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Abstract Developers base selection of a User Interface
(UI) development approach on functionality, development
and maintenance costs, usability, responsiveness, etc. User
expectations continue to grow for greater functionality and
continuous interactivity, extending demands on computa-
tional resources. To facility scale, recent approaches push
more Ul computation to clients. Such client-side delegation
of functionality increase, continuous usage, and localized
computation create ever-growing energy demands, which
may negatively impact battery life on mobile platforms.
Nonetheless, developers given little attention to the power
demands aspects of UI framework selection. We evaluate the
impact of contemporary UI framework selection on resource
utilization and energy consumption. We suggest an alter-
native delivery approach designed to preserve low energy
demands on clients while still allowing offloading of compu-
tation from server to client. Our work focuses on web-based
mobile applications; however, we believe our approach to
energy demand reduction and framework evaluation to be
generally applicable.
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1 Introduction

Researchers and industry experts endeavor to design User
Interface (UI) frameworks for web applications that bring
attractive UlIs to users. What are the intended properties that
such a Ul should have? There are many attributes to consider.
For instance, researchers in Human—Computer Interaction
(HCI) aim to provide a UI with efficient interaction and
usability that adapts to each individual user [18,20,21]. At
the same time, Software Engineers aim to provide high
responsiveness to user actions with emphasize on availabil-
ity, performance, scalability [8] or testability [2]. Moreover,
to allow heterogeneous devices and native applications,
researches aim to provide platform-independent representa-
tions of the UI [7,21]. All these properties focus solely on
user application experience.

Some Ul properties impact areas much less directly visible
than attractive Uls. In order to support adaptive Ul fea-
tures or personalization, developers may spend a tremendous
amount of work [5] implementing a variety of context-
specific versions of UL. Many performance optimizations can
be applied to provide good responsiveness and high scala-
bility, while investing into a large infrastructure. Over time
many frameworks emerged aiming to minimize development
costs ranging from those that aim to minimizes development
efforts, reduce code volume [5] and others offloading com-
putations to clients [12] involving JavaScript (JS).

To highlight the complexity of UI development, consider
the overall application development and the portion devoted
to UL. Approximately 48 % of application code and 50 %
of development time is devoted to implementing Uls [15].
When further considering support of multiple platforms and
context-awareness, the complexity exacerbates [8].

To make UI development and maintenance inexpen-
sive and systems scalable, researches search for high-level
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and Domain Specific Languages (DSL) to describe Uls
[14,19,24] for Model-Based Approaches (MBA) [1] or ways
to offload computations to clients [12]. The motive is clear,
but the result may possess deficiencies. For instance, high-
level DSL and MBA approaches transform the Ul description
into low-level code involving HTML, JS, JSON and CSS. The
transformation usually produces output tangling various Ul
concerns that negatively influences the volume of informa-
tion transferred between server and clients. Even worse [5],
the concern tangling might be apparent even in the high-level
UI description. The server becomes responsible to deal with
tangling and to process and provide a large amount of infor-
mation. Nevertheless Google Web Toolkit (GWT) noticed
the above deficiency and utilized the transformation of the
high-level UI description into JS in order to perform most
of the computation at the client-side. From a high-level per-
spective, the transformation produces various combinations
of interaction states and provides them to clients at once, so
that clients perform computations locally and provides the
results to the server in a lite format, such as JSON.

Let us summarize the introduced options. One option is
to let the server to build and render the UI at the server-side
and then provide it to clients in rather voluminous HTML
and supplementary resources. When client changes the state,
the server-side rebuilds the UI (or its fragment) and sends
the updated version to a particular client. The other option
provides clients the instruments to render the Ul locally with
its various states. Server then only provides a lite amount of
information, usually application data that the client manages.

We can see that the second approach separates data from
the other resources used to render the UL The first approach
involves server-side resources, while clients only process the
received HTML with supplementary resources. The second
approach relocates computational resource use to the client-
side. Thus the client is involved in UI rendering process,
while server provides limited amount of information and
reduces resource usage.

Clearly, the second approach reduces server resource
usage as well as lowering the volume of information being
send from server to clients. However when clients possess
limited resources, the first approach seems favourable.

Battery capacity of mobile devices is a limiting resource
that might be given higher value when choosing UI design.
When we look at the growing market of battery-equipped
mobile devices, the forecast for battery capacities anticipates
growth reports.!»? The ever-increasing reliance on mobility
insures the demands on battery energy will continue to out-
pace supply [6]. Thus, when considering battery capacity
limiting, we should take into account the energy impact of

1 http://news.mit.edu/2015/yolks-and-shells-improve-rechargeable-batteries-0805.

2 http://news.mit.edu/2015/solid- state-rechargeable- batteries- safer-longer-lasting-
0817.
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Ul design and delivery approaches. An appropriate approach
can reduce the energy consumption related to Ul rendering.

