Cluster Comput (2016) 19:1585-1597
DOI 10.1007/s10586-016-0599-0

@ CrossMark

An efficient multi-task PaaS cloud infrastructure based on docker
and AWS ECS for application deployment

Gemoh Maliva Tihfon! . Sanghyun Park! - Jinsul Kim!

- Yong-Min Kim?

Received: 14 June 2016 / Accepted: 4 July 2016 / Published online: 23 July 2016

© Springer Science+Business Media New York 2016

Abstract The setup environment and deployment of distrib-
uted applications is a human intensive and highly complex
process that poses significant challenges. Nowadays many
applications are developed in the cloud and existing appli-
cations are migrated to the cloud because of the promising
advantages of cloud computing. Presenting two common
serious challenging scenarios in the application develop-
ment environment, we propose a multi-task PaaS cloud
infrastructure using Docker and AWS services for application
isolation, optimization and rapid deployment of distrib-
uted applications. We fully utilized Docker, a lightweight
containerization technology that uses a host of the Linux
kernel’s features such as namespaces and cgroup’s to sand-
box processes into configurable virtual environments. The
Amazon EC2 container service helps our container manage-
ment framework. The cluster management framework uses
optimistic, shared state scheduling to execute processes on
EC2 instances using Docker containers. Several experimen-
tations were carried out, one of the experimentation focused

B Jinsul Kim
jsworld@chonnam.ac.kr

B Yong-Min Kim
ymkim@chonnam.ac.kr

Gemoh Maliva Tihfon
gemohmal @gmail.com

Sanghyun Park

sanghyun079 @ gmail.com

School of Electronics and Computer Engineering,
Chonnam National University, Gwangju, Korea

Division of Culture Contents, Chonnam National University,
Yeosu, Korea

on a simulation of application deployment scheduling that
shows our propose infrastructure is flexible, efficient and well
optimized.

Keywords App deployment - Cloud computing -
Virtualization - Hypervisors - Virtual machine (VM) -
Container - Clustering - Docker

1 Introduction

Software deployment is complex and the diverse comput-
ing requirements for applications require complex hardware
infrastructure setups and possibly incompatible specific soft-
ware requirements. Therefore, a platform to automate the
deployment and setup of virtual computing is essential.
Moreover, it is important to properly and efficiently manage
the computing resources so as to reduce additional invest-
ment in hardware. All these lead towards the concept of
cloud computing. Cloud computing is a paradigm to rapidly
provision computing resources such as storage, networks,
servers, services, etc, that can be customized and configured
to suit a particular user or application demands [1,2]. Cloud
computing paradigm is promising because is changing the
way enterprises do their businesses in that dynamically scal-
able and virtualized resources are provided as a service over
the internet. The cloud is enabled by virtualization, automa-
tion, standardization. The very core of cloud computing is
virtualization, which is used to separate a single physical
machine into multiple virtual machines in a cost-effective
way. By using virtualization, we’re basically getting a lot
of the work done for free. With virtualization, a number of
virtual machines can run on the same physical computer,
which makes it cost-effective, since part of the physical server
resources can also be leased to other tenants [3,4]. Such vir-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-016-0599-0&domain=pdf
http://orcid.org/0000-0002-1029-8096

