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Abstract A recursive least squares based onMulti-model is
proposed for non-uniformly sampled-data nonlinear
(NUSDN) systems. The corresponding state space model of
an NUSDN system is derived using lifting technique. Tak-
ing advantage of the Fuzzy c-Mean Clustering algorithm,
NUSDN is divided into several local models. The basic idea
is that the NUSDN system is viewed as a model switching
system under a given rule. Once the local models are iden-
tified, the global model is determined. A pH neutralization
process validate the performance of the proposed algorithm.

Keywords Non-uniformly sampled-data · Nonlinear
systems identification · Fuzzy c-mean cluster · Multi-model
method · Recursive least squares

1 Introduction

A non-uniformly sampled-data (NUSD) system is one kind
of general multi-rate sampled-data systems, in which the
sampling intervals of the inputs and/or outputs are irregu-
lar. As the hardware limitation, environmental requirement
and economic constraint, those systems are extensively
used in industrial process [1–4]. Due to reflect the sam-
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pling characters and impact performance of control systems,
NUSD systems have attracted much attention in recent
years. For example, Jiang and Xie proposed iterative least
squares/stochastic gradient methods [5–7] for NUSD CAR
models. As single-innovation algorithms, the parameters
estimation precision was low. To overcome influences of
bad data and improve estimation precision, Ding presented
a multi-innovation stochastic gradient algorithm, and also
gave the convergence analysis [8]. However, the computa-
tional burden is large. Based on hierarchical identification
principle, Liu reported a least squares algorithm to save
computational cost [9]. Furthermore, the AM-MI-GESG and
recursive least squares parameter estimation algorithm were
developed for CARIMA and Box-Jenkins NUSD systems
with colored noise, respectively [10,11].

The nonlinear models are used to describe nonlinear
systems, which exist extensively in industrial process. Com-
monly used nonlinear models are Hammerstein models,
Wiener models and their combinations. Recently, the iden-
tification of these systems has attracted much research
attention and many algorithms have introduced in the litera-
ture. For the nonlinear systemswith polynomial nonlinearity,
Bai proposed the iterative /recursive least square algorithm
for Hammerstein systems [12]. An over-parameterization
technique is introduced to deal with the identification of
Hammerstein ARMAX, OE, OEMA systems, and some
algorithms e.g. gradient-based, least square-based, auxil-
iary model based algorithm [13–17]. Moreover, the over-
parameterization technique is extended to identify MISO
Wiener system [18]. To reduce the computation,Ding studied
the identification of these nonlinearity models, and pre-
sented several methods, e.g. projection methods, stochastic
gradient algorithm, Newton strategy [19], hierarchical iden-
tification [20,21], etc. Through the key term separation
principle, Vörös studied the identification problems for the
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Hammerstein–Wiener models [22], Li et al. reported the
maximum likelihood algorithm forHammerstein andWiener
systems, respectively [23,24]. Yu studied the identification
of hard nonlinear systems with two-segment and dead-
zone input nonlinearities [25,26]. Voros studied modeling
and parameter identification of systems with multi-segment
piecewise-linear characteristics [27]. Based on the finite
impulse response model and negative gradient search, Chen
proposed stochastic gradient algorithm for identification of
systems with preload nonlinearities [28]. Moreover, the esti-
mation algorithm for Hammerstein systems with saturation
and dead-zone nonlinearities was studied [29]. Ding studied
the adaptive digital control of Hammerstein nonlinear sys-
tems with limited output sampling [30]. For the nonlinear
dynamical adjustment models, Xiao proposed a parameter
estimation algorithm [31]. And based on theMarkov Chains,
nonlinear stochastic systems with uncertainties and random
delays modeled were studied [32]. However, most of the
mentioned methods estimate the parameters of transformed
models but the system models directly, which bring the
burden computation meanwhile. What’s more, assumption
of the polynomials with known orders restricts its applica-
tion.

However, the above mentioned algorithms cannot be
used directly to NUSDN systems. To solve this issue, Li
proposed a least-squares-based iterative algorithm and the
over-parameterization technique to estimate the parameters
of Hammerstein systems with non-uniform sampling inter-
nal [33]. Furthermore, an auxiliary model-based recursive
least-squares algorithm is derived under the constraints of
causality to alleviate the computational burden [34]. How-
ever, achievements on the identification of NUSDN systems
have so far been reported assumed that the nonlinear struc-
ture was known. To the best of our knowledge, few studies
have addressed modeling and estimation issues for NUSDN
systems with unknown nonlinear characters [35,36].

