numbers of heterogeneous resources, a pro-
liferation of new services, and a growing user-base with
diverse and specialized requirements. This growth not only
significantly increases the number of parameters needed
to make good decisions, it increases the time needed to
take these decisions. Consequently, traditional resourceman-
agement systems are increasingly prone to poor decisions
making. Devolving resources management decisions to the
local environment of that resource can dramatically increase
the speed of decisions making; moreover, the cost of gath-
ering global information can thus be eliminated; saving
communication costs. Experimental data, provided in this
paper, illustrate that extant cloud deployments can be used as
effective vehicles for devolved decisionmaking. This finding
strengthens the case for the proposed paradigm shift, since
it does not require a change to the architecture of existing

B Ashkan Paya
apaya@cs.ucf.edu

Dan C. Marinescu
dcm@cs.ucf.edu

John P. Morrison
j.morrison@cs.ucc.ie

Stephen Olariu
solariu@odu.edu

1 Department of Computer Science, University of Central
Florida, Orlando, FL, USA

2 Computer Science Department, University College Cork,
Cork, Ireland

3 Computer Science Department, Old Dominion University,
Norfolk, VA, USA

cloud systems. This shift would result in systems in which
resources decide for themselves how best they can be used.
This paper takes this idea to its logical conclusion and pro-
poses a system for supporting self-managing resources in
cloud environments. It introduces the concept of coalitions,
consisting of collaborating resources, formed for the pur-
pose of service delivery. It suggests the utility of restricting
the interactions between the end-user and the cloud service
provider to a well-defined services interface. It shows how
clouds can be considered functionally, as engines for deliv-
ering an appropriate set of resources in response to service
requests. And finally, since modern applications are increas-
ingly constructed from sophisticated workflows of complex
components, it shows how combinatorial auctions can be
used to effectively deliver packages of resources to support
those workflows.

Keywords Computer clouds · Self-organization ·
Over-provisioning · Coalition formation · Combinatorial
auctions

1 Introduction and motivation

The ready availability of large numbers of powerful, and
increasingly heterogeneous, resources being made available
by cloud service providers (the provider) is making possible
the deployment of large, data and compute intensive, appli-
cations. In many cases, these, quite often legacy, applications
aremonolithic in construction and require bespoke execution
environments. Consequently, it can be challenging to deploy
them in the cloudwithout acquiring infrastructure as a service
(IaaS) and employing specialized engineering knowledge. In
this cloud usage model, the provider has no control over the
effective utilization of resources, nor has cloud customers

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-016-0700-8&domain=pdf
http://orcid.org/0000-0003-0494-8483

910 Cluster Comput (2017) 20:909–924

(the customer) an incentive to engage in costly customiza-
tion to increase resource efficiency when, regardless of the
efficiency achieved, they are paying for the entire resource.

Composing cloud services from work flows of large, pos-
sibly legacy, applications will most likely be the trend as
support for emerging Big Data applications require sophis-
ticated, multi-phase data processing. Being essentially inde-
pendent, the required resources for the applications run in
each of these phases may differ greatly in number and type,
and hence the problems of cost and efficiency could be sig-
nificantly exacerbated.

Clearly, an approach is needed to allow the sophistication
of the cloud, as a compute service, to evolve in an efficient and
cost-effective manner. The approach proposed here, begins
by assuming the existence of a clear and distinct services
interface between the customer and the provider. It assumes
that this service can be expressed as a work flow in which
nodes represent extant applications and edges distinguish the
phases of the service where particular applications are active.
The assumption of this services interface drastically alters
the current cloud usage model in that it shifts the burden
of resource discovery, provisioning, and deployment from
the customer to the provider. This shift greatly reduces the
cost to, and the level of expertise needed by, the customer
while simultaneously giving the provider full control over
and affords opportunities for the efficient use of, the cloud
resources.

The downside of this shift for the provider is the huge
increase in resource management complexity that it precipi-
tates, as the provider has to essentially take on all the tasks
that heretofore were undertaken by each customer individu-
ally.

In this paper, a resource management approach is pro-
posed to address this complexity. In an attempt to minimize
the overhead of resourcemanagement, it suggests constraints
on cloud system organization to further the goal of making
decisions in a distributed manner, based only on local infor-
mation. It embraces market-based mechanisms as a vehicle
for implementing cloud resource management policies and
it considers how far this approach can be extended in the
direction of cloud self-management. Market-based mecha-
nisms have proven ability to respond well in environments
where dynamic resource management is needed including
the auctioning of airport takeoff and landing slots, allocating
wireless spectrum licenses, and industrial procurement.

A realistic model of the physical organization of the cloud
data center, the warehouse scale computer (WSC), such as
the one used by Google and described in [1] is used as the
basis of our study. The entire cloud infrastructure is assumed
to consist of several WSCs containing several hundreds of
thousands of servers interconnected by a hierarchy of net-
works. These servers are housed in racks that are connected
Gigabit Ethernet switches. Each switch has two to eight up-

links which go to the higher level switches in the network
hierarchy. A number of racks are connected to a cell and a
typical WSC consists of tens of cells. The latency increases
whenmessages cross multiple layers of the hierarchy and the
bandwidth decreases.

Section 2 outlines some existing and future challenges
for cloud resource management. The simulation experiments
detailed in Sect. 3, show that in the face of rising complexity,
such as that postulated here, a market-based bidding mech-
anism for resource allocation significantly outperforms a
centralized resource manager. Keeping all decision informa-
tion local necessitates the inclusion of functional components
to support self-management. Section 5 examines some of
these components, coalition formation, combinatorial auc-
tions and a reservation system. Section 4 considers cloud
self-management and cloud coalitions and in Sect. 6 we
analyze the challenges posed by trying to realize a self-
organizing cloud infrastructure.

2 Cloud resource management policies and
mechanisms

The polices for cloud resource management are expected
to support: (i) admission control; (ii) capacity allocation;
(iii) load balancing; (iv) energy optimization, and (v) quality
of service (QoS) [21]. Several mechanisms can be used to
implement these policies including: control theory, machine
learning, utility-based, and market-oriented mechanisms.

Several factors add to the challenges posed by cloud
resource management discussed in Sect. 1:

2.1 An increasingly more heterogeneous cloud
infrastructure

Servers with different configurations of multi-core proces-
sors, attached co-processors (GPUs, FPGAs and MICs) are
already, or are expected to become elements of the cloud
computing landscape. AmazonWeb Services (AWS) already
support G2-type instances with GPU co-processors.

2.2 Over-provisioning

Cloud elasticity is based on over-provisioning, assembling
pools of resources far larger than required to satisfy the aver-
age needs. Elasticity is beneficial, it allows cloud users to
increase or decrease their resource consumption based on
their need, but it comes at a high cost. Over-provisioning
demands high initial investments and results in low server
utilization. The average cloud server utilization is in the
18–30% range [1]. Over-provisioning is not economically
sustainable [2], it is critical to increase server utilization and
the efficiency of the cloud data centers.

123

Cluster Comput (2017) 20:909–924 911

2.3 High energy consumption and a large carbon
footprint of cloud data centers

Low server utilization implies that the cloud power consump-
tion is far larger than it should be. The power consumption
of cloud servers is not proportional with the load, even when
idle they use a significant fraction of the power consumed at
the maximum load. Computers are not energy proportional
systems [1] thus, power consumption of clouds based on
over-provisioning is excessive and has a negative ecological
impact [3]. A 2010 survey [4] reports that idle or under-
utilized servers contribute 11 million tones of unnecessary
CO2 emissions each year and that the total yearly cost of the
idle servers is $19 billion.