1586

Cluster Comput (2016) 19:1585-1597

tual machines are also highly portable, since they can be
moved from one physical server to the other in a manner of
seconds and without downtime; new virtual machines can
also be easily created. Another benefit of using virtualiza-
tion is the location of virtual machines in a data center. It
does not matter where the data center is located and the
virtual machine can also be copied between the data cen-
ters with ease [5]. VM’s in the cloud offer rapid elasticity
and it is pay as you go model. One thing to keep in mind
before pushing forward is that, it’s all about the applica-
tions and not the operating system. We need operation system
to facilitate the applications. Virtual machines (VM) reduce
capital expenditure and operational expenditure but also have
some limitations that can be address. VM still requires a
CPU, storage allocation, RAM, and an entire guest Oper-
ating system (OS). OS consume a lot CPU, RAM, Disk
storage, and increase overhead. The more VM’s you run,
the more resources you need. Also some operating systems
might need individual licensing. Moreover application porta-
bility is not guaranteed. The VM module does nothing to help
but with Docker, we don’t have to worry about all the issues
mentioned above. IaaS cloud computing is hugely influence
by hypervisor virtualization [6]. Lightweight virtualization
technologies such as Docker, LXC, and Open VZ etc, seems
to be a good fit for the cloud although lightweight virtualiza-
tion is limited but they provide a better hosting density. In
general it is possible to host more lightweight virtualizations
on a physical host than with hypervisor based virtualiza-
tions [7,8]. Docker can be deployed in any environment or
device being public or private cloud because it is super light-
weight. A Docker container does not include the full OS as
mention earlier, but shares the OS of its host. As a result,
Docker containers can be faster and less resource-draining
than virtual machines. Isolation of resources is a good fit for
virtual machine but to run hundreds of isolated processes on
an average host, Docker is the better fit. Docker is a good tool
for development, QA, system admins, performance environ-
ments on old hardware. A full virtual machine can take a
couple of minutes to launch because of boot time and other
stuff, however a container can be initiated in a blink of an eye
(seconds). Containers also offer superior performance for the
application they contain, compared to running the application
within a virtual machine. In this paper, we propose an effi-
cient environment for application deployment that combines
Docker and AWS ECS to produce a simple and yet optimized
cloud infrastructure. Our paper is made possible by Docker
that has gained widespread popularity in recent years. The
rest of our paper is organized in the following order. Sec-
tion 2 will state the problems and challenges of application
development and deployment. Also in this section is details
understanding of Docker containerization. Section 3 presents
the related works. In Sect. 4, we present our propose cloud
platform implementation and discuss the working flow and

@ Springer

also the major components of it. Following up is Sect. 5
with our experimentations and results. And finally in Sect. 6,
we conclude the paper and introduce further future research
work.

2 Problem statement and background

Scenario 1 Microservice architecture is an approach that
makes web based development more agile and code bases
easier to maintain. This architecture enables developers to
be highly productive and to quickly iterate and evolve a code
base. For fast moving startup companies, the microservices
architecture can really help dev teams be quick and agile in
their development efforts. The disadvantage of microservices
is that, because services are spread across multiple hosts,
it is difficult to keep track of which hosts are running cer-
tain services. Docker containers can help mitigate many of
these challenges with the microservices architecture. Docker
containers make use of kernel interfaces such as cgroups,
namespaces, and union files, which allow multiple containers
to share the same kernel while running in complete isolation
from one another. The Docker execution environment uses a
module called Libcontainer, which standardizes these inter-
faces. It is this isolation between containers running on the
same host that makes deploying microservices code devel-
oped using different languages and frameworks very easy.
Using Docker, we could create a DockerFile describing all
the languages, framework, and library dependencies for that
service. The container execution environment isolates each
container running on the host from one another, so there
is no risk that the language, framework, library dependen-
cies used by one certain container will collide with that of
another.

Scenario 2 You have written a code for some website or
developed a mobile app for a game using development envi-
ronment on your laptop. After thorough testing and realize
that your code is ready to be deploy in the working envi-
ronment or in your working organization. The system admin
dutifully deploys the most recent build to the test environment
and in no time notice that your recently developed REST end-
point is broken. After uncountable hours of troubleshooting
with the system admin, you discover that the test environ-
ment is using an outdated version of third-party library, and
this was causing the REST endpoints to break. Differences
between developments, test, stage, and production environ-
ments is a familiar problem in today’s rapid build and deploy
cycles. The solution is to find a way to transfer from one envi-
ronment to another seamlessly and eliminating error prone
resource provisioning and configuration. Services like Ama-
zon EC2, AWS CloudFormation, and Docker provide reliable
and efficient way to automate the creation of an environment.

