Cluster Comput (2016) 19:1801-1818
DOI 10.1007/s10586-016-0637-y

@ CrossMark

Adaptive measurement method for data popularity

in distributed systems

C.Hamdeni! - T. Hamrouni! - F. Ben Charrada!

Received: 25 April 2016 / Revised: 17 August 2016 / Accepted: 6 September 2016 / Published online: 17 September 2016

© Springer Science+Business Media New York 2016

Abstract Distributed systems provide geographically dis-
tributed resources for large-scale applications while man-
aging large volumes of data. In this context, replication of
data in several sites of the system is an effective solution for
achieving interesting performances. A number of data repli-
cation strategies have been proposed in the literature. Data
popularity is one of the most important parameters taken into
consideration by these strategies. It analyzes the historic of
the data access pattern, and provides predictions for future
data requests. However, measuring data popularity is a chal-
lenging task because there are several factors that contribute
to the evaluation of data popularity. In this paper, a new adap-
tive measurement for data popularity in distributed systems
is proposed. The proposed measurement covers all factors
taken into consideration by previous work of the literature.
It also takes into consideration new factors to deal with the
dynamic nature of the system so it can adapt to any access
pattern. We show that the exploitation of our measurement
improves the performances of replication strategies, while
offering the possibility to use the data popularity parameter
in new contexts in replication management.

Keywords Distributed system - Replication strategy -
Data popularity - Access pattern - Temporal locality

< T. Hamrouni
tarek.hamrouni @fst.rnu.tn

C. Hamdeni
hamdeni.chamseddine @ gmail.com

F. Ben Charrada
f.charrada@gnet.tn

Computer Science Department, Faculty of Sciences of Tunis,
Tunis El Manar University, University Campus, Tunis,
Tunisia

1 Introduction
1.1 Background and motivations

The huge increase in data storage and computing require-
ments has led to Big Data, for which several distributed
systems are being designed and implemented. Distributed
systems handle extremely large volumes of data while requir-
ing fast processing time with minimal possible cost. They
represent an efficient solution to deal with these related chal-
lenges by offering great promise to programmers interested
in developing applications that serve large volumes of data
management.

Data replication, a well-known technique in distributed
systems, is a practical and effective approach to face these
challenges [2]. It consists in storing multiple copies of the
same data at multiple sites. If one of the sites is not accessi-
ble then the data can be accessed from a different site [23].
This technique has been widely used to reduce data access
time and network traffic, while increasing data availability,
accessibility, and fault tolerance. It is becoming a popular
approach in many distributed systems [13] such as Data Grid
systems [12,16,31], Cloud systems [27,32,55], P2P systems
[28,38,47], and CDN systems [26,37].

Replication in distributed systems has several problems
to solve [15], like when to do replication? Where to place
a new replica? How to maintain data integrity and consis-
tency? How to reduce job execution time, job scheduling
time, access latency, resource consumption and maintenance
overhead? to quote but a few. Many replication strategies
have then been proposed trying to answer these questions
optimally. These strategies use various parameters to make
the decision that deems appropriate for them. Such parame-
ters include data popularity, resources consumption, response
time, resources availability, latency, workload, energy con-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-016-0637-y&domain=pdf

1802

Cluster Comput (2016) 19:1801-1818

sumption, security, storage capacities, number of replicas,
etc [32]. They differ from one strategy to another according
to the objectives of each strategy.

Data popularity is one of the most common parameters

taken into consideration by these strategies [8,18,45,51,54].
It consists in measuring how much a given piece of data is
requested by the system sites. This constitutes key informa-
tion since it gives an indication of the importance of this data,
allowing as a consequence a more intelligent data placement
and a large optimization in the storage utilization. That is
why much research in distributed systems mainly focuses on
data popularity [4,7,14,24,41].
In this respect, temporal locality represents an important
notion that must be taken into consideration when assessing
data popularity in distributed systems [21]. It consists in con-
sidering that recently requested data are likely to be requested
again in the near future [1]. That is why the parameter data
popularity, in all its manifestations in distributed systems,
dominates the other parameters in replication strategies. It
allows indeed to obtain an indication of the probability of
requesting data again.

It is worth noting that data in distributed systems may be
a set of files, a file or a file part. It may also be a database, a
database table or an object of a database table. All these pos-
sibilities will be covered by using hereafter the term dataset.
Moreover, in our case, the definition of popularity is based
on the popularity of certain datasets among sites.

1.2 Contributions

In this paper, a new method to measure dataset popularity is
proposed. This method offers several advantages over exist-
ing methods. They are as follows:

e It avoids all the drawbacks experienced by existing mea-
surements and provides more accurate prediction for the
next dataset popularity. Indeed, the experiments show
that the new measurement can reach up to 38 % improve-
ment even comparing it with the best result among
existing measurements. Obtained results also prove that
almost 50 % of the performed replications are more effec-
tive due to deploying the proposed strategy.

e It is a generalization of the other popularity measure-
ments of the literature with more considerations taken
into account.

e Itcan beinstantiated according to the application require-
ments and offers the opportunity to control the tradeoff
between the calculation cost and the result accuracy.

e It can adapt the dynamic nature of distributed systems
and can handle with any access pattern, even when the
access pattern does not support the temporal locality.

e It allows the usage of the popularity parameter in new
contexts that were never used before.

@ Springer

1.3 Paper organization

This paper is organized as follows: In Sect. 2, we analyze pre-
vious works, identify the factors considered by the existing
popularity measurements and show the drawbacks experi-
enced by each one. In Sect. 3, we propose a new measurement
method to assess dataset popularity. In Sect. 4, we highlight
usages of our measurement in variety of contexts. In Sect. 5,
we discuss the obtained experimental results. The last section
summarizes our contributions and depicts future work.

2 Analysis of previous works

2.1 Importance of data popularity parameter in
replication management

To highlight the importance of the data popularity parameter
in replication management, some simulations are performed
using the OptorSim simulator [5,9] applied on the CMS test-
bed configuration [10]. 6000 requests for various datasets
are analyzed. These requests are generated by jobs execu-
tions during the simulation and captured randomly from
some actual CMS runs. After doing statistics on the gen-
erated requests, we observe that more than the half of the
requests (55 % of the total requests) is interested in only a
small portion of the datasets (more precisely, 10 %). Accord-
ingly, any action that will happen to these 10 % datasets
will directly affect jobs execution. Therefore, the manner of
managing the most popular datasets influences significantly
the performance of replication strategies. This highlights the
importance of promoting the most popular datasets when
designing replication strategies.

To show the influence of the data popularity parameter
on performances of replication strategies, three replication
strategies were also tested in [18], namely: Periodic Opti-
miser [6], DR2 [49] and PDDRA [40]. In this respect, we
compare the original version of each of the three afore-
mentioned strategies, in which the popularity parameter is
considered, with its popularity-unaware version. That is to
say that the comparison is carried out with a modified version
in which all datasets are considered as having the same popu-
larity. We notice that the removal of the popularity parameter
causes significant losses in the three strategies performances.
According to the effective network usage (ENU) metric, the
loss reaches 87.10 %. Also, the loss in terms of response time
reaches 41.30 %.

This underlines the importance of considering the data
popularity parameter, and justifies the reliance of several
replication strategies on data popularity parameter to predict
future requests whether in Grid [30,42—44,50,53], in Cloud
[22,36,52,55], and in P2P systems [24,28,38,47].

Cluster Comput (2016) 19:1801-1818

1803

Given the importance of data popularity in replication
management, much research in distributed systems has been
mainly focused on the popularity parameter [14,24,41].
However, these works did not take the popularity issue in
all its aspects. Some important factors that will be high-
lighted in this work were indeed neglected in the literature.
For example, the degree of the stability in the historic data
accesses and the duality between calculation cost and result
accuracy are of paramount importance in the correct assess-
ment of the popularity parameter. They also did not show
some imperfections that are experienced by the existing data
popularity measurements. For example, the weight values
that are affected to requests are not justified, and the tradeoff
between the calculation cost and the precision degree cannot
be controlled.

2.2 Considered factors in existing data popularity
measurements

For high replication strategies performances, knowledge of
future data popularity is of paramount importance. This is
indeed crucial to decide which datasets have to be requested,
replicated, or even deleted. However, the manner how the
popularity is assessed varies from one strategy to another.
The analysis of the existing data popularity measurements
allows to identify the factors taken into consideration by each
one.

In the general case, there are three main factors that
contribute to the evaluation of data popularity that were high-
lighted in [18] and which are:

— The number of dataset requests: allows to identify how
many times the dataset was requested.

