
Cluster Comput (2016) 19:1437–1447
DOI 10.1007/s10586-016-0605-6

DOA estimation of multiple sources in sparse space with
an extended array technique

Penghao Xu1,2 · Bing Yan1 · Shouwei Hu2

Received: 21 May 2016 / Revised: 2 July 2016 / Accepted: 11 July 2016 / Published online: 20 July 2016
© Springer Science+Business Media New York 2016

Abstract An algorithm to improve direction of arrival
(DOA) estimation accuracy with an extended sensor array
in the presence of multiple coherent signal sources is pro-
posed. The algorithm uses virtual element theory to extend
the sensor array, estimates virtual element information via
linear prediction and expands the array aperture in prac-
tical sense; the sparsity of the target orientation in angle
space is exploited to establish an over-complete dictionary
and a reception model for the array signal in sparse space;
the received array data is preprocessed using singular value
decomposition (SVD) method and target DOA estimation
is realized by calculating the best atoms. The algorithm
improves DOA estimation accuracy by extended array and
uses SVD to control computational complexity effectively,
which ensures the accuracy and efficiency. Computer simu-
lation shows that the proposed algorithm is able to accurately
estimate the DOA for both single-target and closely spaced
multi-target cases in low signal-to-noise ratio environments,
and also has excellent DOA estimation performance in the
presence of multiple coherent signal sources.
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1 Introduction

Direction of arrival (DOA) estimation of signals is a hotspot
in the field of array signal processing. In this application, an
array is composed of a plurality of sensors placed in differ-
ent positions, and array signal processing is used to process
the spatial signal and extract the target and its characteris-
ticswhile simultaneously suppressing interference and noise.
Compared with traditional orientation using a single sensor,
the sensor array allows for flexible beam control, higher sig-
nal gain, stronger anti-interference properties, and ultra-high
spatial resolution. These advantages have caused array sig-
nal processing technology to undergo rapid development in
recent decades.

A basic application of array signal processing is DOA
estimation, which is one of most important tasks in radar,
sonar, and other fields. The basic goal of DOA estimation is
to obtain the location of a plurality of interest targets within
a spatial region simultaneously. The information required is
essentially the angular direction of each signal as it arrives
at the reference array element.

The resolution of DOA estimation is determined by the
array length, which is called the Rayleigh limit. Methods
that provide a resolution exceeding the Rayleigh limit are
called super-resolution methods. For sensor arrays, numer-
ous subspace algorithms with super-resolution capability
that minimize the computational complexity have been pro-
posed to estimate the DOA of targets, such as the Multiple
Signal Classification (MUSIC) algorithm, the Estimation
of Signal Parameters via Rotational Invariance Techniques
ESPRIT algorithm, and subsequent improvements to these
algorithms [1]. These algorithms estimate the target’s direc-
tion by decomposing the covariance matrix eigenvalues of
the received data. This strategy requires a large number of
snapshots from the sensor array, and is greatly influenced by
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the number of array elements and the signal to noise ratio
(SNR). Additionally, the angular resolution is poor in the
presence of multiple coherent sources [2].

To solve these problems, we propose an algorithm that
uses an extended array and singular value decomposition
(SVD). After establishing virtual elements, the algorithm
estimates received data at these extended elements via
bi-linear prediction, then constructs an over-complete dic-
tionary through an extended array manifold [3]. Essentially,
we translate the DOA estimation problem into identifying
sparse signals that correspond to the data received by the
array from the over-complete dictionary, and then obtain the
target location information from the DOA signal. To over-
come the problem of high computational complexity in the
multi-snap case, SVD is used to preprocess the data and
obtain the main component of the signals, and then the l1
norm method is used to find the optimal solution [4].