This paper considers contemporary approaches of Ul
designs, delivery, and rendering of data presentations in
web applications. It investigates their impact on resource
usage and energy consumption at the user’s device. In a
case study, we compare the conventional, server-side UI
design approach, represented by the standard Java Enter-
prise Edition technology JavaServer Faces (JSF) [3] with the
client-side UI design approaches brought by Google Web
Toolkit (GWT) [12] and Angular]JS (AJS) [10]. The study
is extended to consider the impact of a library [25] pro-
viding better usability and attractive look and feel for the
server-side approach. Furthermore, the evaluation considers
caching abilities of the above approaches and its impact on
energy demands.

While it is expected that the client-side approaches
demand more energy from clients upon UI rendering and
reduce the server-side resources, does the delivery strategy
impact the resource usage? Next, we aim to answer the ques-
tion whether the above approaches change the resource usage
characteristics with an alternative delivery approach. Our
results show that an alternative delivery strategy has signifi-
cant impact on the server-side approaches. While it preserves
low energy demands for client-side UI rendering, it consid-
erably reduces the server-side resource usage.

The paper is organized as follows. Section 2 introduces
conventional web UI design approaches. Section 3 provides
related work on power consumption. A case study comparing
conventional approaches is given in Sect. 4 evaluating var-
ious factors to draw the energy impact. Section 5 describes
an alternative delivery approach. The alternative approach is
evaluated in a study in Sect. 6. Validity threats of the studies
are provided in Sect. 7. Finally, the last section concludes the

paper.

2 Background, design and delivery approaches

Conventional web applications provide their Ul to clients in
the HTML format, usually supplemented with media files,
CSS, JS, JSON, XML and other sources. The client-server
interaction uses the HTTP(S) protocol built on top of the
TCP/IP protocol, requiring an initial three-way handshake
to establish a connection and four-way handshake to termi-
nate [23]. HTTP brings multiple transmission optimizations,
i.e., it supports content compression to reduce the volume;
seldom-changing resources can be cached by clients to fur-
ther improve the interaction. Next, web browsers enable
multiple simultaneous connections to the server for paral-
lel resource requests. Moreover, to mitigate the handshake
overheads, connections are reused for multiple requests. In
addition, HTTP works well for partial fragment requests usu-
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ally involving asynchronous server calls for web resources,
i.e., Asynchronous JS and XML (AJAX).

Servers provide Uls to web clients in HTML. The partic-
ular UI at the server-side can be described through HTML
extended with a special markup or use an abstract language
defining the UI. The special markup adds dynamic behav-
ior and content resolution with the underlying application
context, allowing to bind its data values, use variables, con-
ditionals, interaction, etc. (e.g., PHP). The second option
that uses an abstract language [14] aims to simplify the
description with domain-specific constructs. The abstract
description eventually transforms to HTML or JS before
leaving the server (e.g., JSF [3], GWT [12]). The abstract
description has the advantage of possible optimization or
context-specific transformation, i.e., producing web-browser
specific versions. There also exist alternative approaches,
such as model-based [26], generative [24] or inspection based
[7].

In this work, we compare conventional UI design appr-
oaches. Java Enterprise Edition comprises one of our can-
didates, which suggests its standard technology JSF [3] to
describe UL Such approaches, represented by JSF, describe
a particular Ul page combining components, a layout, inte-
grating data bindings, validation rules, constraints, security,
etc., so that the page is self-descriptive. The most simplistic
view of this approach involves the composite design pattern
[11]. In addition, JSF uses an abstract description with XML-
like constructs, providing various widgets and components.
This approach puts the main effort on the server-side. The
JSF interpreter interprets the UI description and assembles a
component tree that represents the UL To derive the HTML
description for client delivery, a renderer traverses the com-
ponent tree and produces the HTML outcome.

Our next approach involves UI rendering clients. This
approach is utilized, for instance, in GWT [12]. It uses
abstraction but on a completely different level than JSF.
While JSF uses a domain-specific language that provides
a binding mechanism to Java, GWT uses Java to describe
the UI. This may improve type safety; on the other hand it
is questionable whether Java, a general-purpose language,
fits well with designing web Uls. The principal advantage
of GWT is that Java descriptions are compiled, rather than
interpreted. The compilation of Java description uses vari-
ous optimization heuristics to minimize the JS volume. The
product is a JS representation for various web-browsers. In
the life cycle, clients load the entire JS representation and
interpret it locally at the client-side, minimizing server-side
involvement and reducing its resources. A large part of the
JS is cacheable, although certain fragments are uncacheable.
The client-side interpreter requests the data values from the
server through JSON as a separate resource. This approach
separates data values from the rest of the UI. The nature of
GWT fits well to interactive pages, i.e. email clients, interac-

tive consoles, etc. Since the Ul logic loads with the UI, there
is a potential for offline interaction. Limiting is the use on
devices with limited resources, such as cellphones and smart
watch. Furthermore, it does not fit to large, data-oriented
systems with multiple independent pages. The produced JS
might be demanding with respect to volume or the complexity
of processing. Atthe same time, both JSF and GWT introduce
design abstraction classifiable as model-based [5] where the
JSF/Java description provides the model and the HTML/JS
product comprises the target.