Cluster Comput (2016) 19:1585-1597

1587

Docker Workflow

"

For
A

SowceCode
Reposiory

s

Fig. 1 Docker workflow diagram

Hast 208 (Lini)

Amazon EC2 makes web-scale cloud computing easier for
developers. AWS CloudFromation gives developers and sys-
tem admins an easy way to create and manage a collection
of related AWS resources, provisioning and updating them
in an orderly and predictable manner [9-11]. You simply
create or use prebuilt template which is a JSON file that
serves as a blueprint to define the configuration of all the
AWS resources that make up your structure and application
stack. On a plus, CloudFormation is free of charge and you
pay only for the AWS resources needed to run your applica-
tion. Docker takes the concept of declarative provisioning a
step further. Docker provides a declarative syntax for creat-
ing containers. However, Docker containers don’t depend on
any specific virtualization platform; neither do they need a
separate operating system to run. A container simply requires
aLinux kernel in order to run [12, 13]. This means dockerized
apps can run anywhere on anything being desktop, laptops,
VMs, datacenter or instances in the cloud. Docker contain-
ers use an execution environment called Libcontainer, which
is an interface to various Linux kernel isolation features,
like cgroups, namespace, and union files. This architecture
allows for multiple containers to be run in complete isola-
tion from one another while sharing the same Linux kernel.
Because a Docker container instance doesn’t require a ded-
icated OS, it is much more portable and lightweight than
a virtual machine. The core components of Docker are the
Docker daemon and Docker client. Docker daemon is the
engine that runs on the host machine and it is a server process
that manages all the containers. Docker client is a CLI used
to interact with the daemon. The key concepts to understand
the workflow of Docker as shown in Fig. 1 are its work-
flow components. Docker images, registry, containers, and
Dockerfile.

e Docker image holds the build component of a container.
It is a read-only template from which container instances
can be launched. Think of it as Amazon AMI.

e Docker registry or DockerHub is a public and private
repositories used to store images. It is use to distribute
images efficiently and securely.

e Docker container is a running instance of an image or
created from images. Docker uses containers to execute
and run (start, stop, move, delete) the software contained
in the image. We can create Docker images from a run-
ning container, similar to the way we create an AMI
from an EC2 instance. For example, you could launch
a container, install a bunch of software packages using a
package manager like apt-get or yum, and then commit
(save) those changes to a new Docker image.

e DockerFile is a more efficient and flexible way to create
an image. It automates image construction.

Docker containers are becoming the go ahead for all distrib-
uted systems because they are scalable in the sense that these
containers are extremely lightweight which make scaling up
and scaling down very fast and easy. Dockerized applications
are extremely portable; we can move them very easy. With the
isolated containers, we can put more than one into a machine
thereby making more efficient use of our resources. Another
huge plus point of Docker is the Docker community. This
community is one of the fastest growing open source com-
munities out there. Chef, Puppet, Cloud providers such as
AWS, OpenStack Azure, and Rackspace are just a few of
the recognized members. There are many more benefits, but
what all this mean is that it dramatically reduces the entire
development life cycle from development, to testing, and then
deployment.

2.1 Background of containers and docker

Operating system-level virtualization or nowadays call Con-
tainers is a server virtualization method where the ker-
nel of an operating system allows for multiple isolated user
space instances, instead of just one. Such instances (often
called containers, virtualization engines (VE), virtual private
servers (VPS), may look and feel like a real server from the
point of view of its owners and users. In addition to isolation
mechanisms, the kernel often provides resource management
features to limit the impact of one container’s activities on
the other containers. In contrast to containers is a hypervi-
sor virtualization (VMware, Hyper-V etc.). Each container
has its own root file system, processes, memory, devices, and
network ports or stacks. Docker is technically a Linux con-
tainer because it uses almost all of the Linux kernel’s features
such as namespaces, cgroups, UnionFS, AppArmor profiles
[12]. Namespace provides a layer of isolation. Each aspect
of a container runs in its own namespace and does not have
access outside it. Control groups (cgroups) provide resource

@ Springer

1588

Cluster Comput (2016) 19:1585-1597

management. In addition to isolation mechanisms, docker
uses cgroups to provide resource management to limit the
impact of one container’s activities on the other containers.
Union File Systems (UnionFS) are file systems that oper-
ate by creating layers, thus making them very lightweight
and fast. Docker also uses UnionFS to provide a building
block for containers. Later we will see hoe with tag image
support on docker, we update our applications just by down-
loading a layer instead of the whole application. Docker
uses and controls its own execution driver called libcontainer
(default container format) [14]. The libcontainer is use to
group all the Linux kernel features together. They don’t rely
on traditional LXC and this means that they can go cross
platform.