2 Related work

The history of array signal processing can be traced back to
adaptive antenna technology developed in the 1940s, which
used phase-locked loops to track targets. An important step in
array signal processing was the side lobe canceller using an
adaptive notch proposed by Howells in 1965 [5]. In 1976,
Applebaum developed the feedback control algorithm to
maximize the signal to interference plus noise ratio (SINR)
[6]. Another significant development was the least mean
square (LMS) adaptive algorithm proposed by Widrow in
1967 [7]. Several other landmark works include the follow-
ing: Capon proposed constant gain points in the minimum
variance beam former in 1969 [8], Schmidt developed the
MUSIC algorithm in 1979 [9], Roy proposed the ESPRIT
algorithm to estimate signal parameters in 1986 [10], and
Gabriel was the first to propose the term “Smart Array” in
adaptive beam forming [11]. In 1978, adaptive antennas were
used in military communication systems [12], and antenna
arrays started being used in civil cellular communication in
the 1990s [13].

Subspace methods open a new era in super-resolution
direction finding (DF). These methods use the orthogonal-
ity between signal subspace and noise subspace (obtained
using SVD and eigenvalue decomposition (EVD)) to obtain
spatial pseudo spectra. There are a number of improved algo-
rithms that are based on MUSIC, such as Root-MUSIC [14],
MD-MUSIC [15], and the propagator algorithm [16]. Sub-
space methods are established on the basis of signals that
are irrelevant or have weak correlation. To overcome the sig-
nal correlation caused by multipath propagation, we need
to de-correlate the lower-rank matrix with spatial smoothing
methods [17–19], which reduces the effective array aperture.
Maximum likelihood (ML) is a more intuitive idea that is

used to estimateDOAand other target parameters. It contains
two paths: deterministic ML (DML) [20] and stochastic ML
(SML) [21,22].However, the practicality of these approaches
is affected by the high complexity of the required multidi-
mensional search. Viberg proved that a series of algorithms
including DML, MD-MUSIC, and ESPRIT could be sum-
marized as subspace fitting problems with a different weight
matrix [23]. They solved theweighted subspacefitting (WSF)
problemunder theminimummean square error criterion [24].
WSFandMLare bothfitting class techniques inDOAestima-
tion, and the results are obtained by using amultidimensional
search. Xu et al. [25,26] proposed cluster based method for
processing big data.

In the 1990s,Gorodnitsky discussed the sparse representa-
tion issue in biomedical image analysis in a series of articles
[27–29], and proposed a classic sparse reconstruction based
on weighted iteration. This is known as the FOCal Underde-
termined System Solver (FOCUSS). However, the original
FOCUSS is only suitable for single snap cases, which makes
the detection probability very small in low SNR environ-
ments. Researchers developed the M-FOCUSS algorithm
for multi-measurement vectors, but the computational com-
plexity increased significantly as the number of snapshots
was increased [30]. Malioutov discussed sparse represen-
tation of array output data and DOA estimation based on
sparse reconstruction, and proposed the l1 − SVD algorithm
[31]. The original starting point of l1 − SVD is to estimate
the target using a single snapshot, which is equivalent to
sparse reconstruction of a single-measurement vector. This
estimates the DOA by solving the corresponding basis pur-
suit (BP) problem. The most outstanding contribution of
l1−SVD is a reduction in the size of the data matrix by using
SVD under the multi-snap condition. As a result, the com-
putational complexity no longer increases with the number
of snapshots. They also proposed constructing and solving
the BP problem based on statistical noise characteristics
that are almost independent on any hyper-parameters. The
l1 − SVD algorithm has now become a classical method in
sparse reconstruction DOA estimation, and is widely used
with coherent signals. The resolution is far higher than other
traditional methods, and the achievable estimation accuracy
is high.

The basic idea of beam forming is to sum different ele-
ments’ output signals weighted and gather the signal-gain
in one direction. With the direction pointing beam, DOA
can be estimated by searching maximum output of desired
signals in all directions. Conventional beam forming meth-
ods adjust received signal’s amplitude and phase of different
element by weighting factor to realizing different element’s
superimposing in same direction [32]. But DOA estima-
tion by conventional beam forming has low resolution and
needs a large number of array elements. When the number
of elements is small, the estimation results are inaccurate.
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Therefore, conventional beam forming methods are rarely
used in practice.