— The dataset lifetime: allows to quantify the mean of the
number of requests since the creation of the dataset.

— The requests distribution over time: allows to distinguish
for a given dataset old requests from recent ones.

In fact, all the existing measurements consider the number of
requests. However, the two other factors are considered by
some measurements while neglected by others. Accordingly,
measurements can then be classified into four categories as
depicted in Table 1.

Table 1 Considered factors by each category

Among the measurements of the first category, we may
refer to the measurement indicating the number of accesses
to each dataset (denoted #Requests) [39]. It is among the
most easy and natural metric to be used in order to quan-
tify the actual popularity of a dataset. An example of the
measurements of the second category is proposed by Al
Mistarihi and Yong [3] (denoted RRD as acronym for
Replica Request Demand) in which the number of requests
is divided by the lifetime of the dataset. Mansouri and Asadi
[33] proposed a measurement (denoted VSE as acronym
for Value Storage Element) that belongs to the third cate-
gory. The calculation of VSE is based on the number of
requests and the timestamp of the last request, while the
dataset lifetime is neglected. Among the measurements of
the fourth category, we can cite the one proposed in [11]
(denoted AF as acronym for Access Frequency). In this
measurement, they consider the total number of requests
while assigning a coefficient for each request so that the
recent requests will have higher weights than the old ones.
They also guarantee that the dataset lifetime will not be
a reason for increasing the popularity through averaging
the obtained value by dividing by the total number of
periods.

It is in this respect important to mention that the effi-
ciency of each measurement w.r.t. the calculation cost and
the result accuracy closely depends on the category to which
it belongs. Simple calculations are cheap in both space and
time, while more complex (and hence more accurate) calcula-
tions required more space and calculation cost. The choice of
the appropriate category is then subject to a tradeoff between
result accuracy and calculation cost. This generally has the
form shown in Fig. 1.

2.3 Drawbacks of existing measurements

According to the aforementioned factors, the popularity mea-
surements may suffer from two kinds of drawbacks:

— Neglecting the dataset lifetime factor. Indeed, an old
dataset may be favored when it is compared to a new
one. This unfortunately gives a wrong indication of the
popularity. It is worth mentioning that the first and the
third categories suffer from this drawback.

Number of requests Dataset lifetime

Requests distribution over time Example of measurement

First category Considered Neglected
Second category Considered Considered
Third category Considered Neglected
Fourth category Considered Considered

Neglected Ranganathan and Foster [39]
Neglected Al Mistarihi and Yong [3]
Considered Mansouri and Asadi [33]
Considered Chang and Chang [11]

@ Springer

1804

Cluster Comput (2016) 19:1801-1818

Calculation - Less calculation cost
efficiency - Less precision

A
First
category

~

- More calculation cost

Second - More precision

category

Third
category

Potential
accuracy

>

Fig. 1 Tradeoff between calculation efficiency and potential accuracy

— Neglecting the requests distribution over time, i.e., the
timestamp of each request. This does not allow to dif-
ferentiate between old requests and recent ones, which
is inconsistent with the temporal locality notion [1,21].
Noteworthily, the first and the second categories suffer
from this drawback.

The fourth category measurements do not suffer from any
kind of the two aforementioned drawbacks. This happens
thanks to the fact that they consider the three aforementioned
factors. Unfortunately, the fourth category measurements do
not necessary lead to the best result compared to the other
categories. Indeed, there is no need to consider the dataset
lifetime factor when the dataset lifetimes are equal. Also, the
requests distribution over time factor can be neglected when
the temporal locality is not effective in such access pattern,
knowing that the effectiveness of the temporal locality differs
from one access pattern to another [35]. The experiments
presented in Sect. 5 will further confirm this important fact.

Based on this, there are some situations when using one of
the other categories is more appropriate than using the fourth
category:

— The first situation occurs when the dataset lifetimes are
equal, and the temporal locality is not effective. In this
case, the first category deems more appropriate because
it allows to take advantage of its low calculation cost.

— The second situation happens when the dataset lifetimes
are not equal, and the temporal locality is not effective.
In this case, privileging recent requests will not be nec-
essary. The second category is then more efficient in this
situation.

— The third situation arises when the dataset lifetimes are
equal and the temporal locality is effective. In this case,
the third category is more appropriate.

When considering the other situations, the fourth category
is more appropriate because it considers the dataset lifetime

@ Springer

and the temporal locality notion. However, the measurements
of this category do not distinguish between high temporal
locality degree and low temporal locality degree for a given
access pattern. This drawback is not overcome by any exist-
ing measurement, and its consideration will constitute one
of the key properties of the measurement proposed in the
present work.

Figure 2 presents the appropriate category for each situa-
tion starting from the most particular case that suits the first
category, to the general case which encompasses the first
three particular cases and requires using the fourth category.
The situation when the temporal locality degrees are different
covers all the existing categories.

3 New method to measure the data popularity

In this section, we will propose a new data popularity
measurement which will overcome all the discussed draw-
backs by considering the three aforementioned factors in an
effective manner. Indeed, our measurement will analyze the
historic of each dataset access pattern, identify its situation
and consider only the appropriate factors to this situation.
It can hence join the appropriate category when there is a
particular case. Otherwise, it will consider all factors at the
same time. In addition, new factors will be taken into con-
sideration which offers new advantages in comparison with
existing measurements. The proposed measurement allows
mainly to:

— take into consideration the dynamic nature of the sys-
tem w.r.t. the changes in the dataset access pattern. In
fact, the existing measurements that put greater weight
on recent requests than older ones use the same weights
every time. These weights are predefined and not jus-
tified. In our case, a function that reflects the behavior
of the historic and scales automatically the weight val-
ues will be used. Indeed, this function will analyze the
historic and identify how much the temporal locality is
effective (cf. Sect. 3.4). The obtained temporal locality
degree will give an indication of the probability of main-
taining the same access pattern in the near future. In this
way, we can assess whether or not recent historic requests
represent a good indication of future requests, and hence
design a series of weights to be applied to each request
(cf. Sect. 3.5).

— offer the possibility to control the tradeoff between calcu-
lation cost and result accuracy. In some cases, one may
prefer good accuracy while accepting high calculation
cost while in another it may be more beneficial to have
low calculation cost and tolerate less accuracy. Existing
measurement techniques do not consider an approach to
deal with this duality. In this work, a dynamic period

Cluster Comput (2016) 19:1801-1818

1805

Fig. 2 Appropriate category
for each situation

Temporal locality
is not effective

Different degrees of |
temporal locality

of requests counting will be used. The time for such
a period can be shortened if the target is the accuracy
of results, while it can be extended if the purpose is to
obtain low calculation costs. A generic formula will be
proposed and the system has to instantiate it according to
its requirements by choosing dynamically the appropriate
granularity level of the calculation process (cf. Sect. 3.2).
— to be at the basis of the employment of the popularity
parameter in new usages in replication management. The
popularity assessment will indeed be able to cover new
objects, like the popularity of a given site. In this way, the
popularity parameter will be able to contribute to some
strategies that never used it before (cf. Sect. 4).

In the design of the proposed measurement, we begin by
evaluating a specific set of requests issued from one given site
to one given replica of a given dataset. Then, the evaluation
is generalized in several ways to obtain several popularity
measurements, like a measurement to quantify the popularity
of a given replica, of a given dataset, of a given site, etc.

The evaluation process will pass through two main steps:
initially, the time segment will be split into periods and the
number of requests in each period will be counted. Then, each
period will have a specific weight which will be multiplied
by the number of requests in this period. Each weight will
be dynamically computed according to the stability of the
access pattern. The obtained total sum will be divided by the
sum of the weights. The functions that will be used in this
measurement are described in the following paragraphs.

3.1 T: timestamp determination function

The analysis of the distribution over time of the requests
performed by a given site for a given replica requires the
determination of the timestamp of each request in the access
historic of the replica. In this regard, since the creation of the
replica, the timestamp 7 of each performed request Reg;
is recorded. At a given point in time, the function T'(Req;)

Replicas lifetimes
are equal

Third First Second
category category category

Fourth category

| same degree of
temporal locality

No category

takes as parameter a request identified by its rank i with 1 <
i < n and n is the total number of requests for the concerned
replica issued by a given site. The function 7'(Req;) gives
as a result the corresponding timestamp of the request Reg;.
The timestamp determination function is then as follows:

T(Reqi) =T ey

To give the corresponding timestamp, this function uses
Ty to refer to the starting time when the concerned replica was
created, and 7 to refer to the replica lifetime. Each replica
has its proper Ty and 7. Each request Reg;, with 1 <i <n,
will then be associated to its timestamp 7; with Tp < T; <
T..