3 Related works

There are many works in software management and tools that
address the deployment of virtual infrastructures and applica-
tions. Numerous cloud providers, such as AWS provide tools
to deploy virtual infrastructures, applications and websites.
In particular, CloudFormation and OpsWorks provides devel-
opers and systems administrators with an easy way to create
and manage a collection of related AWS resources, provision-
ing and updating them in an orderly and predictable fashion
[15]. The Nimbus project team group has developed a set
of tools to deploy virtual infrastructures: the Context Broker
[16,17] and cloudinit.d [18]. In particular, the last tool sub-
mits, controls, and monitors Cloud applications. It automates
the virtual machine (VM) creation process, the contextualiza-
tion, and the coordination of service deployment [19,20]. It
supports multiple clouds and the synchronization of different
‘runlevels’ to launch services in a defined order. Further-
more, it provides a system to monitor the services that uses
user-created scripts to ensure that they are running. This sys-
tem checks for service errors, re-launching failed services or
launching new VMs. However, it enables the contextualiza-
tion of VMs using simple scripts, which are insufficient in
complex scenarios with multiple VMs and different Operat-
ing Systems. One common limitation of all the above systems
is the usage of manually selected base images to launch the
VMs. This is an important limitation because it implies that
users must create their own images or they must previously
know the details about software and configuration of the
image selected. This limitation affects the reutilization of
the previously created VMISs, forcing the user to waste time
testing the existing images or creating new ones. Another
issue is that most of them need to use a VMI specifically
configured to support their environment, requiring specific
software installed or a set of scripts prepared. The next sec-
tion is our proposed cloud platform tries to address and

@ Springer

improve most of these related works. Also in the next section
is a scheduling algorithm we created to effectively and fully
utilize the available resources in any data center or private
organization setup environment. Following up is the experi-
ment and evaluation of our work and then conclusion of this

paper.

4 Proposed cloud infrastructure

Based on the numerous advantages of Docker containers,
ease of deployment in the development, test, stage, and pro-
duction environment and how Docker containers fit well in
the distributed systems architecture (microservices). We pro-
pose a multi-task PaaS cloud system which is shown in Fig. 2.
This PaaS cloud system using Docker is for infrastructure
virtualization and application isolation/deployment. Appli-
cations are develop using Docker technology and distributed
to the end users efficiently with AWS EC2 services. The
propose platform allow organizations or developers to focus
on building products rather than building infrastructure.
Developers can design any web site or mobile application
effortlessness using their language of preference and on any
device based on this infrastructure. However, in a multi-task
environment, the number of containers will be increasing,
and this becomes increasingly difficult to manage manually.
This is where the services of Amazon EC2 Container Service
(ECS) steps in to help our container management frame-
work (cluster computing). With ECS, we effectively abstract
the low-level resources such as CPU, memory, and storage,
allowing for highly efficient usage of the nodes in a compute
cluster. Initially the idea we had was to use the Docker swarm
which is a native clustering solution provided by Docker. It
takes the Docker Engine and extends it to enable you to work
on a cluster of containers. Using Swarm we can manage a
resource pool of Docker hosts and schedule containers to
run transparently on top, automatically managing workload
and providing failover services. Swarm uses an algorithm
called Bin Packing Scheduling algorithm (they also sup-
port Random and Spread algorithms) and some scheduler
filters (Constrain, Affinity, Port, Dependency, and Health
filters) to effectively manage the containers on a subset of
nodes. Swarm is the future native clustering for Docker. Cur-
rently swarm has many limitations such as it doesn’t support
image management yet, it is still beta and not recommended
for production. So using Amazon EC2 Container service is
the right choice for scalability and management of Docker
containers. EC2 Container Service is a cluster management
framework that uses optimistic, shared state scheduling to
execute processes on EC2 instances using Docker containers.
Amazon ECS makes it easy to launch containers across mul-
tiple hosts, isolate applications and users, and scale rapidly
to meet changing demands of your applications and users.

Cluster Comput (2016) 19:1585-1597

1589

Using ECS incurs no extra charges, apart from the cost of
spinning up EC2 instance. The ECS takes care of many of
the challenges in running a distributed system. Customers
need not about monitoring the health and availability of
nodes that provide the scheduling and resource manage-
ment capabilities. ECS also provides a robust solution to
the very challenging problem of storing state information
in a distributed system. Lastly, ECS is designed to scale
horizontally and for high availability. Container instances,
clusters, tasks, and task definition are the key components
of ECS.