Subspace decomposition super-resolution DOA estima-
tion methods could break the Rayleigh limit [33]. These
methods estimate parameters by dividing receiving data into
orthogonal signal subspace and noise subspace. Subspace
decomposition methods mainly include MUSIC algorithms
and ESPRIT algorithms. MUSIC algorithms need power
spectral peak search and have high requirement for computa-
tion and storage. ESPRIT algorithms decompose sensor array
into two sub-arrays with same structure. These algorithms
estimate signal DOA using the rotational invariance of data
covariance matrix’s signal subspace. ESPRIT algorithms
have a large amount of computation and strict requirement
for array formation.

Weighted subspace fittingmethods can be divided into two
categories: signal subspace fitting and noise subspace fitting.
The main advantages of these methods are high precision
and applicable for both coherent signals and non-coherent
signals. The disadvantage of these methods is high complex-
ity.

In comparison with these traditional methods, spatial
spectrum estimation methods based on sparse theory have
higher spatial resolution and obvious advantages in deal-
ing with coherent signals. These methods can achieve better
DOA estimation performance in low SNR and small snap-
shots.

3 Model

InDOAestimation, the target azimuth is sparse over the entire
possible angle space.Wecan therefore divide the sparse space
into a spatial grid.DOA in sparse spaces uses the natural spar-
sity of the target orientation in angle space and establishes
an over-complete dictionary according to the array structure
and signal form. The received data from the array is decom-
posed using the over-complete dictionary to obtain the best
atoms. The data then has a one-to-one correspondence with
its spatial position, thus realizing DOA estimation of the tar-
gets.

3.1 Sparse signal representation

In traditional Fourier transforms and time-frequency trans-
forms, a signal is completely decomposed into orthogonal
bases. The original signal can be recovered by inverse trans-
formation. Signal decomposition describes the signal from
another perspective. One key aspect in the development of
signal processing technology is to try and represent a signal
in the most concise form possible. Samos and Aymes put
forward the concept of sparse signal decomposition for the
first time [34]. In this concept, the bases used to represent

the signal no longer guarantee orthogonality, but are selected
according to the characteristics of the signal. The base here is
renamed to atom because it is redundant, and does not have
the properties of a base. The set consisting of these atoms
is called an over-complete dictionary. To summarize, sparse
decomposition decomposes a signal into a function that is
represented by atoms from an over-complete dictionary, and
the result of the decomposition is also sparse.

In accordance with the nature of an over-complete dictio-
nary, the signal representation of atoms is not unique. This
corresponds to an underdetermined system, and we cannot
obtain a unique solution for the over-complete dictionary
when solving the underdetermined system. Sparsity priori of
x is needed. For a given signal, a higher level of sparsity
leads to a lower correlation between atoms after decomposi-
tion. This concept can be used as a performance measure of
the algorithm. There are several definitions of sparsity:

(a) Defined by the �0 norm
Sparsity is used to describe the number of non-zero ele-
ments in the transformation coefficients. Fewer non-zero
elements in the transform coefficients means that the sig-
nal is more sparse. In mathematics, sparsity is usually
quantified by the �0 norm:

‖a‖0 =
N∑

n=1

1{nan �=0}, (1)

where a is the transform coefficients of signal x . This
formula represents the number of non-zero components
in a.

(b) Defined by the �p norm
The transform coefficients cannot all be zero when the
signal contains noise, and the �0 norm cannot effectively
express the sparsity of a signal. In this case, the sparsity
can be defined by the �p norm:

‖a‖p =
( N∑

n=1

|an|p
)1/p

, p ≤ 1 (2)

(c) Defined by the sparse factor
The sparse factor is set by the transform coefficient’s
threshold, aT . Sparsity is defined by the ratio between the
number of coefficientswith an absolute value greater than
threshold and the total number of transform coefficients,
shown as follows:

S f = 1

N

N∑

n=1

1{n|an |>aT }. (3)