Figure 3 shows an access pattern example, with n =7 and
T. = 30. For example, the timestamp of the request Reg7 is
Tr6.

3.2 #PN: periods number determination function

The purpose is to split the time segment into periods in
order to apply a specific weight to each period. The obtained
number of periods is the factor that can control the trade-
off between the calculation cost and the precision degree.
Indeed, on the one hand, many periods means many weights
that will be applied to the requests. This will increase the
precision of the result, while increasing the calculation cost.
On the other hand, a low number of periods will decrease
the calculation cost since a small set of weights will be used
in the computation of the replica popularity. This will how-
ever decrease the result precision. Therefore, we face two
contradictory objectives: decreasing the calculation cost or
increasing the result precision.

We consider a function #PN(GL) that takes as parameter
an integer number representing the Granularity Level which
is noted GL. This function gives as a result an integer the
number of periods that will be obtained according to G L.
The function is as follows:

@ Springer

1806

Cluster Comput (2016) 19:1801-1818

wwwww

Replica creation
time

Fig. 3 Example of an access pattern

|-I= | when GL €10, 7.]
#PN(GL) = [lGL when GL > T.

This means that the time segment will be split into
#PN(GL) periods with 1 <#PN(GL) < T,. The extreme
case when GL =1 will give #PN (1) = L%J = T,. In this
case, the time segment will be split into 7;. periods. There are
hence T, different weights that can be applied to the requests.
This is the highest precision degree which will give the most
accurate result. The other extreme case when GL = T, will
give #PN(T;) = L%J = 1. So, the time segment will not be
split into periods. All the requests will then have the same
weight. Therefore, we will take advantage of its low calcula-
tion cost. In fact, this particular case meets the first category
measurements, i.e., considering only the number of requests
while neglecting the replica lifetime and the requests distri-
bution over time.

Let us take the same example of Fig. 3, in which 7, = 30.
A fine granularity GL = 1 will give #PN(1) = 30, so the time
segment will be split into 30 periods. A medium granularity
G L =3 will split the time segment into 10 periods. A coarse
granularity G L = 10 will give 3 periods. While the maximum
coarse granularity GL = T, will give #PN(7,) = #PN(30) =
1.

3.3 P: corresponding period determination function

We consider a function P(T;) which takes as a parameter
the timestamp T; of the request Reg;, given by the function
T (Regq;), and returns its adequate period k with 1 < k <
#PN(GL). The function P (T}) is calculated as follows:

y=| L
P =| 55 |+1 @)

Let us take the same example of Fig. 3. The corresponding
period of each request according to different GL values is
shown in Table 2.

After determining the corresponding period of each
request, the total number of requests in each period k
is counted and is denoted #Requestsy. Therefore, an

@ Springer

— Currenttime T,

®=—» Time segment

= Request

. Requestingsite

access pattern X will represent the partition of the differ-
ent requests into the associated periods. It is then equal
to: X = {#Requests|, #Requestsa, ..., #Requestsy, ...,
#RequestsspnN(GL)}-

3.4 TLD: temporal locality degree function
3.4.1 TLD utility

Exploiting temporal locality of data has been a common idea
for replication in distributed systems [21]. It is actually used
for designing replication strategies in Data Grid [29], Cloud
Storage [48] and other data storage systems [1]. It refers to the
reuse of specific data within relatively small time duration. If
at one point in time a replica is requested, then it is likely that
the same replica will be requested again in the near future
[1].

In data popularity assessment, this notion is specially
exploited by the fourth category measurements. Indeed, these
latter promote recent periods and give them higher weights
than old periods. However, the weights they use are con-
stant, predefined, and not justified since not depending on the
access pattern of the considered dataset. For example, Chang
and Chang [11] give a weight equal to 1 to the last period, 0.5
to the period before last, then 0.25, etc. They estimated that
the last period deserves the double of the weight of the period
before last, and they fixed the weights based on this estima-
tion. This rigid estimation of the temporal locality of a dataset
access may be accurate for some access patterns but inaccu-
rate for others. Thus, the temporal locality is not guaranteed
for all access patterns with the same degree. For example,
the case where X = {6;25;2;27;3}, the last period is not even
an indication of the future because the temporal locality is
not effective. So, the fact of giving a double weight to the
last period is inappropriate in this case. Likewise, when X =
{8:8;9;9;9}, the temporal locality is highly effective. Then,
the last period requests are likely to be repeated in the future
and therefore they represent a very good indication of the
future. As a consequence, they deserve a very higher weight
compared to old requests.

Cluster Comput (2016) 19:1801-1818 1807
Table 2 Corresponding period . .
with different G L values Request Corresponding period
Request Reg; Timestamp 7 GL=1 GL =3 GL=6 GL=15
Req Ty 1 1 1 1
Reqr T 2 1 1 1
Reqs Ts 6 2 1 1
Reqs T 7 3 2 1
Regs Tis 16 6 3 2
Rege T 21 7 4 2
Req7 T2 27 9 5 2
In our contribution, we will quantify the temporal locality =~ Table 3 TLD(X) values with different access patterns
effectiveness using a function, caued TLD, which takes .as a Access pattern X Variance V(X) TLD(X)
parameter the access pattern of a given replica w.r.t. to a given
site and gives the Temporal Locality Degree of this access {8:7:8:9;8} 0.50 2.00
pattern. TLD analyzes the historic of the access pattern and ~ {7:8;6:8:9} 1.30 0.77
gives the probability of maintaining the same access pattern ~ {9:4;10:4;6} 7.80 0.13

in the near future. The weights that will be applied to each
period will be scaled based on the obtained 7LD value.

3.4.2 TLD calculation

Many mathematical functions can help us to assess how sta-
ble the access pattern is, i.e., how strongly it likely supports
a high degree of current temporal locality. We cite, for exam-
ple, the variance, the standard deviation, and the expected
value. In our contribution, we will use the variance func-
tion because it deems the most appropriate to our purposes.
Indeed, the variance measures how far a set of numbers is
spread out within a set of sample values [25].

The variance of an access pattern X is given by the fol-
lowing formula:
}Z{V(GL) (#Requestsy — Avg_Requests)?

ViX) = #PN(GL)

3

where Avg_Requests = m and 7 is the total number
of requests in X.

In general, a low value of V (X) means that the temporal
locality is effective, while a high value means that the access
pattern does not support the temporal locality notion. Based
on this, the variance is a decreasing function of the temporal
locality degree. Therefore, the temporal locality degree can
be obtained from the inverse of the variance as follows:

TLD(X) =)

V(X)
In this way, as much as the temporal locality notion is effec-
tive, as much as TLD(X) increases. Table 3 shows some
examples of TLD(X) values according to different access pat-
terns.

3.5 Weight function
3.5.1 Weight function properties

Firstly, we need a general function f(x) allowing to affect
an accurate weight to each period starting from the last one
and going back to old periods. The function that will be used
to play the role of f(x) must verify three properties:

— f(x) should be positive. As a consequence, the affected
weights to the periods will be positive

— f(x) should be decreasing. In this way, the most recent
period will have the highest weight. Then, the weights
will decrease with the going back to the past.

— lim f’(x) = 0. The decrease of the weights should

x——+00
be quicker at the beginning in order to give more impor-

tance to recent periods. Then, the decrease should start
to decline towards the stability, i.e., towards f’(x) = 0,
in order to not totally exclude old periods but only give
them less importance.

Any instance of f(x), verifying the aforementioned three
properties, can guarantee what we target to reach through
our proposal.

3.5.2 Weight function proposed instance

Many instances of f(x) can be proposed. We cite, for exam-

ple, %, eix’ ﬁ, etc. All these functions verify the three
aforementioned properties. In this work, we will use the func-
: 1 . 1 1 1
tion G 10 the interval [2, +oo[. In fact, o Ty =

which allows to obtain higher weight values. Therefore, the

@ Springer

1808

Cluster Comput (2016) 19:1801-1818

differentiation between the weights of successive periods will
be clearer.

In our evaluation process, the function f will take as a
parameter the index of the period for which the associated
weight will be calculated. Since f (x) is decreasing, a period
k will have the index #P N(GL) — k + 2.

The weight of each period will be obtained from a com-
bination of f(x) and T LD(X) so that the temporal locality
degree will contribute in scaling the weights. In the general
case, the combination must ensure the fact that as much as
T LD(X) is high, as much as the weights decrease rapidly.
In other words, the difference between the weights of recent
periods and those of old ones should expand. This allows
us to exploit the effectiveness of the temporal locality in the
concerned access pattern by promoting recent periods.