The high-level of abstraction introduced in JSF/GWT
brings difficulty for debugging and low-level optimization as
well as an inability to apply changes to generated JS. Angu-
larJS (AJS) [10] also suggests that the Java philosophy is too
distant and does not correspond well to web Ul design. AJS
is more low-level sort of development, involving JS code. A
similarity to GWT is that AJS expects data to be provided as
a separate piece of information. The difference is that GWT
loads the page states all at once, while AJS suggests incre-
mental state extension. The incremental state approach fits
better with data-oriented systems. Next, AJS brings a nov-
elty to the client-side involvement; it introduces a templating
mechanism and data decoration. This allows defining tem-
plates used for data presentation, and thus each data instance
displayed at a particular page follows the same template.
The advantage brought by the templates is a reduction of
restatements on a page as well as decreased transmission
size. At the same time, the templating mechanism expects a
client’s browser to execute decoration, demanding additional
resources.

Next, we may consider the three approaches from the
perspective of resource involvement and energy demands.
JSF is an approach that involves server-side rendering, and
thus most of the resources are involved at the server. The
processing tangles various concerns together, such as data,
presentations, security, layouts, validations, etc. The tan-
gled product of the server-side is HTML. Clients receive
the produced HTML and interpret it without considering
the individual concerns. From the interaction perspective,
clients request HTML, and other requested resources, i.e., JS,
media and CSS. The HTML content has rather larger volume
and may contain repetitions introduced by concern tangling.
For instance, consider that two text fields contain the same
component declaration and different binding. There are two
component descriptions in the HTML since the reuse is not
possible due to the tangling with bindings or other concerns
such as layout. Thus the server-side utilizes resources for
rendering and transmission involves large volumes. Although
the compression reduces the negatives, both server and client
interact with the larger volume.

The approach used by GWT compiles the Java descrip-
tion before application deploy producing outcome in JS
format representing a variety of applications states. The
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product divides on two parts, cacheable and uncacheable
fragments. Furthermore the data are requested through a
lightweight JSON format. Regarding interaction, first time
visiting clients load small HTML and consequently request
large cacheable JS with page logic and small volume
uncacheable JS fragment, JSON, and all these extended with
other resources. A client renders a particular UI based on
context locally. Returning visitors only load small portion of
information, specifically the uncacheable JS and particular
data in JSON. Most of the Ul rendering involves client-side
resources.

Finally, AJS provides an alternative involving both sides.
The server is responsible for defining layouts, presentation
definitions, security, pages logic, etc. The client is responsible
to render data in provided templates. Clients in addition to Ul
description also receive templates in HTML used to display
data received through a separate resource in JSON format.
This mitigates restatements and repeated information. Next,
it allows processing certain amount of rendering at the server
side, while rendering data elements such as forms, tables,
and reports locally by clients. In comparison to GWT, only
a limited page state is transferred upon request. From the
interaction perspective, clients load HTML, JS, JSON and
other resources.

3 Related work on power consumption

Various related work [9,17,22] considers power consump-
tion of servers to reduce involved costs. Intel [22] suggests
that servers on average consume 250 Watts (W). While cool-
ing is an important factor in data centers, it is not the main
consumer of power. As suggested by [22], processors and
memory consume most of the power, followed by power
supply loss. Disk drives are not significant in terms of power
consumption. Processor power consumption varies from 45—
200 W. Power drain grows with processor utilization. The
authors suggest an estimation of power consumption (P) at
any specific processor utilization (n). It can be calculated if
the power consumption is known for maximum performance
(Pynax) and idle utilization.

n
— Pigre) x T0o + Pide- (D

Py = (P max
Through empirical measurement of various servers using a
power meter, this approximation has verified to be accurate
=4 5% across all processor utilization rates [22].

The next, largest power consumer is memory. The con-
sumption differs when idle or active (50 % bandwidth and
67 % read with 33 % write). The average use is 5-12 W
when active; the idle use is 2-5 W per module. The power
drain grows with capacity and frequency. For instance, 16 GB
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1600 MHZ DDR3?3 consumes 15 W on idle and 21-23 W
under load.

In [9] the authors consider energy consumption modelling
for data centers. They present distribution of power usage by
components. They suggest the distribution across compo-
nents to CPU 33 %, DRAM 30 %, disks 10 %, network 5 %
and the rest by other sources. In their model, they consider
complex parameters to derive the energy use involving the
sum of energy consumed by CPU, memory, disk, and net-
work interface card.

Since many energy consumption models show complex-
ity, [17] suggest a simplified model. Their model involves
dynamic and static fragments of power consumption of the
CPU. Next, they consider cache access and DRAM power
consumption involving access misses. To simplify the model,
they consider multiple constants received from empirical
measurements. In their benchmarks, the CPU power drain is
proportional to the frequency and number of cores. Specifi-
cally they measure approximately 70 W for 2.39 GHz, single
core and 95 W for quad core.