To start the analysis, the signal is decomposed into a linear
combination of a series of basic functions. For the set � =
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{ϕn(t), n = 1, 2, . . . , N }, all of the elements are unit vectors.
In Hilbert space H = RM , and the signal is decomposed into
linear combinations of several basic functions ϕn(t):

X (t) =
N∑

n=1

anϕn(t) = �a, (4)

where a = [a1, a2, . . . , aN ]T is the transform coefficient
vector. Orthogonal decomposition means decomposing the
signal into linear combinations of a series of basic func-
tions where the combination is unique. Common orthogonal
decompositions include the Fourier transform, the short-time
Fourier transform, and the wavelet transform. Orthogonal
decomposition can decompose a signal with a limited set
of vectors or basis functions. However, the decomposition
is inflexible because the basic functions are fixed. In sparse
decomposition, the structure of the over-complete dictionary
is based on the characteristics of the signal. This gives amore
compact representation that is closer to the real signal.

Sparse decomposition selects atoms from a redundant
over-complete dictionary, and the resulting decomposition
is not unique. Sparse decomposition contains two steps:
first, appropriate atoms based on the objective function are
selected, and then the best K atom combinations are cho-
sen. In compressive sensing theory, the signal must meet the
requirement of sparsity. That is, the signal can be a sparse
representation in a particular transformation.

For example, the signal x ∈ RN can be represented by the
orthonormal basis set � as:

a = �T x, (5)

where a is the coefficient vector of the orthonormal basis �.
If its �p norm satisfies the condition:

‖a‖p ≤ K , (6)

in which 0 < p < 2 and K > 0, then we say x is sparse in
the transform domain �.

There are no restrictions regarding the dictionary struc-
ture in the sparse representation. The dictionary is selected
flexibly according to the characteristics of the signals, and
mainly includes discrete cosine transform bases, fast Fourier
transform bases, discrete wavelet transform bases, Curvelet
transform bases, and Gabo transform bases.

For the given over-complete dictionary � = {�i , i =
1, 2, . . . n}, the elements satisfy the condition �i ∈ Rd . The
items can be normalized as ‖�i‖ 2 = 1 and n > d. For any
signal x ∈ Rd , we can adaptively select a group of atoms in
� to decompose the signal as:

x =
∑

ieI

ai�i , (7)

Fig. 1 Diagram of airspace sparsity

where I ⊆ {1, 2, . . . , n} is the subscript set of �i , and A =
{ai∈I } is the coefficient set. The dimension of the subscript
set is always far less than the dimension of the over-complete
dictionary, and signals can be expressed by using a small
number of atoms. The above problem can be represented in
matrix form as:

x = �a, (8)

where x ∈ Rd , � ∈ Rd×n , a ∈ Rd , and x is a sparse vector.
The key issue of sparse decomposition is obtaining a

sparse vector a, which can be expressed as:

argmin ‖a‖0 s.t. x = ψa (9)

where ‖a‖0 is a measure of the sparsity of vector a.
Suppose the length of a signal x ∈ Rd is d. We can select

m atoms from the over-complete dictionary� to get a sparse
approximation of x as:

x̂ =
m∑

i=1

aγ i
ψγ i

+ η, (10)

where γi ∈ {1, 2, . . . , n}, and η is the approximation error.
We can define the approximation error energy as ε =∥∥x − x̂

∥∥2. When ε is smaller than a certain value, we select
the most sparse linear combination (where m is minimized)
as the sparse decomposition of x , that is:

argmin ‖a‖0 s.t. ‖x − ψa‖22 ≤ ε. (11)

3.2 Airspace sparse model

Traditional DOA estimation theories always search for tar-
gets over the entire angle space. However, there are generally
only a small number of angular orientations in which a target
will be present. The target azimuth can be assumed as sparse
over the entire angle space, and Fig. 1 shows the airspace
sparsity diagram.