For an access pattern X, the weight Wy of the period k
will then be as follows:

1 TLD(X)
Wi =

(ln(#PN(GL) —k+ 2))
=in TP RPN(GL) — k +2) 5)

In this way, the value of TLD(X) determines the rate
of decay of the weights when going back to the past. The
higher the value of 7L D(X) is, the more recent periods will
be favored over old periods. Besides, the decrease of the value
of T L D(X), which indicates that the temporal locality is not
effective, will reduce the difference between the weights.

The impact of the value of TLD(X) on the weights is illus-
trated in Table 4 for different access patterns. We can note that
the more the temporal locality is effective, the more recent
periods are favored over old periods. Note that the difference
between the weights is significant when 7'L D(X) is high.

It is worth mentioning that two extreme cases exist, which
are as follows:

— The first occurs when the same number of requests is
repeated over time, i.e., V(X) = 0. This represents the
maximum temporal locality degree. The last period will
be considered, in this situation, as a sufficient indica-
tion of future popularity. Therefore, our measurement
will rejoin the third category measurements where the
dataset lifetime factor is neglected.

Table 4 Impact of the temporal locality degree on the weights

Access pattern Weight of each period

X TLD(X) Ws Wy w3 W (41

{8:7;8;9;8} 2.00 2.08 0.83 0.52 0.39 0.31
{7:8;6;8;9} 0.77 1.33 0.93 0.78 0.69 0.64
{9:4;10;4;6} 0.13 1.05 0.99 0.96 0.94 0.93

@ Springer

Calculation - Less calculation cost
efficiency - Less precision

|

~

More calculation cost
More precision

GL=1
Potential
accuracy

Fig. 4 Accuracy versus calculation efficiency tradeoff

— Whereas the second case arises when there is no tempo-
ral locality at all, i.e., T L D(X) ~ 0. In this situation, all
the weights will be almost equal because there is no need
to differentiate between the requests on the basis of their
timestamps. The calculation process will behave like it is
calculating the mean of the number of requests through-
out replica lifetime. Indeed, all the requests will have the
weight value equal to 1. Our measurement meets then
the measurements of the second category, i.e., those con-
sidering the number of requests and the replica lifetime
while neglecting the requests distribution over time.

3.6 RID: the proposed measurement

As highlighted above, our purpose is to quantify as a prelimi-
nary stage the intensity of the requests between one given site
S and one given replica R. The measurement is called RI D
as an abbreviation of Requesting Intensity Degree. It calcu-
lates the sum of weights of all requests divided by the sum
of weights of all periods as shown in the following formula:

#PN(GL)
Wi x #Requests
RID(S. Ry = 2=l Wk questsi)

(6)
#PN(GL
Zk:l “h Wi

According to the value of GL, RI D may move towards
the accuracy target, as it may move towards the calculation
cost diminution. The result of R/ D is then subject to a curve
(potential accuracy versus calculation efficiency) which gen-
erally has the form shown in Fig. 4.

A comparison between this figure and Fig. 1 allows to note
that R/ D can join the first category measurements when G L
= T, so it will be dedicated specially for the diminution of
the calculation cost, while it can join the fourth category
measurements when G L = 1, so it will focus on the accuracy
of the results even at the expense of the calculation cost. RI D
is then a generalization of the existing measurements and it

Cluster Comput (2016) 19:1801-1818

1809

Fig. 5 RID covering of the
other categories

Temporal locality
is not effective

Different degrees of
temporal locality

TLD(X1) = TLD(X2) = 0.86
[
| !

Replicas lifetimes
are equal

RID when RID when RID when
TLD(X) = max GL=T. TLD(X) =0

RID when TLD(X) are equal

Same degree of
temporal locality

RID in the general case

TLD(X3) = TLD(X4) = 1.32
I
! !

Access Recent timestamps Old timestamps Recent timestamps Old timestamps
pattern | X1={1:0;1:0;1;1;0:2:3;3} | | X2={3;3:2:0;1;1;0;1;0;1} | | X3={0;0:1;1;1;1;1:2;2;3} | | X4={3:2:2;1:1:1;1;1;0;0} |
RID 1.53 1.04 1.69 0.80
Difference 0.49

Fig. 6 Impact of the requests distribution over time factor

can cover all the categories. Figure 5 illustrates the different
cases when R D joins the other categories.

3.7 Illustrative examples
3.7.1 Impact of the requests distribution over time

The impact of the requests distribution over time on RI D is
shown by some illustrative examples in Fig. 6.

A first access pattern X1 = {1;0;1;0;1;1;0;2;3;3} repre-

sents the partition over 10 periods of 12 requests associated to
areplica and coming from a given site. In this case, TLD(X1)
= 0.86 which gives RID = 1.53. For the same number of
requests and the same temporal locality degree, timestamps
of requests are varied in order to note the influence on the
results of the requests distribution over time. The access pat-
tern after modifications is then X2 = {3;3;2;0;1;1;0;1;0;1} in
which the majority of the requests have old timestamps. X2
gives RID =1.04.
Noteworthily that while having the same TLD value, the
RID value of X1 is higher than that of X2. The difference
reaches 0.49, although we maintained the same number of
requests and the same temporal locality degree. This is due
to the recency of the requests in X 1.

Let us now consider X3 and X4 in which we varied

the requests timestamps, as we did earlier, while this time
under a higher temporal locality degree. We then have X3 =
{0;0;1;1;1;1;1;2;2;3} and X4 = {3;2;2;1;1;1;1;1;0;0} which
gives TLD(X3) = TLD(X4) = 1.32. The RI D of X3 is equal
to 1.69, while for X4, R1D = 0.80.
The advantage of X3 is due to the recency of its requests.
Furthermore, the difference in this case is expanded (equal
to 0.89) because the comparison is made under a higher tem-
poral locality degree. This offers more importance to the
requests distribution over time. Likewise, low temporal local-
ity degree will reduce the difference between the weights of
old and recent requests which downgrades the impact of the
requests distribution over time.

3.7.2 Impact of the number of requests factor

The number of requests issued by a given site towards a given
replica is the parameter which has the most influence on the
results. Indeed, any variation in the number of requests will
cause a significant change in the result. However, this change
is subject to the timestamps of the added/removed requests.
In this respect, changes in old requests have less impact than
those in recent requests. Some examples are shown in Fig. 7.

@ Springer

1810

Cluster Comput (2016) 19:1801-1818

Xi={0:1:1:2:3:3:2:1:1:0}

I
}

XO={il-120:1:3:30 =] -1 -1

Recent request is added Old requestis added Recent request is added Old request is added
Req'uest X1°={0;1;1:2:3;3;2:1:1;1} | | X17={1;1;1;2:3:3;2;1:1:0} X2={1:1-1:1:3:3:1:1:1:2 X22={2:1:1:1:3:3:1:1:1:1}
adding TLD(X1°)=1.18 TLD(X1”)=1.18 TLD(X2’)=1.54 TLD(X2”)=1.54
RID =1.41 RID =1.22 RID =1.58 RID =1.32
Difference m

Fig. 7 Impact of the number of requests factor

We consider an access pattern X1 = {0;1;1;2;3;3;2;1;1;0}
with TLD(X1) = 0.96. On the one hand, a new request
is added to the last period. The access pattern is then
X1’ = {0:1;1;2;3;3;2;1;1;1}, which gives TLD(X1’) = 1.18
and therefore RID = 1.41. On the other hand, a new
request is added to the first period. We then obtain X1” =
{1;1;1;2;3;3;2;1;1;0} which gives RID = 1.22, under the
same temporal locality degree equal to 1.18. The difference
between X1’ and X1” is then equal to 0.19.

Now, we will remake the same process by adding a new
request as we did earlier, but this time under higher tempo-
ral locality degree. Indeed, we take an access pattern X2 =
{1;1;1;1;3;3;1;1;1;1} having TLD(X2) = 1.56. A new request
is added to the last period. So, we obtain a new access pattern
X2’ = {1;1;1;1;3;3;1;1;1;2}, which gives TLD(X2’) = 1.54,
and therefore RI D = 1.58. Then, a new request is added to
the first period. We then obtain X2” = {2;1;1;1;3;3;1;1;1;1}
which gives, under the same temporal locality degree, RI D
=1.32. The difference between X2’ and X2” is equal to 0.26.

The impact of adding a new request is subject to its
timestamp. A recent request causes an increase in the value
of RI D more than an old one. Moreover, the impact of a new
request on R D increases with the augmentation of the tem-
poral locality degree. The same deductions are obtained when
we remove a request. However, in this case, the value of R/ D
will decrease according to the timestamp of the removed
request.