2.4 The need for cloud interoperability

The cloud computing landscape is fragmented, providers
support different cloud delivery models: Amazon IaaS,
microsoft platform as a service (PaaS), Google mostly soft-
ware as a service (SaaS), and so on.Choice is always good but
vendor lock-in is an inherent danger. To create an organiza-
tion which could seamlessly support cloud interoperability
and allow multiple cloud delivery models to coexist poses
additional challenges.

2.5 New and more demanding cloud applications

The spectrum of cloud services and cloud applications is
widening. For example, recently the AWS added some ten
new services, including Lambda, Glacier, Redshift, Elas-
tic Cache, and DynamoDB. Several types of EC2 (elastic
cloud computing) profiles, M3—balanced, C3—compute
optimized, R3—memory optimized, I2 and HS1—storage
optimized were also identified in the last months. The spec-
trum of EC2 instance types is also broadening; each instance
type provides different sets of computer resources measured
by vCPUs (a hyper-thread of an Intel Xeon core for M3, C3,
R3, HS1, G2, and I2).
These challenges, and others, highlight the need to rethink
resource management in the light of the expected complexity
that will come about as the cloud evolves to services interface
as postulated in this paper.

3 Hierarchical control versus market mechanisms

Market mechanisms have distinct advantages over the other
mechanisms discussed in Sect. 2. They require neither a sys-
tem model nor information about the global system state. In
a large system, operating in a highly dynamic environment,
this is a significant advantage as the information about the
global state can be, at best, obsolete.

Can the advantages of market mechanisms be quantified?
Answers to this question are reported in [5,6] and [7]. As the
cloud computing infrastructure is hierarchically organized
it makes sense to compare market mechanisms with hierar-
chical control. An experiment to estimate the advantage of
market mechanisms compared with hierarchical control are
discussed in this section.

A realistic cloud infrastructure consisting of severalWSCs
was simulated and this, in itself, was challenging, in line with
Barroso’s prediction in [1] “...they (the WSCs) are a new
class of large-scale machines driven by a new and rapidly
evolving set of workloads. Their size alone makes them dif-
ficult to experiment with, or to simulate efficiently.”

The scale of the system does not allow a detailed sim-
ulation and the results reported are more qualitative than
quantitative. For example, the communication complexity
is reported as the number of messages at different levels of
the network hierarchy, rather than the communication time.
Determining the communication time would require more
details than we could simulate.

A simulation experiment the simulation experiments are
conducted on the Amazon cloud using c3.8xlarge1 EC2
instances. It is challenging to simulate systems with 4–8
WSCs efficiently, the execution time for each one of the sim-
ulation experiments reported in this section is about 24 h and
each simulation requires 5–6 days wall clock time.

It is important to understand how the scale and the load
of the system, as well as, several other parameters of the
resource management system affect the ability of the cloud
infrastructure to respond to service requests. An impor-
tant measure of the effectiveness of a resource management
system is the communication complexity expressed by the
number of messages at each level of an interconnection
infrastructure.

The communication latency increases and the bandwidth
of the interconnection infrastructure decreases from the rack
to the cell and then to the WSC level. We expect the commu-
nication complexity of a hierarchical resource management
system tobedominatedbymonitoring and the effort for locat-
ing a server capable to process a service request.

The simulation model assumes a time-slotted system. A
service request is characterized by three parameters:

(1) Service type.
(2) Service duration—expressed as a number of time slots.
(3) Service intensity—expressed as the number of vCPUs.

The system size, the system load, the service time, the
total number of service types supported by the system, and
the number of service types supported by a server affect the

1 Compute-optimized instance with 32 vCPU and 60 GiB memory.

123

912 Cluster Comput (2017) 20:909–924

system performance. From the broad set of system perfor-
mance metrics the following are the most relevant:

• The number of messages exchanged at different levels
for mapping the service requests. These numbers reflect
the overhead of the request processing process.

• The ability of the system to balance the load measured
as the coefficient of variation (the variance versus the
average) of the system load per allocation slot (AS).

• The rejection ratio (RR), the ratio of service requests
rejected because no server able to match the service type,
the service intensity, and the service duration demanded
by the clients could be found.

The system configuration is derived from the data in [1]
and the parameters of the simulation model have been cho-
sen as realistic as possible. The experiments were conducted
with two system configurations, 4 and 8 WSCs. A WSC has
the following configuration: 24 cells, 100 racks per cell, 40
servers in each rack, and 4 processors per server. Thus, a
WSC has 88, 000 servers and 352, 000 processors. The sys-
tem is homogeneous, all servers have the same capacity 100
vCPUs.

The simulation environment is flexible. A configuration
file describes the system infrastructure, the network speed,
the server load, and the parameters of themodel. For example,
the system configuration for the high initial load case is:

% System configuration
serverNum = 40;
cpuNum = 4;
rackNum = 100;
cellNum = 25;
WSCsNum = 4;
servers_capacity =100;

% Network speeds and load parameters
interRackSpeed = 1;
intraRackSpeed = 10;
MIN_LOAD = 80;
MAX_LOAD = 85;

% Model parameters
NUMBER_OF_TYPES = 100;
vCPU_MAX_REQUES = 800;
vCPU_MIN_REQUEST =10;
vCPU_PER_SERVER = 10;
MAX_SERVICE_TIME = 10;
MONITORING_PERIOD = 10;
SIMULATION_DURATION = 200;
SERVER_TYPES = 5;
REQUEST_TYPES = 5;
RACK_CAP = serverNum *

servers_capacity;
CLUS_CAP= rackNum * RACK_CAP;

WSC_CAP= clusterNum * CLUS_CAP;
SYSTEM_CAP= WSCsNum * WSC_CAP;

The amount of resources in a service request has a broad
range, between 10 and 800 vCPUs, while a single server can
provide 10 vCPUs. The spectrum of service types offered is
quite large, initially 500 types and then reduced to 100.

The time is slotted and a batch of service requests with a
random distribution of the service time, type, and intensity
arrive in each slot. The individual service requests are ran-
domly assigned to one of theWSCs. Practical considerations
regarding simulation costs and time to get the results have
limited the duration of simulation to 200 ASs.

Several simulation experiments with different system
parameters are presented. In the first experiment the attributes
of service requests are uniformly distributed and the ranges
are: (1 − 100), (1 − 10), and (10 − 800) for service type,
service time, and service intensity, respectively. A server sup-
ports 5 different service types randomly selected from a total
of 500 possible service types. The monitoring interval is ten
ASs; for later experiments it will increase to 20 and then to
50 ASs. In the next experiments the effect of changing the
parameters of the system model are investigated:

(1) Doubling the number of WSCs from 4 to 8; this gives an
indication of the scalability of the model.

(2) Increasing the average system load from about 20% to
about 80% gives an indication about the robustness of
the policy and its ability to perform well under stress.

(3) Reducing the number of requested service types from
500 to 100; one of the aims is to support a very broad
range of services so the impact of the service diversity is
important.

(4) Reducing the number of types of services offered by each
server from 5 to 2; the more types of services the more
flexible the server configuration should be.

(5) Changing the distribution of the service time from (1 −
10) to (1 − 20) time slots. The larger the range of the
service time the broader the range of applications able to
use the cloud infrastructure.

(6) Increasing the monitoring interval for hierarchical con-
trol from 20 to 50 time slots; the monitoring interval is
expected to have an effect on the quality of information
used by load balancers.

Hierarchical control in each time slot incoming service
requests are randomly assigned to one of the WSCs. Each
WSC periodically collects data from the cells, which in turn
collect data from racks, which collect data from individual
servers.