In Fig. 1, the gray box is an array element, the circles are
possible spatial orientations of the targets, and the black cir-
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cles are the positions of the real targets. The entire angle space
can be divided into {θ1, θ2, ..., θN } for one-dimensionalDOA
estimation. The corresponding azimuths of the real targets
are {ϕ1, ϕ2, ..., ϕk}, where {ϕ1, ϕ2, ..., ϕk} ⊂ {θ1, θ2, ..., θN }
and k � N . The constructed sparse signal space s =
[ s1 s2 ... sN ] includes k real targets to represent the spar-
sity of the sources, and sk only has a nonzero value when the
target exists [35]. The DOA estimation signal model is:

y = As + n, (12)

where y is the received data from the array, A is the manifold
matrix of an M × N dimensional array, and n is received
noise from the array. DOA estimation in a sparse space is the
same as reconstructing the sparse vector s using the received
data y and the corresponding array manifold A. The first k
largest components represent the corresponding target, and
we can then obtain the azimuth of the targets [36]:



s = argmin ‖ s ‖1, s.t. ‖ y − As ‖2≤ σ . (13)

The array manifold A under sparse conditions can be seen as
an over-complete dictionary. The atom density depends on
the division size of the spatial angle. Suppose the estimated
space [−π/2,π/2] is divided according to the interval of 1◦
as:

A =

⎡

⎢⎢⎢⎣

1
e− jπ sin θ1

.

.

.

e− j(M−1)π sin θ1

1
e− jπ sin θ2

.

.

.

e− j(M−1)π sin θ2

· · ·
· · ·
· · ·

1
e− jπ sin θ2N+1

.

.

.

e− j(M−1)π sin θ2N+1

⎤

⎥⎥⎥⎦ ,

(14)

where θn = −π/2+π · (n−1)/2N . Other methods can also
be used, such as the equal sine space partition method [37].

To simplify the problem, the commonly used
one-dimensional uniform linear array (ULA) can be used
as the target array reception model. The assumptions are as
follows:

(a) Reception characteristics of array elements are indepen-
dent of the element size, and are only related to their
spatial positions. The output gain of each element is the
same, and coupling between elements is ignored. The
noise received by each element is Gaussian white noise,
and is irrelevant to the signal.

(b) The target is in the far field, the spatial signal is approx-
imately a straight line in the medium, and the medium
is homogeneous.

(c) The radiation signal from the excited target is narrow-
band such that the direction vector is independent of the
signal frequency.

1( )x t 2 ( )x t 3( )x t ( )Mx t

Incoming signal

Reference node

Fig. 2 One-dimensional ULA receiving array model

The model for the receiving array is shown in Fig. 2.
For narrowband signals, different delays between the sig-

nals can be represented by phase differences. Under the
condition of a single source, the received signal can be simply
expressed as:

X (t) = a(θ)s(t) + n(t). (15)

The weighted output received signal is:

y(t) = WH X (t) = XT (t)W ∗, (16)

whereW = [w1, w2, . . . , wM ]T is the weight vector. There-
fore:

y(t) = WH [a(θ)s(t) + n(t)]. (17)

4 The proposed algorithm

In sparse space DOA estimation, increasing the number of
array elements can improve estimation accuracy. However,
in real detection environments, increasing the number of
elements increases both the cost and the difficulty of the
physical layout. We propose a DOA estimation algorithm
based on an extended array using virtual elements. The algo-
rithm first estimates the received data of the virtual elements
via bi-linear prediction, and then obtains the DOA by using
SVD. Thus, this algorithm can improve the positioning per-
formance of the sparse space method while maintaining a
reasonable number of array elements.