Our propose platform allow organizations/sysadmins/
developers to focus on building products rather than build-
ing infrastructure. As mention earlier, we can build, test, and
debug our code on any machine capable of running Docker.
When the code is ready, we package it up into the Docker
image by building the image from a Dockerfile and stor-
ing it in Docker Hub (repository). Next, we provide the
compute resources required to run containers using Ama-
zon ECS or the schedule algorithm used for a more private
and secure platform environment. In ECS, this is called a
cluster, and it consists of EC2 instances called “container
instances” that are running the ECS agent. To create an ECS
cluster of container instances, we simply launch one or more
EC2 instances using the Amazon ECS-Optimized Amazon
Linux AMI. The instance will need to be associated with an
IAM role that allows the agent running on the instance to
make the necessary API calls to ECS. The next step is to
tell ECS how to run the containers. We use an entity called
a “task definition.” ECS task definition can be thought of
a prototype for running an actual task. For any given task
definition, there can be zero or more task instances running
in the cluster. The task definition allows for one or more
containers to be specified. ECS has another entity called a
“service,” which is useful for long running tasks, like web
applications. The service allows multiple instances of a task
definition to be run simultaneously. It also provides integra-
tion with Elastic Load Balancing (ELB) service. The ELB is
used to distribute tasks and services to different containers
efficiently.

To run a job, a developer simply needs to express the
job, often through a config file or shell script as a collec-
tion of tasks and then submit the job to the scheduler for
execution. The cluster management takes care of everything
including check-pointing and re-queuing of a failed tasks.
The cluster management framework can efficiently allocate
resources and schedule tasks. The schedule algorithm below
aims to schedule applications on VMs based on the user
deployment request and deploys VMs on physical resources
based on resource availability. This strategy optimizes the
application performance. Additionally, the load-balancer
ensures high and efficient resource utilization in the cloud
environment.

Schedule Algorithm for VMs

1: Input: UserDeploymentRequest

2: get Resources&AvailableVMList

3:// find applicableVMList

4:if AVM(UDR, ARS) !=0 then

5: //call the load balancer

6: deployableVM = load-balance(AVM(UDR, ARS))
7. deploy UserRequest on deployableVM;
8: deployed = true;

9: else

10: if ResourceForExtraVM then

11: start newVMlInstance;

12: add VMToApplicableVMList;
13: deploy UserRequest on newVM;
14: deployed = true;

15: else

16: queue UserRequest until

17: queueTime > waitingTime

18: deployed = false;

19: endif

20: end if

21: if deployed then
22: return success;
23: terminate;

24: else

25: return fail,

26: terminate;

27: end if

As shown in the Schedule Algorithm, the scheduler
receives as input the Users’ Deployment Requests (UDR) and
the application data to be provisioned (line 1 in the schedule
algorithm). The output of the scheduler is the confirmation
of successful or failure deployment. In the first step, the user
request is extracted, which then forms the basis for find-
ing the VM with appropriate resources for deploying the
application. Next, it collects information about the Avail-
able Resource (ARS) and the number of running VMs in
the data center (line 2). The UDRs are used to find a list of
Applicable/Apposite VMs (AVM) capable of provisioning
the requested user request (lines 3—4). When the list of VMs
is found, the load-balancer decides on which particular VM
to deploy the application in order to balance the load in the
data center; in our case the ELB (line 5-8). In case there is
no VM with the appropriate resources running in the data
center, the scheduler checks if there is resources consisting
of physical resources can host new VMs (lines 9-10). If that
is the case, it automatically starts new VMs with predefined
resource capacities to provision the user requests (lines 11—
14). When the resources cannot host extra VMs, the scheduler
queues the provisioning of service requests until a VM with
appropriate resources is available (lines 15-16). If after a cer-
tain period of time, the user requests cannot be be scheduled
and deployed, the scheduler returns a scheduling failure to the

@ Springer

1590

Cluster Comput (2016) 19:1585-1597

Centos?
Cocker Fost

Fig. 2 Propose multi-task platform

cloud admin, otherwise it returns success (lines 17-27). The
scheduler is also responsible for scheduling requests that are
in the queue and allows for the use of cluster’s idle resources
to satisfy a user-request requirement. User-request priority
in the queue is calculated based on the request attributes and
the resources are analyzed before the request is being placed
in the scheduler queue. The below equation shows requests
with less priority that are preempted first.