The communication complexity for this monitoring
process increases linearly with the size of the system. The
more frequent the monitoring at each level, the more accu-

123

Cluster Comput (2017) 20:909–924 913

Table 1 Hierarchical
control—the simulation results
for a system configuration with
4 WSCs

WSCs Initial/final Initial/final RR # service WSC Cell Rack
load (%) γ (%) requests msg/req msg/req msg/req

4 22.50/19.78 0.007/0.057 2.2 14,335,992 0.98 3.18 271.92

78.50/82.38 0.004/0.183 7.1 57,231,592 1.01 10.16 973.15

8 22.50/19.26 0.006/0.049 1.9 31,505,482 0.98 3.18 271.92

78.50/81.98 0.005/0.213 8.7 94,921,663 1.01 11.36 1071.75

Shown are: the average initial and final system load for the low and high load; the initial and final coefficient
of variation γ of the load; the RR; and the average number of messages for monitoring and control per service
request at WSC, cell, and rack level

Table 2 Hierarchical control
WSCs Initial/final Initial/final RR # of service WSC Cell Rack

load (%) γ (%) requests msg/req msg/req msg/req

4 22.50/21.15 0.003/0.051 1.9 16,932,473 1.00 3.53 337.34

82.50/67.18 0.003/0.109 7.2 42,034,225 1.00 11.15 1,097.00

8 22.50/22.13 0.008/0.055 5.4 38,949,889 1.00 4.22 470.35

82.50/81.63 0.006/0.155 4.2 84,914,877 1.00 10.72 1,038.96

4 22.50/21.15 0.003/0.051 1.7 17,341,885 0.99 3.22 276.34

82.50/74.27 0.006/0.059 14.6 52,206,014 1.00 12.12 1255.40

8 22.50/16.27 0.006/0.035 1.3 37,750,971 0.99 3.18 268.27

82.50/74.55 0.007/0.081 2.9 99,686,943 1.00 10.77 1,036.64

Top half the number of service types is reduced from 500 to 100, bottom half the number of service types
offered by a server is reduced from 5 to 2. All other parameters are identical to the ones for the experiment
with results in Table 1

rate the information is, but the larger the volume of data
and the interference with the “productive communication”,
communication initiated by running applications. The com-
munication bandwidth at each level is limited and when
the system load increases the communication latency is
likely to increase significantly, as many applications typi-
cally exchange large volumes of data.

The simulation model assumes that load balancers at each
level monitor the system they control. When a request is
assigned to a WSC, the load balancer directs it to the cell
with the lowest reported load and the process repeats itself
at the cell level. The cell load balancer directs the request to
the rack with the lowest reported load, which in turn directs
it to server with the lowest reported load.

If the server rejects the request, the rack load balancer
redirects the request to the server with the next lower load.
If the rack cannot satisfy the request, it informs the cell load
balancer which in turn redirects the request to the rack with
the next lowest reported average load. The request is rejected
if none of the cells of theWSC are able to find a server able to
satisfy the type, duration, and intensity of the service request.

The simulation is conducted for two average initial system
loads: low, around 20%and high, around 80%of the system’s
capacity. The total number of service requests for 4 WSCs
and for low and high initial system load are around (12 −
17)×106 and (42−57)×106, respectively. In each case we
show: (1) the number of WSCs; (2) the average initial and

final system load for low and high load; (3) the initial and
final coefficient of variation γ of the load; (4) the RR; the
number of messages for monitoring and control per service
request at (5) WSC level; (6) cell level; and (7) rack level.

Simulation results for hierarchical control the results of
the first simulation experiment, Table 1, show that the RR,
the coefficient of the variation of the final load, and the aver-
age number of messages required to map a service request to
a server are more than three fold larger in the case of higher
load; indeed, 7.1/2.2 = 3.22, 0.183/0.057 = 3.22, and
984/276 = 3.2, respectively. At higher load more requests
are rejected, load balancing is less effective, and the overhead
for mapping a request is considerably higher. The increase in
the number of messages means a substantial increase in the
communication costs and also a longer waiting time before
a request enters the service.

Doubling the size of the system does not affect the statis-
tics for the same average system load. For example, when the
initial average load is 22.50% the average number of mes-
sages exchanged per service request is the same at the three
levels of the hierarchy for both system configurations. The
RR varies little, 2.2 versus 1.9 and 7.1 versus 8.7% for 4 and
8 WSCs, respectively.

Table 2 (Top half) presents the results after reducing the
total number of service request types from 500 to 100. A
reduction of the RR and of the number of messages at high
load for the larger configuration of 8 WSCs compared to the

123

914 Cluster Comput (2017) 20:909–924

Table 3 Hierarchical control
WSCs Initial/final Initial/final RR # of service WSC Cell Rack

load (%) γ (%) requests msg/req msg/req msg/req

4 22.50/22.41 0.005/0.047 0.20 12,352,852 1.00 3.13 261.11

82.50/80.28 0.003/0.063 2.10 43,332,119 1.00 3.41 1108.12

8 22.50/22.77 0.005/0.083 1.30 25,723,112 1.00 3.11 236.30

82.50/79.90 0.005/0.134 4.10 88,224,546 1.00 10.63 1029.56

4 22.50/21.07 0.003/0.033 1.00 12,335,103 0.99 3.21 270.07

82.50/83.46 0.007/0.080 1.80 51,324,147 1.01 10.87 1040.63

8 22.50/19.16 0.005/0.030 1.30 29,246,155 1.00 3.37 304.88

82.50/84.12 0.002/0.041 2.30 93,316,503 1.00 3.66 1005.87

Top half the service time is uniformly distributed in (1− 20) instead of (1− 10) allocation slots, bottom half
the monitoring interval is increased from 10 to 50 reservation slots. All other parameters identical to the ones
for the experiment with results in Table 1

case in Table 1 is noticeable. Also, the RR decreases from 7.4
to 4.2% for configurations with 4 and 8 WSCs, respectively.

When the number of service types offered by a server is
reduced from 5 to 2 and the system configuration changes
from 4 to 8 WSCs the rejection rate decreases, see Table
2 (bottom half). The reduction from 14.6 to 2.9 can be
attributed to the fact that an incoming service request is ran-
domly assigned to one of the WSCs; the larger the number
of WSCs the less likely is for the request to be rejected. The
number of messages at the rack level is considerably larger
for the smaller system configuration at high load, 1255 versus
973 in the first case presented in Table 1.

Next, the monitoring interval is set to 20 ASs and the
service time is uniformly distributed in the range 1–20 ASs.
The results in Table 3 (top half) show that the only noticeable
effect is the reduction of the rejection rate.

In the following experiment the monitoring interval is
extended from 10 to 50 ASs. The service time is uniformly
distributed in the range 1–10 ASs; even when the monitoring
interval was 10 ASs, this interval is longer than the average
service time thus, the information available to load balancers
at different levels is obsolete.

The results in Table 3 (bottom half) show that increas-
ing the monitoring interval to 50 slots has little effect for
the 4 WSC configuration at low load, but it reduces substan-
tially the RR and increases the number of messages at high
load. For the 8WSC configuration increasing the monitoring
interval reduces the RR at both low and high load, while the
number of messages changes only slightly.

Figure 1 (top) show the time series of the average system
load for the low and the high initial load, respectively for
the case in Table 1 when the monitoring interval is 20 time
slots and the service time is uniformly distributed in the 1–20
slots range and there are 8 WSCs. The system workload has
significant variations from slot to slot; for example, at high
load the range of the average system load is from 58 to 85%
of the system capacity. Figure 1 (bottom) show the initial

and the final load distribution for the 8WSCs; the imbalance
among WSCs at the end of the simulation is in the range of
1–2%.

The results of the five simulation experiments are con-
sistent, they typically show that at high load the number of
messages, thus the overhead for request mapping increases
three to four fold, at both cell and rack level and for both
system configurations, 4 and 8 WSCs.