4 Usages of the requesting intensity degree

In the following paragraphs, some usages of RID are pre-
sented and can be used as a basis for the design of new
replication strategies. These strategies necessarily rely on
some other parameters, in addition to R/ D, to take their deci-
sions. However, we will focus here mainly on the manners
that illustrate how R D can be exploited into these strategies.

Firstly, in order to model the treatment of data in the
distributed system, we will consider that the system stores

@ Springer

several datasets and each dataset has multiple replicas. These

replicas are distributed through the sites of the system. We

consider that there are p distinct datasets { D, D», ..., D;,
..., Dp}. For each dataset D;, there are m; replicas. The repli-

cas of D; are then denoted D;1, Dj2, ..., Djj, ..., and Djy,.

Each replica D;; is requested by n Dy different sites {Si, S»,
s Sk eens SnDi/‘ }.

Once we obtain an evaluation of the requesting intensity
degree between a site Sy and a replica D;;, i.e., RID(Sy,
D;;j), we can employ this information in multiple uses. This
is detailed in the following paragraphs.

4.1 Measuring replica popularity

If we browse all the n p,; requesting sites for one given replica
D;j, we can obtain a useful parameter that will be denoted
Replica_Popularity and calculated as follows:
no;;
Replica_Popularity(D;j) = Z RID(Sk, D;j) (7)
k=1

This parameter can be used in evaluating the placement of
a replica w.r.t. its requesting sites. It can underpin solutions
for the following problems:

— Which replicas should be removed from a storage ele-
ment if there is not enough space to accommodate new
ones? We can exploit the replica popularity to determine
the set of replicas that should be removed while taking
into consideration other important parameters, like the
storage capacity and the distribution of the replicas of
the same dataset among sites. From a stand-alone pop-
ularity view, replicas stored in the storage element can
be ranked based on their popularity. Least popular ones
have priority to be removed.

— Are the replicas well distributed in the system? The
replicas distribution quality is an important parameter
that must be considered in replication management [17].
Indeed, a replication strategy can be evaluated based on

Cluster Comput (2016) 19:1801-1818

1811

the distribution quality pre-existing before the strategy
is invoked and the distribution quality generated after
[19]. Also, other evaluation metrics, such as response
time and ENU, can be corrected to make the eval-
uation more objective by considering the distribution
quality pre-existing before launching the strategy [20].
The quantification of the distribution quality is based on
the evaluation of the placement of all the replicas of the
system. As an improvement of the distribution quality
assessment, the process can rely on the replica popularity,
in addition to other parameters, to evaluate the placement
of each replica.

— Which replica should be updated? There are two kinds
of update propagation strategies, namely eager and lazy
[34,46]. In eager strategies, all replicas are updated at
the same time. However, in lazy strategies, replicas are
updated progressively (one after another) until covering
all replicas. In the case of lazy replication strategies, the
choice of the replica to be updated first is an important
issue. In this respect, measuring each replica popularity
could serve for obtaining a replicas update order. When
a dataset is updated, its replicas can be ranked based on
their popularity. The most popular replica will receive the
update before the others and so on.

4.2 Measuring dataset popularity
4.2.1 Dataset popularity w.r.t. the entire system

If we browse all the np,; requesting sites for all the m;

replicas of a given dataset D;, we can obtain the parameter

Dataset_Popularity. This parameter measures the popu-

larity of a given dataset relatively to the entire system. The

dataset popularity of D; is given by the following formula:
m;

Dataset_Popularity(D;) = Z Replica_Popularity(D;;)
j=1

®)

This parameter is useful in solving several problems in repli-
cation strategies. We mention for example:

— When to do replication? Dataset_Popularity can help
to decide the best time to do replication. For exam-
ple, when Dataset_Popularity(D;) exceeds a certain
threshold, the dataset D; deserves to be replicated since
considered as popular.

— Any dataset should be replicated? The datasets can be
ranked based on their popularity using the parameter
Dataset_Popularity. The most popular datasets will
have the priority for replication.

4.2.2 Dataset popularity w.r.t. one given site

A site S not having a replica of the dataset D; carries out
remote accesses to read D; from other sites. So, if we browse
all the requests carried out by the site S for the remote replicas
of D;, we will obtain how much this site needs a replica of
D;. This is done as follows:

mj
Site_Dataset_Popularity(S, D;) = Z RID(S, Dij)

j=1

©))
This parameter can underpin some replication strategies:

— It can help to decide where to place a new replica of a
given dataset D;. Indeed, the most needing site for this
replica according to Site_Dataset_Popularity will
have the priority to obtain a new replica of D;.

— For the strategies that use optimal number of replica
(ONR) to decide how many replicas must exist in the
system, they have to create new replicas if the current
number of replicas is lower than (ONR). In this case,
the parameter Site_Dataset_Popularity can be used
to decide which replicas should be created as well as their
locations.

4.3 Measuring site popularity

Let us consider a given site S which stores n different repli-
cas denoted as follows: {Ry, ..., R;, ..., R, }. If we browse
all the n replicas of S and calculate their popularity using
Replica_Popularity(R;), we can quantify how much S is
popular. For this purpose, the following formula is used:

n
Site_Popularity(S) = Z Replica_Popularity(R;)
i=1
(10)

This parameter can be used to predict the workload of a given
site in the near future based on the popularity of the replicas it
contains. A site having a large set of popular replicas will be
classified as overloaded. We can use this key information in
load balancing strategies by deciding which sites should be
accessed in such a way the system will not be overloaded. In
addition, a site which will perform a remote access to get data
has, in general, an alternative choice among several replicas
situated in several other sites. To avoid the system overload,
it is better to access sites that have low Site_Popularity val-
ues since those sites are not overloaded by requests for the
replicas they contain.

@ Springer

1812

Cluster Comput (2016) 19:1801-1818

S Experimental study

We will test the performances of RI D experimentally using
the OptorSim simulator [5,9] applied on the CMS testbed
configuration [10]. OptorSim was developed by European
data grid projects and is written in Java. It provides a frame-
work to simulate the real grid environment. It consists in
several sites and a Resource Broker. Each site may contain a
Computing Element and/or Storage Element. The simulation
parameter values and the workload characteristics are given
in Table 5.

We aim to show that RID is accurate and putting it in
use for replication management is beneficial. Two kinds of
experimental study are then carried out. The first is an eval-
uation of the accuracy of RI D predictions and its degree
of conformity to the reality. The second is a substitution
of an existing popularity measurement by R/ D within a
replication strategy to highlight the added value of our
proposal.

5.1 Accuracy of RID predictions

The performances of RI D are compared to those of a mea-
surement from each category of the four measurements
categories (cf. Table 1). Our aim is to verify which one
gives the closest prediction to the reality. In this regard, we
choose #Requests [39] from the first category, RRD [3]
from the second, VSE [33] from the third, and AF [11]
as a representative of the fourth category. Moreover, two
comparison methods will be used to evaluate the accuracy
of RID.

5.1.1 Difference between the ranking given by a prediction
and the real ranking

We aim to determine how much the ranking of replicas pop-
ularity given by the prediction of each tested measurement is
near to the real ranking. The choice of such evaluation process
is argued by the fact that we cannot compare the popularity
values obtained by each measurement since they have differ-
ent units. For this purpose, we calculate the absolute value of
the difference between the prediction rank and the real rank
associated to each replica. Then, for each measurement, we
assess the degree of conformity between its prediction and
the reality based on the total sum of the differences for all
replicas.

As an explanative example of the evaluation process, let
us consider five replicas Ry, R, R3, R4 and Rs5. The predic-
tion ranking is as follows: Ry, R4, R3, R then Rs. The real
ranking is as follows: R3, R4, R5, R then R;. Our compari-
son method for this example is illustrated in Table 6. A low
value of the sum then indicates that the prediction is near to
the reality. In particular, when the sum is equal to zero, we
can deduce the conformity between the prediction and the
reality.