P._W . (UXU - UAU) + W>.0; + W3.(ARS + AV M)

+Wy Ny+Ws5 Nt +We.(TRS — (AVM — ARS))+W7.K
(H

From Eq. 1 above, P, is priority request, U X C is the user’s
expected usage, U AU is a user actual usage,Q; is the time
a user-request has spent in the queue, AV M is the available
VMlist, ARS is the available resource, N; is the number of
time a request has been preempted, NT is the total num-
ber of times a request has been preempted, T RS is the total
available resource, the request is active if K is 1 or O if
inactive,Wq,, Wyare weighting factors that are
empirically determined and is the weighting factor to elevate
active requests.

5 Experimentation and evaluation
Our experimentation and evaluations are divided into three
parts. The first part of the experiment is using Docker and

source code of a web application to create an image that can
be deploy and run in any environment. The next part of our

@ Springer

1' Task 1
/A Task2
< ,’/
Task 17 4 Service
definition p.
nstance
Tack 1‘
definition Task 1
idia
| Task —
definition
nsTarce TaSk 3 ’
Cluster y
4 Service

experimentation is a Docker container evaluation. The final
part of our experimentation is focused on a simulation of
application deployment scheduling.

5.1 Docker image experiment

Based on the figure below Fig. 3, the setup environment for
testing is pretty simple at this stage of our work. Using Oracle
VM VirtualBox manager we setup a 64-bit Ubuntu 14.04
system and Centos7 system with the following features each:
512MB of memory, 2 processor, 12MB of video memory, 2
network adapters, and 16GB of hard drive space.

First, we define a Docker image for launching a container
for running the REST endpoint. We will then use this Docker
image to test the code on the Centos7 (acting like a laptop in
this test environment). Later this created image can be used to
test the code in Amazon EC2. The REST endpoints are going
to be developed using Ruby and the Sinatra framework, so
these is needed to be installed in the image. Sinatra is open
source software to write web application written in Ruby.
We chose Sinatra framework in the test environment because
it is an elegant web framework and really tiny (about 1500
line code). Sinatra is good fit for small scale projects and it
does all what other heavy frameworks of the Ruby family
such as Rail. The backend will use Amazon DynamoDB to
ensure that the application can be run from both inside and
outside AWS web services, the Docker image will include
the DynamoDB local database. The Docker image is created
using the DockerFile that contains all the instructions require
to build an image. DockerFile is similar to the way we create
AMI from an EC2 instance. From the file, we will launch

Cluster Comput (2016) 19:1585-1597

1591

Fig. 3 A Web application
architecture

Application Architecture

Mobile Device

Application

Thin Webs: Sinatra

containers, install a bunch of software packages using the
APT package manager, and then commit those changes to a
new Docker image. DockerFile is a more powerful, fast and
flexible way of creating Docker images. Here’s the Docker-
File we created for the web app looks like:

To build the image from the above DockerFile, we used
this command

$ docker build - -tag="aws_activate/sinatra:v1”

The tag option sets an identifier on the images and is usu-
ally setup as owner/repository:version. This makes it easy to
identify what an image contains and who owns it when view-
ing the images in a registry. Next we launched a container
from this newly created image:

$ docker run -it aws_activate/sinatra:v1 /bin/bash

This command launches the container and goes into a bash
shell. We can interact with the container inside just like we
would on a Linux server. Because we are developing a web
application, we cloned the image and commit the changes
in the running container to a new image using this commit
command.

$ docker commit -m “ready for testing” b9d03d60ba89
aws_activate/sinatra:v1.1

Version 1.1 of the container includes the Sinatra appli-
cation that will serve up the REST endpoint. The web
application can be run using this command:

$ docker run -d -w /home/sinatra —p 10001:4567aws_
activate/sinatra:v1.1 ./run_app.sh

The shell script starts up the local DYnamoDb database in
the container and launches the Sinatra application using the
thin webserver on port 4567. The web application can be view
from the browser using http://localhost:10001/activity/1 and
see the following:

Database

DynameoDB

{“activity_id”:“1”, “user_id”:* db430d35-92a0-49d6-
ba79-0f37ealb35f7”, “type”:“meal”, “calories: 100, “date”:
“2015-10-29 15:47:23 +0000”}

The endpoint seems to be working properly. The activity
record was pulled from the local DynamoDB database and
returned as JSON from the Sinatra application code.