Simulation of amarketmodel in this resourcemanagement
model all servers of a WSC bid for service. A bid consists of
the service type(s) offered and the available capacity of the
bidder.

The overhead is considerably lower than that of the hier-
archical control; there is no monitoring and the information
maintained by each WSC consists only of the set of unsat-
isfied bids at any given time. The servers are autonomous
and act individually; there is no collaboration among them,
while self-organization and self-management require agents
to collaborate with each other.

At the beginning of an AS servers with available capacity
above a threshold τ place bids. The bids are then collected
by each WSC. A bid is persistent, if not successful in the
current AS it remains in effect until a match with a service
request is found. This strategy to reduce the communication
costs is justified because successful bidding is the only way
a server can increase its workload.

One of the objectives of the investigation is the effec-
tiveness of the bidding mechanism for lightly and heavily
loaded system, around 20 and 80% average system load,
respectively. The thresholds for the two cases are differ-
ent, τ = 30% for the former and τ = 15% for the latter.
The choice for the lightly loaded case is motivated by the
desire to minimize the number of messages; a large value
of τ , e.g., 40% would lower the RR but increase the num-
ber of messages. Increasing the threshold, e.g., using a value
τ = 20%, would increase dramatically the rejection rate in
case of heavily loaded system; indeed, few servers would

123

Cluster Comput (2017) 20:909–924 915

Fig. 1 Hierarchical control for a cloud with 8 WSCs. The monitoring
interval is 20 ASs and the service time is uniformly distributed in the
range 1–20ASs. The initial average system load: (left) 20%; (right) 80%

of system capacity. Top time series of the average WSC load. Bottom
initial and final average WSC load

have 20% available capacity when the average system load
is 80%.

Simulation results for the market model the measurements
reported for the hierarchic control are repeated under the
same conditions as those for hierarchical control for a fair
comparison; only bidding replaces monitoring and hierar-
chical control. The same performance indicators are used:
communication complexity, the efficiency of load balancing,
and the RR. The results are shown in Tables 4 and 5.

The simulation results show a significant reduction of the
communication complexity, more than two orders of magni-
tude in case of themarket-orientedmechanism. For example,
at low average load the average number of messages per
reservation request at the rack level is 0.987, Table 4, versus
271.92 for 4 and 8 WSCs, Table 1.

At high average load the same values are: 4.155 versus
973.14 for the 4 WSC case and 5.761 versus 1071.75 for the

8 WSC case. A second observation is that when the average
load is 20% of the system capacity the communication com-
plexity is constant, 0.987, for both configurations, 4 and 8
WSCs, regardless of the choices of simulation parameters.
At high average load, the same value is confined to a small
range, 4.078 to 6.734.

The organization is scalable, the results for 4 and for 8
WSCs differ only slightly. This is expected because of the
distributed scheme where each WSC acts independently, it
receives an equal fraction of the incoming service requests
and matches them to the bids placed by the servers it
controls.

The average RR at low average load decreases, see Tables
4 and 5. On the other hand, the rejection rate increases when
the range of the service time increases from the 1 − 10 to
1 − 20, see Table 5 (bottom). This effect is most likely due
to the fact that requests with a large service time arriving

123

916 Cluster Comput (2017) 20:909–924

Table 4 Market model
WSCs Initial/final Initial/final RR # service WSC Cell Rack

load (%) γ (%) requests msg/req msg/req msg/req

4 22.50/23.76 0.007/0.067 .22 15,235,231 0.002 0.011 0.987

82.50/80.32 0.004/0.115 5.44 63,774,913 0.003 0.042 4.155

8 22.50/22.47 0.006/0.033 .18 30,840,890 0.002 0.011 0.987

82.50/81.30 0.005/0.154 7.23 89,314,886 0.003 0.054 5.761

Simulation results for a system configuration with 4WSCs. Shown are the initial and final system load for the
low and high load, the initial and final coefficient of variation γ of the load, the RR, and the average number
of messages for monitoring and control per service request at WSC, cell, and rack level

Table 5 Market model
WSCs Initial/final Initial/final RR # of service WSC Cell Rack

load (%) γ (%) requests msg/req msg/req msg/req

4 22.50/22.3 0.004/0.050 .18 15,442,372 0.002 0.011 0.987

82.50/79.88 0.004/0.098 6.01 56,704,224 0.002 0.059 5.968

8 22.50/23.0 0.007/0.049 .3 31,091,427 0.002 0.011 0.987

82.50/80.91 0.009/0.127 5.81 85,322,714 0.003 0.0.51 5.845

4 22.50/20.94 0.007/0.056 .1 15,295,245 0.002 0.011 0.987

82.50/77.83 0.008/0.133 10.1 49,711,936 0.003 0.063 6.734

8 22.50/22.33 0.007/0.063 .02 31,089,191 0.002 0.011 0.987

82.50/78.18 0.008/0.142 3.61 71,873,449 0.002 0.059 6.098

4 22.50/23.31 0.002/0.064 2.27 13,445,186 0.001 0.011 0.988

82.50/84.05 0.007/0.101 3.75 57,047,343 0.002 0.042 6.329

8 22.50/18.93 0.007/0.038 2.94 28,677,012 0.001 0.011 0.988

82.50/85.13 0.008/0.072 4.38 88,342,122 0.002 0.029 4.078

Top the number of service types is reduced from 500 to 100, center the number of service types offered by a
server is reduced from 5 to 2, bottom the service time is uniformly distributed in the range (1–20) instead of
(1–10) ASs. All other parameters are identical to the ones for the experiment with results in Table 4

during later slots do not have time to complete during the
200 allocation slots covered by the simulation.

At high average system load the average RR is only
slightly better for market-based versus hierarchical control.
Lastly, the market-based mechanism performs slightly better
than hierarchical control in terms of slot-by-slot load balanc-
ing, the coefficient of variation of the system load per slot is
γ ≤ 1.115.

The number of different service types offered by the cloud
does and the number of services supported by individual
servers, do not seem to affect the performance of the sys-
tem see Table 5 (top) and (center).

Figure 2 (top) show time series of the average system load
for the low and the high initial load, respectively. The actual
system workload has relatively small variations from slot to
slot; for example, at high load the range of the average system
load ranges from 77 to 82% of the system capacity. Figure 2
(bottom) show the initial and the final load distribution; the
imbalance among the eightWSCs at the end of the simulation
is in the 21 − 23% range at low load and in the 80 − 80.1%
range at high load.

The results show that market-based policy performs well
at high system load and this is extremely important. The

average server utilization based on existing cloud resource
management policies reported in the literature is rather low.A
policy that allows servers to operate effectively under heavy
load is highly desirable.

The results of the simulation experiments discussed in this
section confirm our intuition that monitoring required by a
hierarchical resource management adds a significant over-
head for resource management in a large-scale system and
cannot provide accurate information about the state of system
resources. We can only draw qualitative conclusions from
the simulation experiments, the performance of the market
mechanisms is significantly better for critical performance
metrics than the results of hierarchical control and this effect
is noticeable for experiments with different sets of parameter
models.

4 Cloud coalitions

Coalition formation supports a more effective use of large-
scale system resources, as well as a convenient means for
accessing these resources [8]. There is little surprise that the

123

Cluster Comput (2017) 20:909–924 917

Fig. 2 Market model. A cloud with 8 WSCs, the monitoring interval
is 20 ASs and the service time is uniformly distributed in the range
1–20 ASs. The initial average system load is: (left) 20%; (right) 80% of

system capacity. Top time series of the average load. Bottom initial and
final average load

interest in coalition formation migrated in recent years from
computational grids to cloud resource management.

A stochastic linear programing game model for coalition
formation is presented in [9]; the authors analyze the stabil-
ity of the coalition formation among cloud service providers
(CSP) and show that resource and revenue sharing are deeply
intertwined. An optimal VM provisioning algorithm ensur-
ing profit maximization for CSPs is introduced in [10].