An extended study on power consumption for mobile
phones is conducted [4]. This publication provides a detailed
overview of energy usage and discusses the significance of
the power drawn by various components. As expected the
power drain grows with display backlight brightness; the
range is 7.8 and 414 mW on the minimal and maximum
backlight. A set of benchmarks is applied to see the impact
on power drain from CPU, RAM, Flash storage, Network
(WiFi, GPRS) and GPS. Various scenarios are evaluated to
see the usage of these elements. For web browsing, the back-
light plays adominantrole, although its usage to 67 % reduces
from the maximum 414 mW to less than 150 mW. With WiFi
access, the GSM, WiFi and Graphics modules drain each
less than 100 mW, the CPU, LCD modules as well as the
rest (including RAM) drains each less than 50 mW. With the
GPRS option, the GSM module drain grows slightly above
200 mW with the WiFi is disabled. The WiFi/GPRS con-
sumption is up to 430.4/500 mW. The results were validated
on Nexus One, HTC Dream and Openmoko Neo Freerunner
phones with variations. Percentage power drain is as follows.
Backlight is not considered and can range from 50 to 10 %
from the following numbers. Graphics hardware uses 24 %,
GSM uses 23 %, WiFi 16 %, CPU 14 %, LCD 11 % and the
rest (including RAM) 12 %.

The energy model considered in the paper shows energy
for each usage scenario as a function of time (). Specifically,
for web browsing (on WiFi) it is:

Eweb(t) = (043 W + PpL) x t, (2)

3 http://www.servethehome.com/testing-power-savings-low-voltage-
135v-kingston-memory-intel-avoton/
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where the Pp; is the backlight power in watts. Benchmarks
involving CPU with the highest frequency demanded up to
900 mW on Nexus One and 500 mW on HTC phones.

Next, we provide an overview of the up-to-date devices.
We consider various specifications and benchmarks.* The
overall power consumption from the tests for MacBook> for
the Pro late 2015 version show idle 2.8—-8.1 W and under
load 52.4-62.8 W. The non-pro version shows 1.7-6 W on
idle with maximum brightness and wlan. Under the load
it shows 29.3 W, which goes down to 18.5 W within a
few minutes. Lenovo ThinkPad-13 report® shows overview
over multiple notebook brands with average idle power drain
5.5-6.7 W and average load 30.9-34.6 (Acer/Asus/Lenovo
brands). The display consumption’ can be as low as 17.4 W.
Similar reports® given to phones show various brands with
idle avg. drain 0.9—4.1 W and under the load on avg. 2.4—
5.5 W. Standalone devices have higher consumption.® The
power drain for iMac, Mac Mini and Mac Pro when consid-
ering the most power efficient versions show power drain in
the range of 40-119 W (idle-max) for iMac, 4-85 W (idle-
max) for Mac Mini and 43-203 W (idle-max) or Mac Pro.

When considering the impact of power drain in the context
of web design, rendering and delivery, most work suggests
that CPU usage is an important parameter as well as the net-
work over wireless connection. Memory is also influential
parameter. Attributes such as screen backlight or LCD (if
applicable) are not impacted by Ul approach. Graphics hard-
ware may get a slight impact since we render similar product.
We consider the above parameters in a case study.

4 Case study: evaluation of conventional
approaches

For the purpose of UI design and delivery approach com-
parison, we conduct the following experiment. A sample Ul
page is designed using the approach of JSF, AJS and GWT.
Furthermore, we consider a JSF extension that improves
usability. The same page is designed and evaluated using
the PrimeFaces (PF) [25] library.

4 http://www.notebookcheck.net, https:/support.apple.com.

3 http://www.notebookcheck.net/ Apple-MacBook- Pro-Retina- 13-Ear
ly-2015-Notebook-Review.139621.0.html, http://www.notebookche
ck.net/ Apple-MacBook- 12-Early-2015-Notebook-Preview.142672.0.
html.

© http://www.notebookcheck.net/Lenovo-ThinkPad- 13- Ultrabook-
Review.166559.0.html.

7 https://www.apple.com/euro/environment/reports/docs/1 5inch_Mac
BookPro_wRetina_PER_July2014.pdf.

8 http://www.notebookcheck.net/Microsoft- Lumia-650-Smartphone-
Review.165363.0.html.

9 https://support.apple.com/en-us/HT201918,  https://support.apple.
com/en-us/HT201897, https://support.apple.com/en-us/HT201796.

The page representative is as follows. The Ul page is based
on the ACM-ICPC contest registration system'® and builds
on its backend. The fully functional page shows a user profile
in an editable form. The system represents a production-level
application. The specifics of the UI page are that it contains
person information accessible through a web form that con-
tains 22 input fields.!" The form is an interface thorough
which users edit system data. The form further considers
input validation, simple layout, data binding, and security
rules all reflecting the ACM-ICPC system.

The particular applications use these specific frameworks
versions: JSF 2.1.18, AJS 1.4.0, GWT 2.6.0. and PF 4.0.7
All page images and CSS are stripped out from the evalua-
tion, leaving only the native JS libraries for the approach to
operate. The application backend uses Java Enterprise Edi-
tion 6 on JBoss AS 6.2 application server, running Java 8
with Postgres 9.3.4.