5.2 Docker containers evaluation

To perform how efficient and less overhead the docker con-
tainers are, we created five different containers in detached
mode (running in the background) and then attach back to
some of the containers to install, run and updated some
packages. From the pulled centos image, we installed tracer-
oute, vim and created some files in the container. We also
updated the image with a “yum update”. In the pulled Ubuntu
14.04.1 image pulled from the docker hub, we installed these
packages to run a simple apache web server; goland, nginx,
apache2, apache2-utils, iputils-ping, and traceroute. We also
ran an update. The created containers names were rename to
easily check the different performance of the containers in
the network.

Using the “docker stats” we were able to view the CPU
usage, memory usage, memory limit, and network IO metrics
of the different live stream containers at runtime as shown in
Table 1. The results were outstanding when compared with
VMs. This shows the operational benefits of docker con-
tainers and the density potential gained by using the docker
container technology versus traditional VMs.

@ Springer

http://localhost:10001/activity/1

1592

Cluster Comput (2016) 19:1585-1597

Table 1 Docker containers

runtime metric CONTAINER CPU (%) MEM USAGE/LIMIT MEM (%) NET I/O
Centos7 0.00 1.27 MiB/489 MiB 0.26 37.27MiB/580.5 KiB
mongodb 1.88 22.18MiB/489 MiB 4.54 1.307 KiB/648 B
nginx 0.00 1.23 MiB/489 MiB 0.25 1.939 KiB/648 B
redis 0.41 1004 KiB/489 MiB 0.22 2.572 KiB/648 B
Ubuntul4 0.00 1.785MiB/489MiB 0.37 28.9MiB/400.1KiB

Fig. 4 Region and user base setup in our evaluation with web application

5.3 App deployment and scheduling simulation

Cloud aim to power the next-generation data centers as the
enabling platform for dynamic and flexible application pro-
visioning [21,22]. Scheduling is one of the most important
task in cloud computing.

Using cloud as the application hosting platform, IT
companies are freed from the trivial task of setting up
basic hardware and software infrastructures. The use of
real infrastructures (such as Amazon EC2, Google Cloud,
Microsoft Azure) for benchmarking the application per-
formance under different conditions is usually constrain.
Simulated-based approaches offer significant benefits to IT
companies by allowing them to test, tune and experiment
with different workloads and resource performance scenar-
ios on simulated infrastructures for developing and testing
adaptive application provisioning techniques. CloudSim is a
new generalized and extensible simulation framework that
allows seamless modeling, simulation, and experimentation
of emerging cloud computing infrastructures and applica-
tion cervices [23]. Although several similar experimentation

@ Springer

isia UB

works has been carried out with CloudSim, however most of
them turn to focus on comparing just the available algorithms
and protocols in CloudSim instead of trying to improve them.
In our experimentation, we tried to use our own scheduling
algorithm.

We used CloudSim extension CloudAnalyst to simulate
Large-scaled applications on the cloud with the purpose
of evaluating the behavior of applications under various
deployment configurations. This evaluation would benefit
developers and system admins immensely in identifying the
optional setup for their applications. Additionally, this eval-
uation will generate valuable insights into designing cloud
platform services especially in data centers, load balancing
algorithms and potentially optimizing the application perfor-
mance and cost. Our evaluation is based on three different
scenarios of web application hosted on two data centers and
four different user bases representing four different regions
in Fig. 4 with the simulation setup parameters as can be seen
from Fig. 5 and the Tables 2, 3, 4, and 5. For the cost of
hosting, we considered the pricing plan of that similar to the
one of Amazon EC2 (Figs. 5, 6).