A combinatorial coalition formation problem is described
in [11]. That paper assumes that a seller has a price schedule
for each item. The larger the quantity requested, the lower
is the price a buyer has to pay for each item; thus, buyers
can take advantage of price discounts by forming coalitions.
A similar assumption is adopted by the authors of [16] who
investigate systems where the negotiations among deliberate
agents are not feasible due to the scale of the system.

Two types of cloud coalitions are reported in the literature:

(1) Coalitions ofCSPs for the formation of cloud federations.
A cloud federation is an infrastructure allowing a group
of CSPs to share resources; the goal is to balance the load
and improve system reliability.

(2) Coalitions of the servers of a data center. The goal is to
assemble a pool of resources larger than the ones avail-
able in a single server.

The vast majority of on-going research in this area is focused
on game-theoretic aspects of coalition formation for cloud
federations [9,10,12]. Cloud federations require a set of
standards and that aspect of the present cloud computing
landscape is still evolving. The adoption of inter-operability
standards supporting cloud federations seems a distant pos-
sibility, in spite of the efforts of the cloud computing
community coordinated by the National Institute of Stan-
dards (NIST).

123

918 Cluster Comput (2017) 20:909–924

Fig. 3 A lattice with four levels
L1, L2, L3 and L4 showing the
coalition structures for a set of 4
servers, s1, s2, s3 and s4. The
number of coalitions in a
coalition structure at level Lk is
equal to k. In a homogeneous
system the identity of the
servers does not matter and
there is only one coalition
structure at each level

The second coalition type has received little attention
in the past. This is likely to change due to the emerg-
ing interest in Big Data cloud applications, which require
more resources than a single server can provide. To address
this deficit, this paper looks considers sets of identically
configured servers, able to communicate effectively among
themselves, forming coalitions with sufficient resources for
data- and computationally-intensive problems. For the rest
of this paper, coalition formation refers to this type only.

Coalition formation to support Big Data applications is
considered in [5]. Coalition formation is modeled as a coop-
erative game where the goal of all agents is to maximize
the rewards for the entire set of agents. A set of R servers
{s1, s2, . . . , sR}, located in the same rack is considered. In
this case, a coalition Ci is a non-empty subset of R.

Figure 3 shows a lattice representation of the coalition
structures for a set of four servers s1, s2, s3 and s4. This lattice
has four levels, L1, L2, L3 and L4 containing the coalition
structures with 1, 2, 3 and 4 coalitions, respectively. In gen-
eral, the level k of a lattice contains all coalition structures
with k coalitions; the number of coalitions structures at level
k for a population of N agents is given by the sterling number
of second kind:

S(N , k) = 1

k!
k∑

i=0

(−1)i
(
k

i

)
(k − i)N . (1)

In the case illustrated in Fig. 3, N = 4 and the num-
ber of coalition structures at levels L1 − L4 are 1, 7, 6, 1,
respectively.2 The total number of coalition structures with
N agents is called the Bell number

B(N) =
N∑

k=0

S(N , k) =
N∑

k=0

1

k!
k∑

i=0

(−1)i
(
k

i

)
(k − i)N . (2)

2 For N = 5 and N = 6 the stirling numbers of the second kind are
respectively 1, 15, 25, 10, 1 and 1, 31, 90, 65, 15, 1.

The number of coalition structures increases exponentially
with the number of agents. For example, for N = 40, a
typical number of servers in a rack, the number of coalition
structures is close to 10353 and number of coalitions is close
to 1010.

Searching for the optimal coalition structure C is compu-
tationally challenging due to the size of the search space. The
first step for determining the optimal coalition structure is to
assign a value v reflecting the utility of each coalition. The
second step is the actual coalition formation.

By considering a rack to be homogeneous, all servers have
an identical configuration. This realistic assumption consid-
erably simplifies the complexity of the search for an optimal
coalition structure, as the servers are indistinguishable from
one another.

An algorithm to find optimal coalition structures in coop-
erative games by searching through a lattice like the one in
Fig. 3 was introduced by [13]. A more refined algorithm is
described in [14]; in this algorithm the coalition structures are
grouped according to the so-called configurations reflecting
the size of the coalitions.

5 Rack-level coalition formation and
combinatorial auctions

Since the infrastructure of aWSC is hierarchically structured,
communication latency is lower among servers in the same
rack. Coalition formation within a rack is therefore optimal
from that perspective. Moreover, servers within a rack can
be arranged to be homogeneous, while allowing from het-
erogeneity among racks. Thus, forming rack-level coalitions
can also be guaranteed to be homogeneous.

Task-oriented coalition formation is oftenNP hard [15].
When all agents have the same ability to perform a single
task, the problem is similar to the set partitioning problem,

3 S(40, 14) = 3.5859872255621803491428554E + 34

123

Cluster Comput (2017) 20:909–924 919

while in the case of agents able to perform multiple tasks the
problem resembles the set covering problem [16].

Here reservation system is designed to find resource coali-
tions to undertake a specific service request. The system,
proposed here, has two stages; coalitions of servers are
formed periodically during the first stage and, in the second
stage, these coalitions participate in combinatorial auctions
designed to identify a collection of coalitions capable of
undertaking a work flow of services.

System organization a set of N servers {s1, s2, . . . , sN },
located in the same rack are considered. A coalition Ci is
a non-empty subset of N . A coalition structure is a set of
m coalitions S = {C1,C2, . . . ,Cm} satisfying the following
conditions

m⋃

i=1

| Ci |= N and i �= j ⇒ Ci

⋂
C j = ∅. (3)

At least two basic mechanisms for coalition formation are
possible. The first one, will be referred to as just-in time
coalition formation . It consists of several steps: first, service
requests are examined by the WSC to determine the type
of servers and the size of the coalitions needed, secondly,
servers and the coalition sizes matching these requirements
are identified. Finally, any unsatisfied requests have to be
processed.

The second mechanism, coalition formation based on
past history, integrates the two processes, coalition forma-
tion and combinatorial auctions, as stage one and stage two,
respectively of the reservation system. The system now uses
information from past auctions to determine the size of the
server coalitions formed by racks with different types of
servers, and thenmatches them to the current needs expressed
by service requests. In the second stage combinatorial auc-
tions the coalitions created during the first stage are included
in successfully auctioned packages thus, the precise value
of all coalitions structures can be determined. An impor-
tant condition is that only available servers, servers with
no commitments for the current slot, can participate in coali-
tion formation and in the auction organized in that slot; call
Na ≤ N that number of available servers.

Coalition formation protocol an elected rack leader col-
lects information about all successful coalitions - coalitions
that have been included in packages auctioned successfully
during a window of, w, successive past slots. The current
rack-leader records an entry for the corresponding partial
coalition structure (PCS) including nk—the coalition size,
mk - the multiplicity of occurrence, the value v̄k calculated
as the average price over all auctions when a PCS, includ-
ing a coalition of size nk , was part of a package successfully
auctioned during the past w ASs.

Call L the PCL-list. For a window of size w the list L is
the list of all triplets Lk = [nk,mk, v̄k] ordered first by 1 ≤

nk ≤ Na then by mk . The list includes only entries Lk with
v̄k > 0. Given Na a coalition structure (CS) Sk among the
entriesLk1,Lk2, ,Lkn is feasible if

∑
j nk×mk = Na .

Then, the value of the coalition structure Sk is vk = ∑
j v̄ j .