We will put this method in use to compare the popular-
ity prediction given by RI D with the real popularity at the
240th millisecond. Note that we choose the 240th millisecond
because it allows us to calculate the popularity using enough
historic access patterns. In this regard, we ranked 20 repli-
cas according to RI D. These 20 replicas cover all possible
situations, that is to say replicas of same lifetimes and those
of different lifetimes, replicas of high 7LD and those of
low T'L D, locally requested replicas and remotely requested
replicas, etc. Then, the real rank is determined based on the

Table S Parameter
configuration and workload

characteristics

Parameter Value
Number of datasets 97

Size of each dataset 1000 Mb
Number of sites 20

Storage size at each site 50,000 Mb
Minimum bandwidth 45 Mb/s
Maximum bandwidth 10,000 Mb/s

Maximum queue size
Job delay

Scheduling algorithm for the Resource Broker

Datasets access pattern

Initial datasets distribution

200 jobs the Job Handler can keep in its queue

2500 ms between the Resource Broker submitting
each job

Scheduling is done using a combination of the
access cost for the datasets and the access cost for
all the jobs in the queue at each computing element

Datasets are accessed sequentially in the order stated
in the job configuration file

The original datasets are distributed randomly to the
storage elements

@ Springer

Cluster Comput (2016) 19:1801-1818

1813

Table 6 Illustrative example of

the first evaluation process Replica Prediction rank Real rank Absolute value of the difference
R 4th 4th 0
Ry Ist Sth 4
Ry 3rd 1st 2
Ry 2nd 2nd 0
Rs Sth 3rd 2
Total sum 8

Table 7 Obtained difference values between the rankings given by the
prediction result of each measurement and the real ranking

#Requests VSE AF RRD RID Gain (in %)
240ms 86 68 42 37 26 30
280ms 86 72 40 33 25 24
320ms 84 67 48 42 26 38
360ms 82 66 48 40 26 35
400 ms 79 77 40 44 28 26

= #Requests
= VSE

240thms 280 ms 320thms 360t ms 400t ms

Fig. 8 Comparison of the performances of measurements w.r.t. the
obtained difference values

rest of the execution, i.e., the requests that will occur after
the 240th millisecond. The sum of the absolute values of the
differences between the two rankings is then equal to 26.

The evaluation performed for RI D is also carried out for
#Requests, RRD, VSE and AF. In the same way, the pre-
dictions made in the 240th millisecond are also made in the
280th, 320th, 360th and 400th milliseconds. The results of
these experiments are shown in Table 7 and illustrated in
Fig. 8.

We can note that RI D is more accurate than the other
measurements. The gain reaches 38 % although we always
compare RI D with the best result among those of the four
other measurements.

From another point of view, a comparison between RI D
and #Requests, which gives the worst results, shows the
degree of importance of the popularity parameter. Indeed, in
the 280th millisecond, RI D gives 25 and #Requests gives
86. The gain in this case is equal to 71 %. This significant
difference between the results obtained through these two

measurements highlights the importance of choosing a good
measurement to assess the popularity.

5.1.2 Difference between the site needs given by a
prediction and the real site needs

We present in the following paragraph a second evaluation
process in order to compare the prediction result with the
reality. In this regard, we focus on a set of replicas that a
given site needs to execute its jobs. We then compare the
prediction of future needs with the real future needs. Each site
will be represented by a vector in the vector space generated
by the replicas requested by this site. The coordinates of
this vector represent the weights of each replica. This weight
is calculated based on the rank of this replica in terms of
popularity.

Let us take as an example a site S which requests for three
replicas Ry, Ry and R3 with different requesting degrees.
The popularity prediction gives the following ranking: R»,
R3, R1, while the real ranking is: R3, R2, Rj.

Each replica will have a weight according to its rank. The
weight of a replica R is calculated in our case as follows:
Weight(R) = #k(R)' Hence, the better the rank is the higher
the weight is. Table 8 shows the weight of each replica. Then,
the vector of the site S will be represented in the vector space
as shown in Fig. 9 where:

0.33 0.33
Prediction Vector : P(S) 3 1.00 Reality vector : R(S) 1 0.50
0.50 1.00

In the next step, we will calculate the cosine of the angle
— —— .
between the two vectors, P(S) and R(S), to determine the
degree of conformity between the prediction and the reality.
The more the cosine is close to 1 the more the angle is close
to 0 which indicates the conformity between both vectors.
The cosine in our example is then as follows:

cos(P(S). R(S)) = 0.816 (11)

In the general case, for a vector V with the coordinates
Vi, Va, ..., V) and a vector W with the coordinates (W,

@ Springer

1814

Cluster Comput (2016) 19:1801-1818

Table 8 Weights calculation

w.rt. the rank of each replica Replica Prediction rank Prediction weight Real rank Real weight
R; 3rd 0.33 3rd 0.33
Ry Ist 1.00 2nd 0.50
R3 2nd 0.50 Ist 1.00
Fig. 9 Example of a site R
representation on a vector space 3
generated by its requested R(S)=0.33%R;+ 0.50xR, + 1.00xR, +1.00
replicas 4
1+ 0.50
— - . oL -0.33
P(S)=0.33xR; + 1.00xR, + 0.50xR,
0.33 0.50 1.00
——t + R;

Table 9 Obtained cosine values of the angle between the vector repre-
senting the real Site16 needs and the vectors representing its predicted
needs

Table 10 Obtained cosine values of the angle between the vector repre-
senting the real Sitze17 needs and the vectors representing its predicted
needs

Requests VSE AF RRD RID # Requests VSE AF RRD RID
240 ms 0.798 0.796 0.767 0.850 0.875 240 ms 0.620 0.542 0.823 0.831 0.998
280 ms 0.652 0.680 0.815 0.829 0.839 280 ms 0.620 0.567 0.823 0.828 0.830
320 ms 0.672 0.670 0.714 0.768 0.840 320 ms 0.622 0.622 0.963 0.831 1.000
360 ms 0.681 0.806 0.836 0.837 0.914 360 ms 0.650 0.622 0.820 0.832 0.998
400 ms 0.674 0.589 0.826 0.833 0.992 400 ms 0.734 0.734 0.890 0.758 0.957
W, ..., Wy), the cosine of the angle between V and W is There is indeed no measurement that can be considered as
calculated as follows: being the best in all cases. This illustrates the fact that there

is no measurement that is suitable for all situations.

oL (V, W) ST (Vi x Wi) On its side, .RI D offers bejtter. resplts than the cher four
cos(V, W) = 1 ‘7| W VY/| | = - > - > measurements in all cases. This highlights its adaptivity to all
) \/ 2 im1 (V)2 x 2 (Wy) situations. In addition, the prediction of R/ D was near to the
(12) reality several times. A cosine value greater than 0.9 is indeed

This comparison model is exploited in our experiments to
evaluate the prediction accuracy for two sites in the simula-
tor: Sitel6 and Sitel7. We choose these sites because they
are the most active ones during the experiments in terms of
requests for various replicas either locally or remotely. The
comparison is done at different timings and for the same five
measurements cited above. The obtained results are shown in
Tables 9 and 10, with their associated histograms in Fig. 10.

While not considering RI D, the prediction accuracy of
the other measurements varies from one moment to another.

@ Springer

obtained six times among ten. The prediction of RID even
conforms to the reality in the 320th millisecond for Sitel7
which gives a cosine value equal to 1. In both Tables 9 and
10, bold values emphasize on the results ranging between 0.9
and 1 we obtained through the proposed measurement.

5.2 Benefits of RID in replication management

In this section, the effectiveness of RID is highlighted by
employing it within a replication strategy. Indeed, we com-
pared the original version of the Periodic Optimiser strategy

Cluster Comput (2016) 19:1801-1818

1815

Site16 predictions

Site17 predictions

0.8

0.6

0.4

0.2

240thms 280thms 320thms 360thms 400thms

240t ms 280thms 320thms 360thms 400thms

= #Requests
= VSE

= AF

Fig. 10 Comparison of the performances of measurements w.r.t. the obtained cosine values

[6] with a modified version in which we used RI D instead
of the used original popularity measurement. R D is instan-
tiated with a low value of GL equal to 1 for more accurate
results. We then noticed the difference in terms of perfor-
mances according to the effective network usage (ENU), the
response time (RT) measured in ms, and the replication effect
on the distribution (RED) [19]. The RED metric consists in
evaluating the impact of the strategy on the replicas distrib-
ution quality. The results are shown in Tables 11, 12 and 13
respectively.