The server—client connection has no bandwidth/latency
restrictions, operating on localhost. The physical machine is
a MacBook Pro (late 2013) with an Intel(R) Core(TM) i7-
4850 HQ CPU @ 2.30 GHz Quad-core (with an Intel Iris Pro
integrated GPU) with 16 GB Memory 1600 MHz DDR3 and
6MB L3 Cache. The specification of the processor'? suggests
typical consumption 38.19 W (thermal design power 47 W),
reviews'> suggest its power consumption higher, idle takes
7.6 W and under load on avg. 80.4 W (88.5 W max). Similar
results are given by [13] showing on load under a benchmark
power drain in the range of 40-80 W. This corresponds to
usual usage for power consumption of other CPUs. 4

The Google Chrome 44.0.2403.155 web browseris used in
the experiment in incognito mode with the Task Manager and
Developer Tools. The monitoring tools are JConsole, Mac
Instruments 6.4 (allowing us to tap a particular process or
even web browser tab), Activity Monitor 10.10.0 and Packet
Peeper 2014-06-15.

The impact of the approach is considered from both the
client and server perspectives. When client’s web browser
requests the page to load, we evaluate multiple criteria and
factors. Specifically, from the client-side perspective, we con-
sider the page load time (until the entire page renders) and
CPU use of the process representing the tab panel (tab) of web
browser. Specifically, with sampling at an interval of 1 ms,
we monitor whether any of the CPU cores is used and count
the total number of cores involved. The measured number
represents the total number of CPU units (core used in 1 ms)

10 http://icpe.baylor.edu.
1111 text inputs, 4 select menus, 3 dates, 3 radio options, 1 checkbox.
12 http://cpuboss.com/cpu/Intel-Core-i7-4850HQ.

13 http://www.notebookcheck.net/ Apple-MacBook- Pro-Retina- 15-La
te-2013-Notebook-Review.120330.0.html.

14 http://www.tomshardware.co.uk/skylake-intel-core-i7-6700k-core-
15-6600k, review-33276-11.html.
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Table 1 Results for uncached

measurement Criteria Units PF JSF AJS GWT
Page load time ms 381 255.9 275 280.4
Uncompressed size KB 675 80.5 164 177
Compressed trans. KB 170 19.7 56.5 60.6
Resources 5 3 4 5
Packets 98 54 77 81
Packets size KB 178.4 24.8 63.6 68.3
Client CPU units 321.2 177.2 311.3 349.8
Client CPU time span ms 413 275 458 398
Client Mem (w tab) MB 76 60.7 72.1 74
Client Mem (w/o tab) MB 20.6 5.3 16.7 18.6
MAC energy impact 6.5 3.8 6.2 7.1
Derived energy estimate 8.3 4.6 8 9
Server CPU units 271.2 171.8 64.2 32.8
Server CPU time span ms 186.5 144.4 213 245.25
Server Mem MB 18.6 18.2 8.5 3.8
Aggregated CPU units 592.4 349 375.5 382.6
Aggr. Mem (w/o tab) 39.2 23.5 252 22.4

involved in page rendering and the tab overhead (the decimal
point is introduced by averaging over multiple samples). For
instance, 80 CPU units represents 8 cores used for 10 ms or 1
core used for 80 ms. Moreover it can represent § cores used
for 5, 50 ms pause and again 5 ms with 8 cores the progress
is usually with one peek upon the first request. We also pro-
vide the time between the first and last CPU unit use in the
process. This time indicates the activity of the tab and spans
over the page load time. Next, we consider the tab allocated
memory (Mem) in MB. The tab itself allocates 55.4 MB. We
also consider the transmitted volume in KB, as well as the
total uncompressed size of the delivered content (KB). More-
over we consider the total amount of requested files/resources
from the server and the total packets both directions with its
total packet size (exceeds the compressed size, including the
packet headers and overhead).

Mac OS X uses an energy model that is a measure of the
energy impact of an app or a process. The model !> takes into
account the CPU utilization, idle energy draw, and interrupts
or timers that cause the CPU to wake up. The scale is O to
infinitely high, while max number reported is 780. The lower
the number, the less energy impact an app or process has. The
Mac energy impact is considered for the particular process.

From the server-side perspective, we consider the CPU
used by the application server sampled by CPU units the
same way as for the client, the CPU unit timing, and finally
the Mem used for serving the client.

Each of the page prototypes is deployed at the same server
and with criteria measurement repeated five times, while

15 http://www.tekrevue.com/tip/use-activity- monitor-energy-tab-os-x-mavericks.
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interleaving different prototypes one by one to minimize
skew results. The measurement considers two situations, first
time and returning visitor. We use web browser with disabled
and enabled caching to emulate both situations (while the
second has preloaded cache).

Table 1 shows results for the cache-disabled evaluation,
and next we discuss the outcome. JSF represents the standard
approach and is compared with other approaches. Naturally,
we expect that nearly all measured criteria get worse for the
usability extension PF, which is also apparent from the results
with mostly increased transmission volume and processing
factors. PF does not really bring any alternative approach
consideration; on the other hand, it gives us assurance that
the measured values reflect the expectation when compared
to JSE.