4.1 Extended array

Suppose an array consists of N real elements with a uni-
form element spacing of d, and the real elements from left to
right are represented by j = 1, 2, . . . , N . The elements are
then outwardly extended by bi-linear prediction to constitute
an extended array [38]. This is shown in Fig. 3, where the
black points are real elements and the white points are virtual
elements.
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Incoming signal

0 1 N N+1 L2-M+1

Fig. 3 Diagram of the extended array

The forward extended elements are numbered as N +
1, N + 2, . . . , L , and the backward extended elements are
numbered as 0, . . . ,−M + 2,−M + 1. For the real element
j , the output signal at time t is:

x j (t) = s j (t − τ j ) + n j (t), (18)

where s(t) is the target signal, and τ j is the signal arrival
time interval between element j and a reference element.
τ j = ( j − 1)d sin θ/c, where θ is the radiation angle and
c is the signal propagation speed within the medium. The
real element data is first used to estimate the forward and
backward prediction coefficients. For the real elements 1 and
N at time t , we can write:

−
[
xTN−1 x

T
N−2 · · · xT1

]

⎡

⎢⎢⎢⎢⎣

a f
1

a f
2

...

a f
N−1

⎤

⎥⎥⎥⎥⎦
= xTN (19)

and

−
[
xT2 xT3 · · · xTN

]

⎡

⎢⎢⎢⎣

ab1
ab2
...

abN−1

⎤

⎥⎥⎥⎦ = xT1 , (20)

where a f
k and abk (k = 1, 2, · · · , N − 1) are the forward

and backward prediction coefficients, respectively. The two
prediction coefficients can be calculated by solving the linear
predictionWiener-Hopf equation. The predicted output value
of the extended elements 0 and N +1 can then be written as:

xT0 = −
N−1∑

k=1

abk x
T
k (21)

and

xTN+1 = −
N−1∑

k=1

a f
k x

T
N−k+1. (22)

Similarly, we can predict the output value of the other
virtual elements to get extended array output data. Expand-
ing the real array allows the array aperture to be virtually
extended, which yields an improvement in DOA estimation
performance and enables multi-target estimation with fewer
elements. The extended array manifold is configured as an
over-complete dictionary A through formula (14), and the
extended array data y is used to reconstruct the sparse vector
and obtain the signal DOA.

4.2 SVD DOA estimation based on an extended array

The problem of DOA estimation based on a sparse space is
converted to solving an l0 norm optimization problem of the
sparse signal s. In fact, this is a NP-hard problem which can
be solved by MP or other algorithms. The problem can also
be transformed such that the goal is to obtain the optimal l1
norm.

When solvingwith the l1 normmethod, the objective func-
tion is:

min ‖s‖1 s.t. ‖y − As‖22 ≤ σ, (23)

where σ is the noise level. The formula can be written as an
equation unfettered by noise as follows:

min ‖y − As‖22 + λ ‖s‖1 , (24)

where λ is the sparsity parameter. Its value is determined by
the intensity of the noise.

Suppose the detection array consists of M elements and
it receives K (K<M) far-field propagation signals. The K
signals are expressed as uk(t), k = 1, 2, . . . , K , and the
received signals from the M elements are expressed as
ym(t),m = 1, 2, . . . , M . Assuming the noise received by
the elements nm(t), n = 1, 2, . . . , M is Gaussian, the data
received by array is:

Y (t) = A(θ)u(t) + n(t), (25)

where Y (t) = [y1(t)y2(t) · · · yM (t)], u(t) = [u1(t)u2(t)
· · · uK (t)], and n(t) = [n1(t)n2(t) · · · nM (t)].

The traditional spatial spectrum method estimates the
DOA θ = [θ1 θ2 · · · θk] and the number of targets by using
the received data. DOA estimation based on sparse space rep-
resents A(θ) in accordance with formula (14). A(θ) can be
seen as an over-complete dictionary which contains all of the
angle information.
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In the single snap case, A(θ) is the over-complete dictio-
nary and the model is:

y = As + n. (26)

The problem of target DOA estimation is converted into the
problem of identifying the sparse signal s corresponding to
the received array data y from the over-complete dictionary
A(θ). The objective function is:

min ‖y − As‖22 + λ ‖s‖1 (27)