Multi-model approach has its own advantages in model
industrial processes, especially those with inherent non-
linearity, wide operating range or load disturbances [37].
Based on divide-and-conquer strategy, multi-model methods
develop local linear models corresponding to typical operat-
ing regimes, and the global output is obtained by integration
of local ones. As a major benefit of multi-model strategy,
linear system theories can be used. It has been applied
successfully in aviation industries [38], chemical industries
[39,40] and so on.

In this study, the multi-model method is extended to esti-
mate the parameters of NUSDN systems. First, a discrete
model of a NUSDN system is obtained by using the lifting
technique. Second, on the basis of the multi-model method,
a switching model is constructed. Then, a recursive least
squares algorithm based on fuzzy c-mean (FCM) cluster is
proposed to estimate the system structure and parameters

Hτ cS TS
1( )ju kT t −+ ( )u t ( )y t ( )y kT T+

Fig. 1 Structure of NUSDN system

simultaneously. The proposed algorithm is validated on a pH
neutralization process.

The remainder of this paper is organized as follows. Sect. 2
depicts the NUSDN system and a model switching system
is constructed to formulate it. Sect. 3 presents the derivation
of the proposed algorithm. Sect. 4 provides the simulation
of the pH neutralization and conclusions are summarized in
Sect. 5.

2 Problem formulation

Consider a NUSDN system, as shown in Fig. 1.
where u(kT + t j−1) and y(kT + T ) are respectively the

input and output of the system, u(t) and y(t) are respec-
tively the input and output of the nonlinear part. Hτ is a
non-uniformly zero-order holder with irregularly sampled
intervals {τ1, τ2, . . . , τm}; The input updating frequency is
set as kT + t j−1, j = 1, 2, ...,m (t0 = 0, t j := τ1 + τ2 +
...+τ j ). Sc is a nonlinear dynamic block and ST is a sampler
with frame period T := τ1 + τ2 + ... + τm = tm . By using
the lifting technique, Hτ is formulated as follows:

u(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(kT ), kT ≤ t < kT + t1
u(kT + t1), kT + t1 ≤ t < kT + t2
...

...

u(kT + tm−1), kT + tm−1 ≤ t < kT + T

(1)

Sc is assumed as the state-space model of the nonlinear char-
acter

Sc :=
{
ẋ(t) = �(x(t), u(t))
y(t) = h(t)

(2)

where x(t) ∈ Rn is the state vector, and y(t) ∈ R and u(t) ∈
R are the output and input of Sc respectively.

2.1 Model switching systems

As a common form ofmulti-model, the local model networks
(LMN) can be described as:

y(kT ) =
c∑

q=1

fq(φ(kT ))gq(ϕ(kT )) (3)

where y(kT ) ∈ R is the model output at time kT , and
fq(·), q = 1, 2, . . . , c are basis functions depend on the
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Fig. 2 Schematic of model
switching system
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scheduling vector φ(kT ) ∈ Rnφ ; gq(·), q = 1, 2, . . . , c are
local models which rely on the information vector ϕ(kT ) ∈
Rnϕ . The number of local models is set as c. φ(kT ) and
ϕ(kT ) are defined as:

ϕ(kT ) := [−y(kT − T ),−y(kT − 2T ), . . . ,

−y(kT − naT ),

u(kT ), u(kT − T ), . . . ,

u(kT − nbT ), u(kT − T + t1), . . . , u(kT − nbT + t1),
. . . , u(kT − T + tm−1),

. . . , u(kT − nbT + tm−1)]T ∈ Rnϕ , nϕ = na + mnb + 1

(4)

φ(kT ) := [−y(kT − T ),−y(kT − 2T ), . . . ,

−y(kT − naφT ),

u(kT ), u(kT − T ), . . . , u(kT − nbφT ),

u(kT − T + t1), . . . , u(kT − nbφT + t1), . . . ,
u(kT − T + tm−1), . . . , u(kT − nbφT + tm−1)]T
∈ Rnφ , nφ = naφ + mnbφ + 1

(5)

where na, nb are respectively the orders of output and input,
satisfy 0 ≤ naφ ≤ na, 0 ≤ nbφ ≤ nb.