The situation is more interesting comparing JSF to
AJS/GWT that bring significant resource utilization twist
between client and server. See the twist on client—server CPU
units and Mem use. It is important to point out that, while the
browser tab memory use indicates 60—76 MB, it includes the
allocation for the tab itself with 55.4 MB (we show both val-
ues with and without the tab overhead). In comparison with
server-side CPU units and Mem utilization, the rendering is
offloaded to the client. The transmission increase is caused
by JS libraries. This could change with the number of third
party libraries. Since it could be seen as a threat to validity we
can consider the later cache-enabled scenario that caches the
JS libraries and limits the transmission. Both AJS/GWT have
an extra JSON request for data values, and the increased vol-
ume also corresponds to involved packets. The tab measured
energy impact for client corresponds to the resource utiliza-
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Table 2 Results for cached Criteria Units PF ISF AIS GWT
Page load time ms 284 218 251 257
Uncompressed size KB 34.1 19.9 20.6 8.7
Compressed trans. KB 4.6 33 4 4.2
Resources 1 1 2 3
Packets 51 51 48 66
Packets size KB 8.2 6.8 8.1 9.2
Client CPU units 303 172 292 354
Client CPU time span ms 369 235 372 378
Client Mem (w tab) MB 78 60.3 72.5 74.4
Client Mem (w/o tab) MB 22.6 4.9 17.1 19
MAC energy impact 5.8 3.6 6.1 6.6
Derived energy estimate 7.8 4.4 7.4 9.1
Server CPU unit 178 83.6 31.25 20.4
Server CPU time span 128 89.4 195.8 225.8
Server Mem MB 16.1 16.5 6.5 3.9
Aggregated CPU units 488 255.6 323.25 374.4
Aggr. Mem (w/o tab) 38.7 21.4 23.6 22.9

tion in the UI rendering, almost doubling when compared to
JSE.

Moreover we consider a rather unusual perspective involv-
ing the aggregation of the CPU units of both sides. This
represents the total number of CPU units needed to request,
derive, response and render the UI. The same we consider
for memory use.

In the measurement, JSF indicates the lowest demands on
CPU and Mem to clients and thus smallest energy demands.
AJS and GWT show a significant reduction of resource use
for the server, but almost double demands for resources on
the client side. The aggregated perspective gives the lowest
CPU usage to JSF; the Mem involvement has small difference
indicating the lowest demands for GWT.

Next, while not considering the screen backlight impact,
or influence of other components, we aim to derive the energy
consumption from the CPU usage. When we consider the
CPU power demands 7.6 W inidle and 80.4 W under the max-
imum load, we can apply Eq. 1 (while originally demanded
for servers). Since the power demands show linear growth,
we consider the CPU units distributed equally in time using
single core (out of 4). Below we install the values to the Eq. 1
multiplied by time in seconds to obtain Energy (Watt seconds
- Joules).

25
E = ((80.4 —7.6) x Too +7.6) xt=258xt(J) (3)

When we consider the above equation and apply the client
CPU units, we receive an energy estimate for the particu-
lar approach. This slightly corresponds to the Mac energy

impact. JSF requires 4.6 J from clients’ device to render the
page, while AJS and GWT demands grow to 8 and 9 J. To
give a practical example a 40-Watt Edison bulb would light
1 s for the same amount of energy that is approximately used
to eight times render the JSF UI page in our study, while
GWT version would only render four times.

The cache-enabled results are expected to improve most
of the measured criteria due reduced resource requests and
caching. Table 2 shows the impact on considered approaches.
The load time improves considerably, even though the unex-
pected outcome is that the tab CPU units does not change
significantly and tab Mem even grows. Transmission and
uncompressed sizes drop considerably. Reduction is also
apparent for the amount of resources and packets. Unexpect-
edly, the energy impact drops marginally, which corresponds
to CPU and Mem. The positive impact is that the server CPU
units reduce the involvement to almost half. Since the CPU
units stay almost unchanged on the client-side we see that the
energy demands are not impacted by caching. The caching
impacts page load times and reduces the server-side involve-
ment.

The main outcome from this study is that caching does
not impact the client-side energy demands, which confirms
the CPU usage, Mac energy impact and derived energy esti-
mate. Caching does not impact the client-side memory usage.
On the other hand caching is important since it improves
page load times and reduces demands on server. The outcome
shows that client-side rendering is more efficient than server
resource utilization. The impact on clients is notable since
JSF UI rendering demand almost half the energy of GWT.
Furthermore, from the perspective of optimizing the com-
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bined CPU usage on both client and server sides, JSF shows
to be the most efficient out of the considered approaches.
The actual energy impact to other devices is relevant to
their power consumption under the idle and maximum load.
In case the CPU usage would be the same, other comput-
ers such as Lenovo ThinkPad-13 with dual-core would have
slightly smaller demands, even though the number of cores
increases the left side of the Eq. 1. For the Lenovo report on
other similar computers, the P would be approximately in the
range of 18.2-20.7 W and consume 3.2-3.7 J for uncached
JSF page rendering and 6.4—7.2 J for uncached GWT page.