In themulti-snap case, the objective function can be extended
and expressed as:

min ‖Y − AS‖2f + λ
∥∥sξ2

∥∥
1 , (28)

where ‖Y − AS‖2f = ‖vec(Y − AS)‖22, sε2 is the function of

S, and s
ξ2
i = ‖[s1(t1)si (t2) · · · si (tT )]‖ 2. Since the subscript

i ∈ {1, 2, . . . Nθ } sin−1 θ , the signal can be written as s
ξ2
i =

[ sξ2
1 sξ2

2 . . . sξ2
Nθ

].
Under the same conditions, multi-snap data can provide a

more accurate DOA estimation. However, the increase in the
amount of data leads to an increased number of calculations,
whichmakes real-time processing difficult. To overcome this
issue, SVD is used to preprocess the data and obtain the main
component of the signal. The DOA is then estimated using
the l1 norm method.

Suppose there are K known waves. By using SVD on
received array data from T snapshots, we obtain:

Y = ULV H = [USV UNV ]LV H . (29)

From SVD knowledge, we know that USV contains the
main target information and is composed of K left singular
vectors with large singular values, and that UNV is the noise
subspacematrix and is composedofM-K left singular vectors
with small singular values. USV contains almost all of the
energy. By letting YSV = USV , we can obtain multi-snap
data after dimension reduction from:

YSV = ASSV + NSV . (30)

By using SVD on the array data, the number of unknown
quantities decreases fromT snapshots to the number of target
sources K, and K � T in a real environment. The amount
of data is significantly reduced by SVD, therefore the com-
putational speed of the l1 norm method is greatly improved.
The objective function is:

min ‖YSV − ASSV ‖2f + λ
∥∥sξ2

∥∥
1 . (31)

Thus, we obtain the target azimuth estimation.

5 Simulation and analysis

The performance of the algorithm was tested through simu-
lations. The simulation conditions are based on a ULA, and
the number of real array elements is 6. The proposed algo-
rithm expands the 6 real elements to an extended array of 10
elements via bi-linear prediction, with two virtual elements
added on each side of the linear array.

5.1 Single source estimation performance

First, the estimation performance of different algorithms is
tested for a single target with different SNRs.

Suppose there is a narrowband signal incident on the ULA
at an angle of 10◦. The element spacing is half of the center
wavelength, the wave velocity is 200 m/s and 64 snapshots
were used in this test. MUSIC algorithm, L1-SVD algorithm
and the proposed Extended Array SVD algorithm are used
to estimate the target direction for SNRs of 10 dB and −10
dB. The results of this test are shown in Fig. 4.

As can be seen from Fig. 4a, when SNR = 10 dB, all algo-
rithms can estimate the DOA of the single target. It should
be noted that the estimation result from MUSIC algorithm
has some deviations, while L1-SVD algorithm and Extended
Array SVD algorithm can estimate the DOA accurately.
When SNR=−10 dB as shown in Fig. 4b, MUSIC algo-
rithm and L1-SVD algorithm lost the target, but Extended
Array SVD algorithm still can estimate the DOA of the tar-
get accurately. These results show that Extended Array SVD
algorithm offers better DOA estimation performance than
MUSIC algorithm and L1-SVD algorithm for a single target.

Furthermore, the DOA estimation performance between
MUSIC algorithm, L1-SVD algorithm and Extended Array
SVD algorithm was compared for different SNRs. Figure
5 shows the root mean square error (RMSE) curve of the
estimation obtained from the three algorithms for different
SNRs in Gaussian white noise. The SNR ranges for −20 to
30 dB. This test was run for 64 snapshots, and the results are
obtained by performing 2000 Monte Carlo simulations.