Obviously, the substitution of the original popularity mea-
surement by RID has a positive impact on the strategy
performances. This can be noted from the obtained gain

which is proportional to the increase of the number of jobs.
According to the ENU metric, 50 % of the performed repli-
cations have become more effective thanks to R/ D. In the
same way, the results of the RED metric indicate that 40 %
of the replicas become better placed when using RID.
Using an instance of RI D which is dedicated for the accu-
racy goal allows then putting a large number of replicas in
better placements. This will decrease remote accesses and
offer further local ones. As a consequence, this allows also
decreasing the response time. That is why we obtained better
results also in term of response time. However, the gain w.r.t.
this metric is not significant and does not exceed 5.47 %. This
is due to the fact that we opted for an instance of R/ D with a

Table 11 Impact of RID on

Periodic Optimiser from the Number of jobs Periodic Optimiser Modified Periodic Optimiser Gain (in %)
perspective of the ENU metric 100 0.34 0.30 1176

200 0.28 0.22 21.43

300 0.21 0.15 28.57

500 0.12 0.08 33.33

1000 0.08 0.04 50.00
g:z:;ilcz Og:lirr)nicste?feroirll)tﬁz Number of jobs Periodic Optimiser Modified Periodic Optimiser Gain (in %)
perspective of the RT metric 100 3410 3044 4.86

200 5266 5012 4.82

300 7023 6781 3.44

500 9408 8937 5.01

1000 14,471 13,679 5.47
52223113 oiﬁlﬁiiﬁffigtﬁg Number of jobs Periodic Optimiser Modified Periodic Optimiser Gain (in %)
perspective of the RED metric 100 0.39 0.43 9.30

200 0.31 0.35 11.42

300 0.26 0.31 16.12

500 0.18 0.25 28.00

1000 0.06 0.10 40.00

@ Springer

1816

Cluster Comput (2016) 19:1801-1818

low G L value which is dedicated for the accuracy goal more
than for the diminution of the calculation cost.

6 Conclusion and future work

Correctly assessing data popularity is an important step
towards the design of data replication strategies of high
performance. In this work, we discussed many calculation
methods of data popularity which exist in the literature.
These measurements differ according to the factors taken
into account by each one. A classification of these measure-
ments into four categories is offered, while highlighting their
main drawbacks. We then proposed a new measurement to
assess data popularity. The proposed measurement consid-
ers all the highlighted factors as well as the temporal locality
degree in order to adapt with any access pattern. In addition,
it is generic so it can respond to the application requirements
w.r.t. the tradeoff between calculation cost and result accu-
racy. This measurement is also useful in different contexts
and can be exploited by several strategies towards multiple
uses. Several experiment results were analyzed and allowed
us to prove the effectiveness of the proposed measurement.

Future research work includes designing replication strate-
gies for distributed systems based on the data popularity
measurement proposed in this work in addition to other para-
meters. We also plan to design and evaluate a new instance of
the proposed measurement which will be mainly dedicated
for Read/Write systems. In this instance, another parame-
ter will be added to analyze the quality of each request. It
will distinguish between requests generating dirty reads and
those requests generating proper reads. The proposal of an
adaptive process for setting the value of GL according to
the system/user requirements constitutes also an interesting
issue.

References

1. Abad, C.L., Roberts, N., Lu, Y., Campbell, R.: A storage-centric
analysis of MapReduce workloads: file popularity, temporal local-
ity and arrival patterns. In: Proceedings of the 2012 IEEE Inter-
national Symposium on Workload Characterization, pp. 100-109
(2012)

2. Aiqgiang, G., Luhong, D.: Lazy update propagation for data repli-
cation in cloud computing. In: Proceedings of the 5th International
Conference on Pervasive Computing and Applications, pp. 250-
254 (2010)

3. Al Mistarihi, H.H.E., Yong, C.H.: Replica management in data
grid. Int. J. Comput. Sci. Netw. Secur. 8(6), 22-32 (2008)

4. Barrefors, B.: Dynamic data management in a data grid environ-
ment. Ph.D. thesis, University of Nebraska, USA (2015)

5. Bell, W.H., Cameron, D.G., Capozza, L., Millar, A.P., Stockinger,
K., Zini, F.: OptorSim: a grid simulator for studying dynamic data
replication strategies. Int. J. High Perform. Comput. Appl. 17(4),
403-416 (2003)

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. Ben Charrada, F., Ounelli, H., Chettaoui, H.: An efficient replica

placement strategy in highly dynamic data grids. Int. J. Grid Util.
Comput. 2(2), 156-163 (2011)

. Bonacorsi, D., Boccali, T., Giordano, D., Girone, M., Neri, M.,

Magini, N., Kuznetsov, V., Wildish, T.: Exploiting CMS data pop-
ularity to model the evolution of data management for Run-2 and
beyond. In: Proceeding of the 21st International Conference on
Computing in High Energy and Nuclear Physics (CHEP 2015), pp.
1-10 (2015)

. Bsoul, M., Al-Khasawneh, A., Kilani, Y., Obeidat, I.: A threshold-

based dynamic data replication strategy. J. Supercomput. 60(3),
301-310 (2012)

. Cameron, D.G., Carvajal-Schiaffino, R., Ferguson, J., Millar, A.P.,

Nicholson, C., Stockinger, K., Zini, F.: OptorSim v2.1 installation
and user guide. Technical report, CERN (2006)

Cameron, D.G., Carvajal-Schiaffino, R., Millar, A.P., Nicholson,
C., Stockinger, K., Zini, F.: Evaluating scheduling and replica
optimisation strategies in OptorSim. In: Proceedings of the 4th
International Workshop on Grid Computing, pp. 52-59 (2003)
Chang, R.-S., Chang, H.-P.: A dynamic data replication strategy
using access-weights in data grids. J. Supercomput. 45, 277-295
(2008)

Dayyani, S., Khayyambashi, M.: A comparative study of replica-
tion techniques in grid computing systems. Int. J. Comput. Sci.
Inform. Secur. 11(9), 64-73 (2013)

Dogra, N., Singh, S.: A survey of dynamic replication strategies in
distributed systems. Int. J. Comput. Appl. 110(11), 1-4 (2015)
Giommi, L.: Predicting CMS datasets popularity with machine
learning. Master thesis, University of Bologna, Italy (2015)

Goel, S., Buyya, R.: Data replication strategies in wide area dis-
tributed systems. In: Enterprise Service Computing: From Concept
to Deployment, pp. 211-241 (2006)

Grace, R.K., Manimegalai, R.: Dynamic replica placement and
selection strategies in data grids: a comprehensive survey. J. Paral-
lel Distrib. Comput. 74(2), 2099-2108 (2014)

Hamdeni, C., Hamrouni, T., Ben Charrada, F.: New evaluation cri-
terion of file replicas placement for replication strategies in data
grids. In: Proceedings of the 9th IEEE International Conference on
P2P, Parallel, Grid, Cloud and Internet Computing, pp. 1-8 (2014)
Hamdeni, C., Hamrouni, T., Charrada, F.B.: Data popularity mea-
surements in distributed systems: survey and design directions. J.
Netw. Comput. Appl. 72, 150-161 (2016)

Hamrouni, T., Hamdeni, C., Ben Charrada, F.: Impact of the dis-
tribution quality of file replicas on replication strategies. J. Netw.
Comput. Appl. 56, 60-76 (2015)

Hamrouni, T., Hamdeni, C., Ben Charrada, F.: Objective assess-
ment of the performance of data grid replication strategies based
on distribution quality. Int. J. Web Eng. Technol. 11(1), 3-28 (2016)
Hockauf, R., Karl, W., Leberecht, M., Oberhuber, M., Wagner,
M.: Exploiting spatial and temporal locality of accesses: a new
hardware-based monitoring approach for DSM systems. In: Euro-
Par98 Parallel Processing, Vol. 1470, pp. 206-215 (1998)
Hussein, M., Mousa, M.: A light-weight data replication for cloud
data centers environment. Int. J. Innov. Res. Comput. Commun.
Eng. 2(6), 2392-2400 (2014)

Ikeda, T., Ohara, M., Fukumoto, S., Arai, M., Iwasaki, K.: A dis-
tributed data replication protocol for file versioning with optimal
node assignments. In: Proceedings of the 16th IEEE Pacific Rim
International Symposium on Dependable Computing, pp. 117-124
(2010)

Jacky, C., Kevin, L., Brian, N.L.: Availability and popularity mea-
surements of peer-to-peer file systems. http://forensics.umass.edu/
pubs/chu.labonte.p2pjournal.pdf. Accessed 1 Sept 2016

Kagan, A., Shepp, L.A.: Why the variance? Stat. Probab. Lett.
38(4), 329-333 (1998)

http://forensics.umass.edu/pubs/chu.labonte.p2pjournal.pdf
http://forensics.umass.edu/pubs/chu.labonte.p2pjournal.pdf

Cluster Comput (2016) 19:1801-1818

1817

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Kangasharju, J., Roberts, J., Ross, K.W.: Object replication strate-
gies in content distribution networks. Comput. Commun. 25(4),
376-383 (2002)

Kia, H.S., Khan, S.U.: Server replication in multicast networks. In:
Proceeding of the 10th IEEE International Conference on Frontiers
of Information Technology, pp. 337-341 (2012)