5 Alternative delivery approach

We now consider whether the delivery approach impacts the
resource usage and influences the energy demands. At this
point, all the approaches deliver most of the UI concerns at
once. AJS and GWT separate out data values and provide
them as a separate JSON resource. Cerny et al. [8] argues
that conventional design approaches, although easy to com-
prehend, are not efficient in terms of distributions of different
concerns. A particular UI concern is, for instance, field pre-
sentation, layout, security, validation, data binding, and so
on. While we usually think of each concern independent
of others, when designing UI we tangle them together to
describe a particular situation. The actual tangling disables
particular concern reuse and causes complex design, repeti-
tions and inefficiencies. In fact, this is a common issue for
most programming languages that do not effectively address
concerns that tend to cross-cut each other [16]. UI concerns
are the types of concerns that are cross-cutting [5]. There
are multiple approaches to deal with cross-cutting concerns
effectively, but they require additional instruments to tangle
the concerns upon execution. For instance, Aspect-Oriented
Programming (AOP) [16] suggests to separate concerns from
the base components, indicate the join points in components,
and let an aspect-weaver decide how and which concerns
tangle together to serve a particular request in given context.

The same sort of issue with concern tangling apparent
in source code can be seen in delivery. Cerny et al. [§]
suggests that it is possible to distribute concerns separated
through different channels through individual requests. For
instance, the server can provide a main HTML file that
points to JS presentation and layout templates. These tem-
plates can be provided as part of a JS library and used
by a client weaver. Such a weaver then requests page-
specific data values from the server, similar as to GWT
and AJS approaches. Furthermore, to derive the proper pre-
sentation, it requests meta-information of given data. Such
meta-information provides the structural details, constraints,
validation and security of data that are displayed on the page
to properly derive the date presentation, i.e., form. While

@ Springer

the same information is given to clients as in conventional
approaches, it is divided to particular parts.

The client is then responsible to derive the UI data pre-
sentations locally. Since there are multiple resources and
browsers support concurrency, they can be requested simul-
taneously and support page load. Each of the resources has
a distinct life-span, and this allows us to cache and reuse
the resources independent of each other. For instance, lay-
outs and presentation templates do not change over the time,
but when using a contemporary approach, there is only sin-
gle source of information , which must be resubmitted. With
the Distributed Concern Delivery (DCD) [8] approach, the
selection of whether to cache a particular concern or not is
possible. Moreover, there is no repetition in the provided
resources as there would be, for example, in conventional
JSF that declares the use of 11 text fields that mostly contain
the same information. Finally, if such distribution exists, it is
possible to look at the UI data definitions from the perspective
of platform independence [7], and design native client appli-
cations reusing the server provided platform-independent
concerns given in machine readable format.

Next, we implement and apply the DCD extension to JSE,
AJS and GWT application and evaluate the impact of the
delivery approach on resource utilization on the same case
study.

6 Case study: evaluation of delivery approaches

The same configuration is applied for the DCD experi-
ments, while the conventional approach results are apparent
in Tables 1 and 2. The DCD approach gives us the possibil-
ity to cache more concerns, such as presentation and layout
templates for the entire application. Furthermore, it is possi-
ble to cache the meta-information that provides UI structure
for data. On the other hand, if the page changes based on
the context, the meta-information can change, i.e., condi-
tional field rendering, security changes, time-awareness, etc.
To provide a broad evaluation and impact for context-aware
situations, we consider the situation without caching of the
meta-information. As an extension, we also show the situa-
tion for context-insensitive Uls.

Table 3 shows results for the cache-disabled evaluation
with DCD. The DCD extension for the uncached scenario
does not show any major impact to the client-side. We may
notice reduced transmission for JSF and as expected more
requests. The most interesting perspective is the server-side
for JSF. The total number of CPU units and Mem drops
almost in half and brings positive impact. On the other hand
most other criteria, especially in AJS and GWT, are almost
unchanged.

The cache-enabled results are expected to improve most
of the measured criteria. Table 4 shows improvement in CPU
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Table 3 Results for uncached measurement with DCD applied

Criteria Units JSF AJS GWT
Page load time ms 170.4 282 281.2
Uncompressed size KB 51.8 181 178

Compressed trans. KB 15 62 60.5
Resources 5 6 6

Packets 64 89 87

Packets size KB 22 71.2 69.3
Client CPU units 174.4 310.3 3494
Client CPU time span 231.8 448.6 385.3
Client Mem (w tab) MB 59.8 72.2 74.9
Client Mem (w/o tab) MB 4.4 16.8 19.5
MAC energy impact 3.6 6.6 6.8
Derived energy est. J 4.5 8 9

Server CPU units 96.2 61.6 353
Server CPU time span ms 99 166 233

Server Mem MB 7.6 9.6 4.2
Aggregated CPU units 270.6 371.9 384.7
Aggr. Mem (w/o tab) MB 12 26.4 23.7

demands on client-side for JSF. The memory usage slightly
drops for JSF as well. The transmitted sizes reduce, and
mostly the uncompressed size reduces due to supported con-
cern reuse and reduced repetitions. The energy demands on
the client-side slightly reduce for JSF. There is not much pos-
itive impact to GWT and AJS from the client’s perspective.
The server-side perspective shows significant reduction for

JSF regarding the involvement of both CPU and Mem. There
is a slight improvement to server-side resources for AJS and
GWT with the context-unaware version of DCD that caches
the meta-information.