Figure 5 shows that Extended Array SVD algorithm has
better estimation performance than MUSIC algorithm and
L1-SVD algorithm under different SNRs. The performance
gap is minimal between three algorithms when SNR is in−5
to 5 dB. In this range, the prediction accuracy of virtual ele-
ments is lowwhileMUSIC algorithm andL1-SVDalgorithm
still have some estimation accuracy. When SNR > 5 dB,
estimation accuracy of MUSIC algorithm and L1-SVD algo-
rithm no longer increase with SNR and reach the algorithm
limit, while estimation accuracy of Extended Array SVD
algorithm still improves significantly with SNR increases.
This shows the excellent estimationperformanceofExtended
Array SVD algorithm at high SNR. When SNR < −5 dB,
estimation error ofMUSIC algorithm andL1-SVDalgorithm
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Fig. 4 DOA estimation results for a single target
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Fig. 6 DOA estimation for angles of 30◦ and 40◦

increases significantly and cannot get correct DOA, while
Extended Array SVD algorithm still can estimate the target.

5.2 Multiple approximate sources resolution
performance

Next, the estimation performance of the different algorithms
in the presence of multiple non-coherent signal sources that
are separated by both large and small angles is tested and
compared.

Thefirst study tests the resolution performance of different
algorithms on two targets that are spaced far apart. The wave
velocity is 200m/s and the SNR = 15 dB. Suppose there are
two non-coherent signals at a frequency of 20Hz incident
on the ULA at angles of 30◦ and 40◦, respectively. Three
different algorithms were used to estimate the DOA of the
two targets, and the results are shown in Fig. 6.

As can be seen from the Fig. 6, all algorithms can estimate
the direction of the targets when the angle between the two
targets is large, wherein L1-SVD algorithm and Extended
Array SVD algorithm have higher estimation accuracy.

Next, the resolution performance of different algorithms
for two targets that are in close proximity is studied. Using
the same velocity and SNR as the previous case, two non-
coherent signals are incident on the ULA at angles of 30◦
and 33◦. Three algorithms were used to estimate the DOA of
the two targets, and the results are shown in Fig. 7.

Figure 7 shows thatwhen the twoDOAs are close,MUSIC
algorithm and L1-SVD algorithm are unable to distinguish
them; however Extended Array SVD algorithm is still able
to distinguish the two targets with moderate accuracy.
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Fig. 7 DOA estimation at angles of 30◦ and 33◦
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Fig. 8 DOA estimation for coherent targets

5.3 Coherent sources estimation performance

Lastly, the estimation performance of different algorithms
in the presence of multiple coherent sources is tested and
compared.

For sensor array where signal transmitting with multi-
plexing, multi-interface reflection or velocity difference in
different medium, such as underwater sensor array, signal
may be coherent or mix received. For example, when signal
reflected at the interface, sensor array receives original wave
and reflected wave at the same time but they have different
DOAs.Due to radiating from the same source, the two signals
will be coherent if the phase delay is small.

Suppose there are two coherent signals at a frequency of
20Hz incident on the ULA at angles of 20◦ and 50◦, respec-
tively. The SNR=15dB, and 64 snapshots were used in this

test. Three algorithms were used to estimate the DOA of the
two targets, and the results are shown in Fig. 8.

As can be seen from the Fig. 8, MUSIC algorithm cannot
estimate two coherent sources effectively. L1-SVDalgorithm
can distinguish the sources but with an obvious bias. That is
because the coherent nature of the signals leads to a deficit in
the rankof the signal covariancematrix. In contrast, Extended
Array SVD algorithm can estimate the direction of the coher-
ent signals accurately. Thus, when compared with traditional
algorithms, Extended Array SVD algorithm exhibits better
estimation performance and can be used for estimating the
DOA of multiple coherent sources.

6 Conclusion

In this paper, we proposed a SVDDOA estimation algorithm
based on an extended array. The characteristics of space spar-
sity were first analyzed, and the target sparse space model
was established. The algorithm constructs the extended array
by using virtual elements, and the DOA is estimated based
on the sparsity of the target space. Simulations show that
the algorithm can provide accurate estimates for both the
single-target and multi-target cases, and also provides high
estimation accuracy for coherent sources. Thus, the proposed
algorithm can accurately obtain the location of single tar-
get and multi targets while also significantly improving the
sparse space positioning capability for arrays with a limited
number of elements. This method can be applied to target
detection systems like underwater acoustic sensor array.
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