In theory, φ(kT ) can be taken as any functions effective
in a local area. Here, the Gaussion bell is chosen:

f̃q(φ(kT )) =
(

exp

(

− (φ(kT ) − h̄q)T (φ(kT ) − h̄q)

sT s

))α

(6)

where h̄q and s are the center vector and width of the bell,
α satisfies1 ≤ α < ∞. Upon normalizing Eq. (3), the LMN
can be rewritten as

y(kT ) =
c∑

q=1

⎛

⎜
⎝

(
exp(− (φ(kT )−h̄q )T (φ(kT )−h̄q )

sT s
)
)α

∑c
d=1

(
exp

(
− (φ(kT )−h̄d )T (φ(kT )−h̄d )

sT s

))α · gq [ϕ(kT )]
⎞

⎟
⎠

(7)

Particularly, when α = ∞, Eq. (7) is described as

y(kT ) = gq(ϕ(kT )) (8)

where q = arg min
t=1,2,...,c

(φ(kT ) − h̄t )T (φ(kT ) − h̄t ).

It can be seen that LMN multi-model is depicted as the
qth local model whose center vector h̄t is nearest to φ(kT ).
And q will switch with time changing. Therefore, Eq. (8) can
also be called model switching system shown in Fig. 2. It can
be expressed as another form as:

Rq : i f φ(kT ) is Fq then y(kT ) = gq [ϕ(kT )],
k = 1, 2, . . . , N ; q = 1, 2, . . . , c (9)

where Fq is scope of the qth local model.

2.2 Local models

A nonlinear system can be seen as the combination of local
models under a given condition. Pq is assumed as the state-
space model of the qth local model

Pq :=
{
ẋ(t) = Aqx(t) + Bqu(t)
y(t) = Cq x(t) + Dqu(t)

(10)

where Aq ∈ Rn×n,Bq ∈ Rn,Cq ∈ R1×n, Dq ∈ R are para-
meter matrices. Upon Discretizing Eq. (10) with the frame
period T [41], the qth local model can be written as

y(kT )=

m∑

j=1
Bq
j (z

−1)

Aq(z−1)
u(kT+t j−1)=[1 − Aq(z−1)]y(kT )

+
m∑

j=1

Bq
j (z

−1)u(kT + t j−1) = gq(φ(kT )) (11)

with

Aq(z−1) = 1 + aq1z
−1 + aq2z

−2 + ... + aqna z
−na

Bq
1 (z−1) = bq10 + bq11z

−1 + ... + bq1nb z
−nb
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Bq
j (z

−1) = bq j1z
−1 + bq j2z

−2 + ... + bq jnb z
−nb ,

j = 2, 3, · · · ,m

where z−1 is the backward shift operator: i.e. z−1x(kT ) =
x(kT − T ). Define the qth local model parameter θq as

θq := [aq1, aq2, . . . , aqna , bq10, bq11, . . . bq1nb , bq21, . . . ,
bq2nb , . . . , bqm1, . . . , bqmnb ]T ∈ Rnϕ

The write noise is introduced, then Eq. (11) is rewritten as

y(kT ) = gq(ϕ(kT )) + v(kT ) = ϕ(kT )θq + v(kT ) (12)

where q = argmint=1,2,...,c(φ(kT ) − h̄t )T (φ(kT ) − h̄t ).
Then, the system parameter vector θ is formed

θ := [θT1 , θT2 , . . . , θT
c ]T ∈ Rcnφ

3 Muti-model recursive least squares algorithm
based on fuzzy c-mean cluster (FCM-MRLS)

The task of the identification is to determine c, h̄q , sq and
θq in Eq. (12). To alleviate the computational cost, the esti-
mation is divided into two simple sub-tasks. First, for a
given number of c, h̄q , sq can be determined by using FCM
clustering algorithm, andϕ(kT ) is classified into c sets simul-
taneously. Then θq can be estimated by using multi-mode
recursive least squares algorithm.