Note that the formation of coalitions can be forced to include
all available servers. An example of a PCS list L follows

--
a [1,4,35] *4 PCS of 1-server {s}
b [1,15,682] \ *15 PCS of 1-server {s}

.........
c [2,3,78] *3 PCS of 2-servers {s,s}

........
d [3,2,502] *2 PCS of 3-servers {s,s,s}
e [3,4,812] *4 PCS of 3-servers {s,s,s}

.........
f [16,1,751] *1 PCS of 16-servers

{s,..,s}
g [16,2,740] *2 PCS of 16-servers

{s,..,s}
.........

--

In this example, some of the feasible coalitions structures
when Na = 16 are: Sg with vg = 751; Sa,b with va,b =
35 + 682 = 712; Sa,e with va,e = 35 + 812 = 837; Sa,c,d

with va,c,d = 35 + 78 + 502 = 615, and so on. Note that
the value of a coalition reflects also the length of time the
coalition was active in response to successful auction. It can
be seen that a PCS of 15 coalitions of 1 server have been
active for larger number of slots than a PCS of 4 coalitions
of 1 server. The value attributed to a coalition of k servers is
distributed equally among the servers; the value of a package
of several coalitions auctioned successfully is divided among
the coalitions based on the resource supplied by each one of
them.

The coalition formation protocol proceeds as follows:

(1) Server si sends to the current rack leader:

(a) A vector ([ν1i , β1
i], [ν2i , β2

i],[νN
i , βN

i]) with
νki , 1 ≤ k ≤ N the total value due to the partici-
pation of si in successful coalitions, of k servers and
βk
i a bit vector with w components with β

k, j
i = 1 if

si was included in a successful coalition of k servers
in slot j of window w.

(b) Availability, ai = 1 if available, 0 otherwise.

(2) After receiving the information from all servers the cur-
rent rack leader:

(a) Determines Na = ∑N
i=1 ai .

(b) Computes mk = ∑Na
i=1

∑w
j=1 β

k, j
i , 1 ≤ k ≤ N .

(c) Computes v̄k = ∑
νki

(d) Computes the optimal coalition structure.

123

920 Cluster Comput (2017) 20:909–924

Fig. 4 AuctionsAt andAs conducted at times t and s, respectively. τ t0
and τ s0 are the start of the first ASs, ASt1 and ASs1 of the two auctions.
The number of slots auctioned in each case are κ t and κs , respectively

(e) Assigns a server to coalition of size k a based on the
values νki .

(f) Chooses the best performer as the next coalition
leader. The best performer is the one with the largest
value

∑
j ν

j
i .

Finding the optimal CS requires at most L operations with
L the size of the PCL-list. The system starts with a predeter-
mined coalition structure and coalition values.

Combinatorial auction protocol the protocol introduced
in [17] targets primarily the IaaS cloud delivery model rep-
resented by AWS. Reservation systems are regularly used
by CSPs. For example, AWS supports reservations as well
as spot instances and offers a limited number of instance
families, including M3 (general purpose), C3 (compute opti-
mized), R3 (memory optimized), I2 (storage optimized),
G2 (GPU) and so on. An instance is a package of system
resources; for example, the c3.8xlarge instance provides
32 vCPU, 60GiBofmemory, and 2×320GBof SSD storage.

An AS is a period of fixed duration, e.g., 1 h, that can
be auctioned. An auction, At , is organized at time t if there
are pending reservation requests which require immediate
attention. Figure 4 shows two consecutive auctions at times
t and s; during the first slot of auction A

t new reservation
requests are received and the AS ASt2 is not fully covered;
this slot becomes ASs1 for A

s .
A service A is described by a relatively small number of

attributes, {a1, a2, . . . , }. Each attribute ai can take a number
of distinct values, vi = {vi,1, vi,2, . . .}. The first attribute is
the coalition size or equivalently the number of vCPS pro-
vided; other attributes could be the type of service and server
architecture with two values “32-bit” and “64-bit;” another
attribute could be “organization”with values “vonNeumann”
(vN), “data-flow” (DF), or “vN with graphics co-processor”
(vN-GPU).

This protocol is inspired by the clock-proxy auction [18].
The clock-proxy auction has a clock phase, where the price
discovery takes place, and a proxy phase, when bids for pack-
ages are entertained. In the original clock-proxy auction there
is one seller and multiple buyers who bid for packages of
goods.

Auctioneer

1

2

n

qt
2,j,l

pc+

1

2

m

qt
1,j,l

qt
n,jl

rt1,j,l

rt2,j,l

rtm,j,l

rti,j,l qt
k,j,l>

c

Fig. 5 The clock phase for service Stl and slot j . The starting price is
p0l given by Eq. 4. The clock advances and the price increases from pc
to pc + I when the available capacity at that price given by Eq. 5 is
exhausted; the demand is given by Eq. 5

The clock phase Figure 5 illustrates the basic idea of a
clock phase: the auctioneer announces prices and the bidders
indicate the quantities they wish to buy at the current price.
When the demand for an item increases, so does its price
until there is no excess demand; on the other hand, when the
offering exceeds the demand, the price decreases.

During the clock phase of auction A
t the price discov-

ery is done for each time slot and for each type of service;
a clock runs for each one of the κ t slots and for each
one of the νt services. Next the clock phase for service Stl
in slot j is described. Assume that there are n coalitions
C = {C1,C2, . . . ,Cn} offering the service and m requests
for reservations fromclientsD = {D1,D2, . . . ,Dm}. A clock
auction starts at clock time t = 0 and at price per unit of ser-
vice for Sl

p0l = min
Ck

{pk,l} (4)

Call C0 the available capacity at this price andD0 the demand
for service Stl offered at price p0l in slot j

C0 =
n∑

k=1

qtk, j,l and D0 =
m∑

i=1

r ti, j,l . (5)

If C0 < D0 the clock c advances and the next price per unit
of service is

p1l = p0l + I (6)

123

Cluster Comput (2017) 20:909–924 921

with I the price increment decided at the beginning of auc-
tion. There is an ample discussion in the literature regarding
the size of the price increment; if too small, the duration of
the clock phase increases, if too large, it introduces incentives
for gaming [18].

The process is repeated at the next clock value starting
with the new price. The clock phase for service Stl and slot j
terminates when there is no more demand.

The proxy phase in a traditional clock-proxy auction the
bidders do not bid directly, they report the price to a proxy
and the quantity of each item in the package they desire. The
proxy then bids in an ascending package auction.

In the system presented here, the proxy phase of the auc-
tion consists of multiple rounds. The auction favors bids for
long runs of consecutive slots when the service is provided
by the same coalition. This strategy is designed to exploit
temporal and spatial locality.

The auction starts with the longest runs and the lowest
price per slot and proceeds with increasingly shorter runs
and diminished incentives. Once a run of consecutive slots is
the subject of a provisional winning bid, all shorter runs of
slots for that particular service are removed from the coalition
offerings.

During the first round only the longest run of consecutive
slots for each one of the services offered by the participating
coalitions is auctioned and only bidders that have committed
to any of the slots of the run are allowed to bid. The price
per slot for the entire run is the lowest price for any slot of
the run the bidder has committed to during the clock phase
of the auction. If there are multiple bids for service Stl the
provisional winner is the one providing the largest revenue
for the coalition offering the service.

If κ t
l is the longest run of consecutive slots for service

Stl auctioned in the first round then, in the second round, a
shorter run of κ t

l − 1 slots is auctioned. The price for the
entire run equals the second lowest price for any slot of the
run the bidder has committed to during the clock phase of
the auction times the number of the time slots in the run.

The lengthof the consecutive slot runs auctioneddecreases
and the incentives diminish after each round. The preliminary
rounds end with the auction of a single slot for each service.
At the end of the preliminary round each bidder is required
to offer the price for the slot committed to during the clock
phase. During the final round the bidders reveal the pack-
ages they want to reserve; these packages include only the
provisional winners from the preliminary slots. Once all pro-
visional winning bids for services in a reservation request are
known, the auctioneer chooses the package that best matches
the consumer’s needs and, at the same time maximizes the
profit for the CSP. The coalition for a reservation request
consists of the set of coalitions that provide the services in
the winning package.