Knoll, M., Abbadi, H., Weis, T.: Replication in peer-to-peer sys-
tems. In: Self-Organizing Systems, Vol. 5343, pp. 35-46 (2008)
Kolodziej, J., Khan, S.U.: Data scheduling in data grids and data
centers: a short taxonomy of problems and intelligent resolution
techniques. In: Transactions on Computational Collective Intelli-
gence X, Vol. 7776, pp. 103—119 (2013)

Leu, FY., Lee, M.C,, Lin, J.C.: Improving data grids performance
by using popular file replicate first algorithm. In: Proceedings of
the IEEE International Conference on Broadband, Wireless Com-
puting, Communication and Applications, pp. 416-421 (2011)
Ma, J., Liu, W., Glatard, T.: A classification of file placement and
replication methods on grids. Future Gener. Comput. Syst. 29(6),
1395-1406 (2013)

Malik, S.R., Khan, S.U., Ewen, S.J., Tziritas, N., Kolodziej, J.,
Zomaya, A.Y., Madani, S.A., Min-Allah, N., Wang, L., Xu, C.,
Malluhi, Q.M., Pecero, J.E., Balaji, P., Vishnu, A., Ranjan, R.,
Zeadally, S., Li, H.: Performance analysis of data intensive cloud
systems based on data management and replication: a survey. Dis-
trib. Parallel Datab. 34, 179-215 (2016)

Mansouri, N., Asadi, A.: Weighted data replication strategy for
data grid considering economic approach. Int. J. Comput. Control
Quantum Inform. Eng. 8(8), 47-56 (2014)

Manu, V., Shailendra, V., Priyank, B., Singh, K.D.: Eager compu-
tation and lazy propagation of modifications for reducing synchro-
nization overhead in file replication system. In: Proceedings of the
3rd IEEE International Conference on Computer and Communica-
tion Technology, pp. 331-334 (2012)

McKinley, K.S., Temam, O.: A quantitative analysis of loop nest
locality. In: Proceedings of the 17th International Conference on
Architectural Support for Programming Languages and Operating
Systems, pp. 94-104 (1996)

Myint, J., Hunger, A.: Modeling a load-adaptive data replication
in cloud environments. In: Proceedings of the 3rd International
Conference on Cloud Computing and Services Science, pp. 511-
514 (2013)

Passarella, A.: A survey on content-centric technologies for the
current internet: CDN and P2P solutions. Comput. Commun. 35(1),
1-32 (2012)

Rahmani, M., Benchaiba, M.: A comparative study of replication
schemes for structured P2P networks. In: Proceedings of the 9th
International Conference on Internet and Web Applications and
Services, pp. 147-158 (2014)

Ranganathan, K., Foster, I.T.: Identifying dynamic replication
strategies for a high-performance data grid. In: Proceedings of the
Second International Workshop on Grid Computing, pp. 75-86
(2001)

Saadat, N., Rahmani, A.M.: PDDRA: a new pre-fetching based
dynamic data replication algorithm in data grids. Future Gener.
Comput. Syst. 28(4), 666-681 (2012)

Seddiki, M., Benchaiba, M.: Toward a global file popularity esti-
mation in unstructured P2P networks. In: Proceedings of the 8th
International Conference on Systems and Networks Communica-
tions, pp. 77-81 (2013)

Shorfuzzaman, M., Graham, P., Eskicioglu, M.R.: Popularity-
driven dynamic replica placement in hierarchical data grids. In:
Proceedings of the 9th IEEE International Conference on Parallel
and Distributed Computing, Applications and Technologies, pp.
524-531 (2008)

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Shorfuzzaman, M., Graham, P, Eskicioglu, R.: Adaptive
popularity-driven replica placement in hierarchical data grids. J.
Supercomput. 51(3), 374-392 (2010)

Singh, S.K., Prasad, A., Singh, P., Singh, R.: A replica place-
ment and replacement algorithm for data-grid in DRTDBS. In:
Proceedings of the IEEE International Conference on Electronics
and Communication Systems, pp. 1-5 (2014)

Soosai, A.M., Abdullah, A., Othman, M., Latip, R., Sulaiman,
M.N., Ibrahim, H.: Dynamic replica replacement strategy in data
grid. In: Proceedings of the 8th International Conference on Com-
puting Technology and Information Management, Vol. 2, pp.
578-584 (2012)

Souri, A., Pashazadeh, S., Navin, A.H.: Consistency of data replica-
tion protocols in database systems: a review. Int. J. Inform. Theory
3(4), 19-32 (2014)

Spaho, E., Barolli, L., Xhafa, F.: Data replication strategies in P2P
systems: a survey. In: Proceedings of the 17th International Confer-
ence on Network-Based Information Systems, pp. 302-309 (2014)
Sun, D., Chang, G., Gao, S., Jin, L., Wang, X.: Modeling a dynamic
data replication strategy to increase system availability in cloud
computing environments. J. Comput. Sci. Technol. 27(4), 256-272
(2012)

Suri, P.K., Singh, M.: DR2: a two-stage dynamic replication strat-
egy for data grid. Int. J. Recent Trends Eng. 2(4), 201-203 (2009)
Tang, M., Lee, B.S., Tang, X., Yeo, C.K.: The impact of datareplica-
tion on job scheduling performance in the data grid. Future Gener.
Comput. Syst. 22(3), 254-268 (2006)

Thampi, S.M., Sekaran, K.C.: Review of replication schemes for
unstructured P2P networks. In: Proceedings of IEEE International
Advance Computing Conference, pp. 794-800 (2009)

Wang, X., Yang, S., Wang, S., Niu, X., Xu, J.: An application-based
adaptive replica consistency for cloud storage. In: Proceedings of
the 9th IEEE International Conference on Grid and Cloud Com-
puting, pp. 13-17 (2010)

Wang, Z., Li, T., Xiong, N., Pan, Y.: A novel dynamic network data
replication scheme based on historical access record and proactive
deletion. J. Supercomput. 62(1), 227-250 (2012)

Watanabe, T., Kanzaki, A., Hara, T., Nishio, S.: An update prop-
agation strategy considering access frequency in peer-to-peer
networks. In: Database Systems for Advanced Applications, Vol.
4947, pp. 661-669 (2008)

Ye, Z., Li, S., Zhou, J.: A two-layer geo-cloud based dynamic
replica creation strategy. Appl. Math. Inform. Sci. 8(1), 431-440
(2014)

C.Hamdeni is a Ph.D. student in
Computer Science at the Faculty
of Sciences of Tunis, Tunisia,
where he received in 2014 his
M.S. degree in Computer Sci-
ence. His current research inter-
ests include cloud computing,
data grid and data replication.

@ Springer

1818

Cluster Comput (2016) 19:1801-1818

@ Springer

T. Hamrouni obtained his Ph.D.
in Computer Science in 2009
from the Faculty of Sciences of
Tunis (Tunisia) and the Univer-
sity of Artois (France). Since, he
is working as an Assistant Pro-
fessor in the Department of Com-
puter Sciences and Multimedia at
the Higher Institute of Multime-
dia Art of Manouba, Tunisia. His
current research interests focus
on cloud computing, data grid,
data replication, data mining and
knowledge extraction.

F. Ben Charrada is working as
a Professor in the Department of
Computer Sciences at the Faculty
of Sciences of Tunis, Tunisia.
His current research interests
include cloud computing, grid,
data replication and scheduling.

	Adaptive measurement method for data popularity in distributed systems
	Abstract
	1 Introduction
	1.1 Background and motivations
	1.2 Contributions
	1.3 Paper organization

	2 Analysis of previous works
	2.1 Importance of data popularity parameter in replication management
	2.2 Considered factors in existing data popularity measurements
	2.3 Drawbacks of existing measurements

	3 New method to measure the data popularity
	3.1 T: timestamp determination function
	3.2 #PN: periods number determination function
	3.3 P: corresponding period determination function
	3.4 TLD: temporal locality degree function
	3.4.1 TLD utility
	3.4.2 TLD calculation

	3.5 Weight function
	3.5.1 Weight function properties
	3.5.2 Weight function proposed instance

	3.6 RID: the proposed measurement
	3.7 Illustrative examples
	3.7.1 Impact of the requests distribution over time
	3.7.2 Impact of the number of requests factor

	4 Usages of the requesting intensity degree
	4.1 Measuring replica popularity
	4.2 Measuring dataset popularity
	4.2.1 Dataset popularity w.r.t. the entire system
	4.2.2 Dataset popularity w.r.t. one given site

	4.3 Measuring site popularity

	5 Experimental study
	5.1 Accuracy of RID predictions
	5.1.1 Difference between the ranking given by a prediction and the real ranking
	5.1.2 Difference between the site needs given by a prediction and the real site needs

	5.2 Benefits of RID in replication management

	6 Conclusion and future work
	References