3.1 Structure identification based on FCM

Set U = [μi,k]c×N and H = [h̄1, h̄2, . . . , h̄c] are separately
the membership matrix and cluster centers matrix. Given
the information vector � = {φ(1), φ(2), . . . , φ(N )}, and
a fuzziness parameter w ∈ (1,∞) (usually w = 2), FCM
clustering algorithm aims to minimize the cost function

J (U,H,�) =
c∑

q=1

N∑

k=1

μw
q,k ||φ(kT ) − h̄q ||2 (13)

where || · || is the vector norm. When c is known, FCM can
be optimized by an alternating optimization (AO) algorithm
[42] with the cluster centers which are randomly initialized
as H(0). After clustering, U and H are obtained. Then, sq is
determined using a nearest neighbor heuristic method:

sq =
[
1

p

p∑

l=1

(cq − cl)
T (cq − cl)

]1/2

, q = 1, 2, . . . , c

where cl(l = 1, 2, . . . , p) are the lth nearest neighbors of cq ,
p is the number of the qth nearest neighbors.

3.2 Parameters identification based on multi-model
recursive least squares algorithm

By using the FCM Clustering algorithm, c, h̄q , μq,k are
determined. Then, based on φ(kT ), the global model is
obtained with local models switching, formulated as:

y(kT ) = gq [ϕ(kT )] i f q
= arg min

t=1,2,...,c
(φ(kT ) − h̄t )T (φ(kT ) − h̄t )

k = 1, 2, . . . , N q = 1, 2, . . . , c

and

ϕ(kT ) ∈ Fq i f μq,k = max
1≤t≤c

{μt,k}

The qth local model is identified based on φ(kT ) which
belongs to the qth cluster. Then, a FCM-MRLS algorithm
is proposed to identify θq

θ̂q(kT ) = θ̂q(kT − T ) + Lq(kT )[y(kT )

−ϕT (kT )θ̂q(kT − T )] (14)

Lq(kT ) = Pq(kT − T )ϕ(kT )

[1 + ϕT (kT )Pq(kT − T )ϕ(kT )]−1 (15)

Pq(kT ) = [I − Lq(kT )ϕT (kT )]Pq(kT − T ) (16)

where θ̂q(kT ) is the estimate of θq at time kT , I is an identity
matrix, and Pq(kT ) is covariance matrix.

The proposed FCM-MRLS algorithm is summarized as
follows:

Step 1: Let c,H(0) and k = 1, and set θ̂(0) and P(0) as

θ̂(0) = 1/p0,P(0) = p01,

where 1 is a column vector with appropriate dimension,
whose entries are all 1, and p0 = 106.

Step 2: Collect {u(kT+t j−1), y(kT ) : j = 1, 2, . . . ,m; k
= 1, 2, . . . , N }, construct ϕ(kT ) and φ(kT ) using Eqs.(4)
and (5), separately. After FCM clustering, h̄q , μq,k, q =
1, 2, . . . , ck = 1, 2, . . . , N are obtained, and ϕ(kT ) is sepa-
rated into c clusters, the data length numq of each cluster is
determined as well.

Step 3: Based on the data sets of c clusters, θ̂q(kT ), q =
1, 2, . . . , ck = 1, 2, . . . , numq is identified using Eqs.(14),
(15), (16).

Once θ̂q(kT ), q = 1, 2, . . . , c is identified, θ(kT ) is
obtained.

The flow chart of FCM-MRLS algorithm is shown in
Fig. 3.
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Fig. 3 Flow chart of FCM-MRLS algorithm

4 Case study

4.1 System description

Consider a pH neutralization process as shown in Fig. 4.
Taken HNO3, NaOH, NaHCO3 as the reaction streams and
pH-measurement as the output variable. Let Fa, Fb, Fc be
flow rates of the three streams, respectively.

A dynamical model of pH neutralization process is
depicted as follows:

V
dwa

dt
= FaCa − (Fa + Fb)wa (17)

1 1, ,a a bF w w
2 2, ,b a bF w w 3 3, ,c a bF w w

4 4, ,d a bF w w

Fig. 4 pH neutralization process

V
dwb

dt
= FbCb − (Fa + Fb)wb (18)

where Ca,Cb respectively are the concentration of HNO3

andNaOH. V is the volume of the reactor.wa, wb are respec-
tively charge invariant and material invariant, defined as:

wa = [H+] − [OH−] − [HCO−
3 ] − 2[CO2−

3 ]

wb = [H2CO3] + [HCO−
3 ] + [CO2−

3 ]

Let pKa = − log10 Ka , where Ka = 1.76 × 10−5 is the
ionized constant of HNO3. Then, the static titration curve
function is derived as:

wb + 10−pH − 10pH−14 − wa

1 + 10pKa−pH
= 0 (19)

Equation (19) reflects the severe nonlinear of pH neutraliza-
tion process.