In [17] the results of a simulation of the combinatorial auc-
tion stage and discuss several metrics of success are reported.
These include:

• The customer satisfaction index—percentage of reserva-
tion requests fully or partially satisfied in each AS given
the total number of requests.

• The service mismatch index—percentage of services
requested but not offered in each AS given the total num-
ber of services in that slot.

• The service success index—percentage of services used
in each AS given all services offered in that slot.

• The capacity allocation index—percentage of the capac-
ity offered but not auctioned in eachASgiven the capacity
offered in that slot.

• The overbidding factor—percentage of slotswith a provi-
sional winner that have not been included in any package
given all slots offered at the beginning of the auction.

• The temporal fragmentation index—percentage of ser-
vices successfully auctioned in non-consecutive slots
given all services successfully auctioned.

• The additional profit index—percentage of additional
profit of coalitions involved in the auction (the differ-
ence of the actual price obtained at the auction and the
price demanded by the coalition) relative to the price
demanded by the coalition.

6 Challenges faced by practical implementation of
cloud self-management

Practical application of self-management principles to com-
puter clouds is extremely challenging as discussed in Sect. 2
and in the literature [19–23]. A powerful indication of the
challenges posed by practical aspects of self-management is
that none of the existing large-scale computing systems can
be accurately labeled as self-managing.

Practical implementation of cloud self-management is
challenging for several reasons:

6.1 The absence of a technically suitable definition of
self-management

A definition that could hint to practical design principles
for self-managing systems and quantitative evaluation of the
results. Minsky [24] and Gell-Mann [25] have discussed the
limitations of core concepts in complex system theory such as
emergence and self-organization. The same applies to auto-
nomic computing, there is no indication on how to implement
any of the four principles and how to measure the effects of
their implementation.

123

922 Cluster Comput (2017) 20:909–924

6.2 A quantitative characterization of complex systems
and of self-management is extremely difficult

We can only assess the effectiveness of a particular self-
management algorithm/protocol indirectly, based on some
of the measures of system effectiveness, e.g., the savings in
cost or energy consumption. We do not know how far from
optimal a particular self-management algorithm is.

6.3 Computer clouds exhibit the essential aspects of
complexity; it is inherently difficult to control
complex systems

Complex systems: (a) are nonlinear; (b) operate far from
equilibrium; (c) are intractable at the component level; (d)
exhibit different patterns of behavior at different scales; (e)
require a long history to draw conclusion about their proper-
ties; (f) exhibit complex forms of emergence; (g) are affected
by phase transitions—for example, a faulty error recovery
mechanism in case of a power failure took down Amazon’s
East Coast Region operations; and (h) scale well. In con-
trast, simple systems are linear, operate close to equilibrium,
are tractable at component level, exhibit similar patterns
of behavior at different levels, relevant properties can be
inferred based on a short history, exhibit simple forms of
emergence, are not affected by phase transitions, and do not
scale well, see also Chap. 10 of [20].

6.4 Additional factors making even more challenging
the application of self-management principles to
large-scale computing and communication systems

(1) Abstractions of the system useful for a particular aspect
of the design may have unwanted consequences at
another level.

(2) Systems are entangledwith their environment. The envi-
ronment is man-made and the selection required by the
evolution can either result in innovation, or generate
unintended consequences, or both.

(3) Systems are expected to function simultaneously as indi-
vidual systems as well as groups of systems (systems of
systems) [26].

(4) Systems are both deployed and under development at
the same time.

Several principles guide our decisions for cloud self-
organization discussed in Sect. 5:

I. Take advantage of the properties of market-based mech-
anisms to ensure system scalability. Base the design
on the principle of rational choice; assume that an
autonomous server, will always choose the option that

maximizes its utility. Utility is the measure of the value
or the benefit of an action.

II. Devise mechanisms to support an effective reservation
system.Reservations are ubiquitous for systemsoffering
services to a large customer population, e.g., airline tick-
eting, chains of hotels, and so on. Existing clouds, e.g.,
the AWS, offer both reservations and “spot” instances,
with spot access rates lower than those for reservations.

III. Base the design on coalition formation and combina-
torial auctions for the reasons discussed in Sects. 1, 2
and 3. Design a system with feedback between the two
processes.

IV. Design algorithms for coalition formation that exploit
the architecture of the physical system. Take advantage
of the rack homogeneity, the servers in one rack are
identical in terms of architecture and system configura-
tion, and of faster in-rack communication, the servers
in one rack communicate with one another more effec-
tively than with servers from different racks. Coalition
formation should enforce spatial locality.

V. The objective should be to maximize the profit for the
CSP rather than the profit for individual autonomous
servers. Exploit rack homogeneity for effective applica-
tion of cooperative game theory to coalition formation.

VI. Combinatorial auctions [18,27] should support tempo-
ral locality. Favor service requests for longer sets of
consecutive ASs to avoid unnecessary and costly check-
pointing and restarting of long-running applications.

7 Summary and future work

In an attempt to address the scalability issues associated
with centralized resource management in the cloud, this
paper introduces a market-based approach which led to
the design of a system of self-managed resources. This
design uses a reservation system based on coalition forma-
tion and combinatorial auctions. Coalitions constitute pools
of homogeneous resources capable of implementing large
applications; whereas combinatorial auctions are used to cre-
ate packages of these coalitions that can implement many
such applications combined in a work flow. Even though
the resources within a coalition are homogeneous by design,
different coalitions may be composed of different resource
types. Thus, a collection of coalitions implementing a work
flowmay be heterogeneous, and chosen to optimally support
each phase of that work flow.

Coalition formation is modeled as a cooperative game,
and information about former successful coalitions can be
used to create new, successful, coalitions. The mechanisms
reported in this paper, together with the cloud architecture
discussed in [28], attempt to address future challenges faced
by the cloud, including support for cloud interoperability and
the formation of clouds of clouds.

123

Cluster Comput (2017) 20:909–924 923

In [17] we reported on a simulation of the combinatorial
auction phase of the reservation system discussed in Sect. 5,
we are currently extending the investigation of that system to
include subtle interactions between the coalition formation
and the combinatorial auction phases. A reservation system
for Big Data applications based on coalition formation and
combinatorial auctions is discussed in [6] and [7].

Acknowledgements Thework reported in this paperwas partially sup-
ported by NSF CCR Grant 1525943 “Is the Simulation of Quantum
Many-Body Systems Feasible on the Cloud?” to Dan C. Marinescu
and collaborators and by a Grant from the EU H2020 program to J. P.
Morrison for the CloudLightning consortium.