The DCD impact is positive for the server-side approach
JSF. It significantly reduces the server-side involvement due
to reduced rendering on the server-side. Furthermore, it has
a slightly positive impact on clients-side. There is a signif-
icant impact to the page load times for JSF. DCD does not
significantly impact the considered client-side approaches.

7 Validity threats to the case studies
7.1 Internal validity

To mitigate sudden impact of background processes, the mea-
sured results are averaged over five samples of each scenario
interleaving the various scenarios. All the measurements
took place the same day after computer full restart with no
processes that would put high demands on resource, even
though that our measurement involved a specific process,
which further eliminates the background computer tasks.
The web browser ran in incognito mode to avoid negative
impact introduced by plugins. Certain elements measured in
our study are not sensitive to CPU, such as transmission sizes,
etc. The constellation of the studies considers a single com-
puter, which reduces the risk of skewing results by network
fluctuation.

Table 4 Results for cached

measurement with DCD Criteria Unit Context-aware Context-unaware

JSF AJS GWT JSF AJS GWT
Page load time ms 166 255.2 255 155.2 240.2 237
Uncompressed size KB 7.5 9.5 13.7 2.4 4.2 8.7
Compressed trans. KB 3.5 3.4 5.5 2.1 2.1 4.2
Resources 3 3 4 2 2 3
Packets 56 56 70 48 57 70
Packets size KB 8.8 8.7 11.1 6.2 6.7 10.1
Client CPU units 154 305 367 163 308 340
Client CPU time span 184.4 390.8 391.7 216.4 464 343.5
Client Mem (w tab) MB 59.5 72.6 74.5 61.5 72 74.4
Client Mem (w/o tab) MB 4.1 17.2 19.1 6.1 16.6 19
MAC energy impact 2.9 6.1 6.6 2.8 5.9 6.2
Derived energy est. J 4 7.9 9.5 4.2 7.9 8.8
Server CPU units 37 43 25 29.8 29 14.2
Server CPU time span ms 92 125.8 227 83.6 125.6 229.4
Server Mem MB 5.6 6.9 4.1 5.2 6 34
Aggregated CPU units 191 348 392 192.8 337 354.2
Aggr. Mem (w/o tab) MB 9.7 24.1 23.2 11.3 22.6 22.4
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7.2 External validity

Our application, while one representative, corresponds to a
real-world application. The selected page reflects part of the
application. In the study, we aimed to mitigate the specificity
of the particular pages and reduced the references to media
files, CSS and third party JS, to obtain specifics and impact
of a particular approach. While the caching scenarios reduce
all cacheable resources from the transmission, they are still
accessed in memory; thus consideration of other resources
impacts memory usage. The considered applications are fully
functional regarding data management. At the same time, the
representative does reflect all aspects of Uls. It demonstrates
a particular data presentation page. A variety of different
pages may contain different volumes of data, distinct lay-
outs and most likely reference many other resources from
multiple destinations. The outcome is representative of a
page with a form, usual for information systems or enterprise
applications. The results cannot be considered for interactive
consoles, report or large content pages.

Multiple other factors can play role in real-world appli-
cation such as distance from a server, etc. Furthermore the
results must be considered from the perspective that user does
not reload the UI page all the time, but instead the page ren-
dering happens occasionally, and user most of the time reads
the content. We approximated the energy demands by an
equation suggested for servers and involving solely the CPU
usage not considering energy impact of other components.
At the same time, the variance among particular applications
correlated to the Mac energy impact.

This case study serves as a demonstration of particular
approaches. Next, it demonstrates the impact of alternative
delivery approach. The study considers the ability of a con-
ventional web-browser, Chrome, although its alternatives
provide similar results.

8 Conclusion

This paper considers contemporary Ul design and delivery
approaches from the perspective of resource utilization and
energy impact. The outcome of the research shows, that there
is always a trade off between server and client-side com-
putation. While some approaches such as AJS and GWT
target client involvement to positively impact server resource
use and bring benefits to service providers, these approaches
place high demands on energy consumption for clients. This
can even double the energy demands for Ul page rendering
on client-sides when compared to server-side approaches.
The traditional server-side approaches place lower energy
demands on clients, while more significant efforts in resource
allocation is apparent at the server-side.
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Our proposed extension brought by DCD positively bal-
ances the traditional server-side UI design with a delivery
approach that reduces the server-side involvement. In our
study, DCD improved server-side involvement on a level
competitive to client-side approaches. In many evaluations,
we may see caching and its corresponding reduction of trans-
mitted volume as important factors, positively impacting
page load times. In our study, we show that these factors have
only a small impact on CPU utilization and energy demands.
Web browsers demand CPU to process the entire uncom-
pressed volume, including the cached fragments.

Future work will involve similar analysis on a mobile
platform. Next, a greater variety of pages will be evalu-
ated to provide a suggestion on design flaws regarding to
energy impact. Finally, we plan to implement a tool capable
of energy evaluation for web pages, to provide immediate
feedback on energy demands.
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