4.2 Multi-model formulation

Considered a neutralization process of strong base-weak acid
expressed as Eqs.(17), (18) ,(19). For a given Fa , Fb and pH-
measurement are respectively taken as the input u(kT +t j−1)

and output ypH . System operating parameters are shown in
Table 1.

The sample sets {Fb, ypH } were gained from the mech-
anism model Eqs.(17), (18), (19). Then, 180 samples were
obtained with a variation from −51.5 to 51.5 into Fb. Set
m = 2, τ1 = 0.5s, τ2 = 1s, then, t0 = 0s, t1 = τ1 = 0.5s,

Table 1 System operating parameters

Parameter Value Parameter Value

Fa 81mL/min wa(0) 0.0435mol/L

Fb 515+ζmL/min wb(0) 0.0432mol/L

Ca 0.32mol/L V 1000mL

Cb 0.05mol/L Ts 0.5 s
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Table 2 Parameters estimates
of six local models

Model no Parameters

a11 a12 b10 b11 b12 b21 b22

Model 1 −6.09173 −10.81120 0.47324 0.55646 0.50335 0.46854 0.54482

Model 2 −11.43338 −10.75626 0.46660 0.48056 0.53978 0.56013 0.54532

Model 3 −6.65278 −6.33973 0.47100 0.53815 0.50233 0.49450 0.47534

Model 4 −10.78123 −7.35109 0.49844 0.54770 0.55648 0.49958 0.52972

Model 5 −6.60107 −10.78664 0.48826 0.53123 0.55722 0.52286 0.56319

Model 6 −6.52145 −6.39258 0.47845 0.53727 0.54860 0.47895 0.51482

Fig. 5 Comparison between
true value and estimates of pH
neutralization process
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H
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Fig. 6 Errors of FCM-MRLS
algorithm
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t2 = τ1+τ2 = 1.5s = T ,na = 2, nb = 2. In this case,u(kT )

and u(kT + t1)were taken from the data sequence of Fb, and
y(kT ) was got from ypH . After non-uniformly sampled, the
data sets {u(kT ), u(kT + t1), y(kT )}, k = 1, 2, . . . 60 were
determined. φ(kT ) was chosen as

φ(kT ) = [−y(kT − T ), −y(kT − 2T ), u(kT ) , u(kT − T ),

u(kT − 2T ),

u(kT − T + t1), u(kT − 2T + t1)]T

Set c = 6. Then, θq , q = 1, 2, . . . , cwere identified using
FCM-MRLS algorithm. The estimates were shown in Table
2, and the comparison between true value and estimates was
presented in Fig. 4.

In Fig. 5, the sampled data (black solid line) and esti-
mates (blue dot-solid line) were shown in Fig. 5. The root
mean square error (RMSE) was introduced to evaluate the
performance of proposed algorithm, defined as [43]

RMSE =
√
√
√
√ 1

N

N∑

k=1

(ŷ(k) − y(k))T (ŷ(k) − y(k))

RMSE of the pH identification is 0.0085, and the errors
were depicted in Fig. 6. After FCM clustering, the local
model of each sample was shown in Fig. 7.
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Fig. 7 Local model of each
sample
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It could be seen that the FCM-MRLS algorithm gave a
good fit for pH-measurement and had captured the nonlin-
earity presented in the neutralization process.

5 Conclusions

Combining with the lifting technique and FCM clustering
method, aMulti-model based RLS identification algorithm is
derived for NUSDN systems. Simulation results demonstrate
the effectiveness of the proposed algorithm. The identifica-
tion of the local models does not limit to RLS only. With
proper modification, other algorithm to estimate linear sys-
tems can also be applied to NUSDN systems. The method
can also be extended to other signal-rate nonlinear systems,
multi-rate nonlinear systems and MIMONUSDN systems
and so on. However, the performance analysis of the FCM-
MRLS algorithm needs further investigation.
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