References

1. Barossso, L.A., Clidaras, J., Hözle, U.: The Datacenter as a Com-
puter; an Introduction to theDesign ofWarehouse-ScaleMachines.
Morgan & Claypool, San Rafael (2013)

2. Chang, V., Wills, G., De Roure, D.: A review of cloud business
models and sustainability. In: Proceedings of the IEEE 3rd Inter-
national Conference on Cloud Computing, pp. 43–50. (2010)

3. Paya, A.,Marinescu, D.C.: Energy-aware load balancing and appli-
cation scaling for the cloud ecosystem. In: IEEE Transaction on
Cloud Computing. (2015)

4. Blackburn, M., Hawkins, A.: Unused server survey results
analysis. www.thegreengrid.org/media/WhitePapers/Unused%
20Server%20Study_WP_101910_v1.ashx?lang=en. Accessed 6
Dec 2013

5. Marinescu, D.C., Paya, A., Morrison, J.P., Healy, P.: Distributed
hierarchical control versus an economic model for cloud resource
management. arXiv:1503.01061 (2015)

6. Marinescu, D.C., Paya, A., Morrison, J.P.: A cloud reservation sys-
tem for big data applications. In: IEEE Transaction on Parallel and
Distributed Computing. (2016)

7. Marinescu, D.C.: Complex Systems and Clouds: A Self-
Organization and Self-Management Perspective. Morgan Kauf-
mann, Burlington (2016)

8. Müller, I., Kowalczyk, R., Braun, P.: Towards agent-based
coalition formation for service composition. In: Proceedings
IEEE/WIC/ACM International Conference on Intelligent Agent
Technology, pp. 73–80. (2006)

9. Niyato, D., Vasilakos, A., Kun, Z.: Resource and revenue shar-
ing with coalition formation of cloud providers: game theoretic
approach. In: Proceedings IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, pp. 215–224. (2011)

10. Chaisiri, S., Lee, B., Niyato, D.: Optimization of resource provi-
sioning cost in cloud computing. IEEE Trans. Serv. Comput. 5(2),
164–177 (2012)

11. Li, C., Sycara, K.: Algorithm for combinatorial coalition formation
and payoff division in an electronic marketplace. In: Proceedings
AAMAS02—First Joint International Conference on Autonomous
Agents and Multiagent Systems, pp. 120–127. (2002)

12. Mashayekhy, L., Nejad, M.M., Grosu, D.: Cloud federations in the
sky: formation game andmechanisms. IEEETrans. CloudComput.
3(1), 14–27 (2014)

13. Sandholm, T.W., Larson, K.S., Andersson, M., Shehory, O., Tohm,
F.: Coalition structure generation with worst case guarantees. Artif.
Intell. 111(1–2), 209–238 (1999)

14. Rahwan, T., Ramchurn, S.D., Jennings, N.R., Giovannucci, A.:
An anytime algorithm for optimal coalition structure generation. J.
Artif. Intell. Res. 34, 521–567 (2009)

15. Greco, G., Malizia, E., Palopoli, L., Scarello, F.: On the complexity
of the core over coalition structures. In: Proceedings of the 22
International Joint Conference on Artificial Intelligence, pp. 216–
221. (2011)

16. Shehory, O., Kraus, S.: Methods for task allocation via agent coali-
tion formation. Artif. Intell. 101(1–2), 165–200 (1998)

17. Marinescu, D.C., Paya, A., Morrison, J.P.: Coalition formation and
combinatorial auctions; applications to self-organization and self-
management in utility computing. arXiv:1406.7487 (2015)

18. Ausubel, L., Cramton, P., Milgrom, P.: The clock-proxy auction: a
practical combinatorial auction design. In: Cramton, P., Shoham,
Y., Steinberg, R. (eds.) Combinatorial Auctions. MIT Press, Cam-
bridge (2006)

19. Bradic, I.: Towards self-manageable cloud services. In: Proceed-
ings of the 33 International Conference on Computer Software and
Applications, pp. 128–133. (2009)

20. Marinescu, D.C.: Cloud Computing. Theory and Practice. Morgan
Kaufmann, New York (2013)

21. Paton, N., de Arago, M.A.T., Lee, K., Fernandes, A.A.A., Sakel-
lariou, R.R.: Optimizing utility in cloud computing through auto-
nomic workload execution. Bull. Tech. Comm. Data Eng. 32(1),
51–58 (2009)

22. Sommerville, I., Cliff, D., Calinescu, R., Keen, J., Kelly, T., Kwia-
towska, M., McDermid, J., Paige, R.: Large-scale IT complex
systems. Commun. ACM 55(7), 71–77 (2012)

23. Van, H.N., Tran, F.D., Menaud, J.M.: Autonomic virtual resource
management for service hosting platforms. In: Software Engi-
neering Challenges of Cloud Computing, ICSE Workshop at
CLOUD09, pp. 1–8. (2009)

24. Minsky, M.: Computation: Finite and Infinite Machines. Prentice
Hall, New York (1967)

25. Gell-Mann, M.: Simplicity and complexity in the description of
nature. Eng. Sci. I(3), 3–9 (1988)

26. Mayer, M.W.: Architecting principles for system of systems. Syst.
Eng. 1(4), 267–274 (1998)

27. Marinescu, D.C., Siegel, H.J., Morrison, J.P.: Options and com-
moditymarkets for computing resources. In:Buyya,R.,Bubendorf,
K. (eds.)Market OrientedGrid andUtility Computing, pp. 89–120.
Wiley, New York (2009)

28. Marinescu, D.C., Paya, A., Morrison, J.P., Healy, P.: An auction-
driven, self-organizing cloud delivery model. http://arxiv.org/pdf/
1312.2998v1.pdf. (2013)

Dan C. Marinescu was an
Associate and then Full Profes-
sor of Computer Science at Pur-
dueUniversity inWest Lafayette,
Indiana during the period 1984–
2001. Since August 2001 he is
a Provost Professor of Computer
Science at University of Central
Florida. He has published several
books and more than 220 papers
in referred journals and confer-
ence proceedings.

123

www.thegreengrid.org/media/WhitePapers/Unused%20Server%20Study_WP_101910_v1.ashx?lang=en
www.thegreengrid.org/media/WhitePapers/Unused%20Server%20Study_WP_101910_v1.ashx?lang=en
http://arxiv.org/abs/1503.01061
http://arxiv.org/abs/1406.7487
http://arxiv.org/pdf/1312.2998v1.pdf
http://arxiv.org/pdf/1312.2998v1.pdf

924 Cluster Comput (2017) 20:909–924

Ashkan Paya got his Ph.D. in
EECS fromUniversity of Central
Florida in August 2015. He grad-
uated from Sharif University of
Technology in Tehran, Iran, with
a BS Degree in Computer Sci-
ence in 2011. His research inter-
ests are in the area of resource
management in large-scale sys-
tems and cloud computing.

John P.Morrison is the founder
and director of the Centre for
Unified Computing. He is a co-
founder and director of the Boole
Centre for Research in Informat-
ics, a principle investigator in the
Irish Centre for Cloud Comput-
ing and Commerce and a co-
founder and co-director of Grid-
Ireland. Professor Morrison has
held a Science Foundation of Ire-
land Investigator award and has
published widely in the field of
Parallel Distributed and Grid
Computing. He is a principle

investigator in the Irish Centre from Cloud Computing and Commerce,
where he leads the Service LifeCycle Group.

Stephen Olariu has held many
different roles and responsibili-
ties as a member of numerous
organizations and teams. Much
of his experience has been with
the design and implementation of
robust protocols for wireless net-
works and their applications. His
most recent research interests are
in the area of vehicular clouds.

123

	An approach for scaling cloud resource management
	Abstract
	1 Introduction and motivation
	2 Cloud resource management policies and mechanisms
	2.1 An increasingly more heterogeneous cloud infrastructure
	2.2 Over-provisioning
	2.3 High energy consumption and a large carbon footprint of cloud data centers
	2.4 The need for cloud interoperability
	2.5 New and more demanding cloud applications

	3 Hierarchical control versus market mechanisms
	4 Cloud coalitions
	5 Rack-level coalition formation and combinatorial auctions
	6 Challenges faced by practical implementation of cloud self-management
	6.1 The absence of a technically suitable definition of self-management
	6.2 A quantitative characterization of complex systems and of self-management is extremely difficult
	6.3 Computer clouds exhibit the essential aspects of complexity; it is inherently difficult to control complex systems
	6.4 Additional factors making even more challenging the application of self-management principles to large-scale computing and communication systems

	7 Summary and future work
	Acknowledgements
	References