Cluster Comput (2016) 19:1585-1597

1593

Fig. 5 A demonstration for
creating an image using the
Dockerfile with parameters

- Ubuntu 14-04-02 [Ruraing] - Orade VM VirtualBox

fiUbuntu based web application

FROM ubuntu:14.04

NAINTAINER Gemoh Haliva {genohmal@gnail.com>
{RUN apt-get update && apt-get install -y curl uget dafauli- jregit
RUN adduser —hone /home/sinatra —disabled-passuord --gecos “sinatra

RUN adduser sinatra sudo

RUN echo 'zsudo ALL=(ALL) NOPASSHD:ALL' > setcssudoers USER sinatra

RUN curl -sSL https://get.run.io

bash -s stable

RUN /binsbash -1 -c "source /home/sivatras .runsscripts/rom”

RUN /binsbash -1 -c "rum install 2.1.2"

RUN /binsbash -1 -c "gem install sinatra”

RUN /binsbash -1 -c "gem install thin"

RUN /binsbash -1 -c "gem install aws-sdk”

RUN wget -0 /honessinatrasdynamodb_local.tar.gz hitps://s3-ap-northeast-1.anazon
aus .con/dynamodb-local/dynanodb local 2015-07-12.tar.gz

RUN tar -c /howessinatra -xvzf /hone/sinatrasdynamodb_local.tar.gz

Table 2 User bases setup with region name and configuration

Name Region Request per Data Size per Peak Hours Peak Hours Avg Peak Avg Off-Peak
User per Hr Request (bytes) start (GMT) End (GMT) Users Users

N. America UB 0 60 100 18 20 200,000 20,000

Europe UB 2 60 100 15 17 150,000 15,000

Asia UB 3 60 100 20 22 100,000 10,000

Africa UB 4 60 100 10 12 50,000 5000

Table 3 Application deployment physical configuration in data centers

Data Center #VMs Image Size Memory BW
DCI 40 100,000 10,240 10,000
DC2 40 100,000 10,240 10,000

Other configurations include the Physical Hardware
Details of Data Centers, User grouping factor in User Bases,
Request grouping factor in Data Centers, Executable instruc-

Table 4 Data center cost configuration in data centers

tion length per request, and the Internet characteristics (Delay
Matrix and Bandwidth Matrix).

Experiment results and analysis

Based on the above configurations, the following results were
obtained in the three different scenarios. We can clearly see
from the graphs during the peak hours how the load changes.

Name Region Arch oS VMM Cost Per Memory Storage Data Transfer Physical
VM $/Hr Cost $/Hr Cost $/Hr Cost $/Gb HW Units

DCl1 0 x86 Linux Xen 0.1 0.05 0.1 0.1 30

DC2 2 x86 Linux Xen 0.1 0.05 0.1 0.1 40

@ Springer

1594

Cluster Comput (2016) 19:1585-1597

Table 5 Response time and
data processing time with total
cost in the three scenarios

Method/Scenario

Overall Response
Time (ms)

Data Processing
Time (ms)

Total Cost VM cost/Data
Transfer (dollars)

Scenario 1
Scenario 2

Scenario 3

168.29
169.62
150.49

48.16
38.16
20.28

$168.02/$1138.07
$168.02/$1138.07
$168.02/$1138.07

Fig. 6 Data center hourly DC1
loading

Req's per Hr

1014
akd
=Y
ald
24

o1

DC2

234 3568 7 a9

Req's per Hr

1014
akd
(51K |
dald
24

o1

Fig. 7 Data center hourly DCA1
loading

234 368 7 a9

Req's per Hr

01 22 a4 5 &5 7 a9

Req's per Hr

o1 224 5 & 7 a9

Scenario 1: Web application hosted on two data centers

with 40 VMs in each

Scenario 2: Web application hosted on two data centers

W12 1212151617 18192021 2220 Hrs

W12 121151617 1@ 192021 2220 Hrs

W11 121212151617 1@ 192021 2220 Hrs

W11 121212151617 1@ 192021 2220 Hrs

Scenario 3: Web application hosted on two data centers

with 40 VMs each. Applying performance optimized routing

with 40 VMs each and sharing the load during peak hours

using performance optimize routing.

@ Springer

and throttled load balancer algorithm.

Cluster Comput (2016) 19:1585-1597

1595

Fig. 8 Data center hourly
loading performance of
optimized routing and throttled
load balancer algorithm o

Req's per Hr

o1 20 a 5 & 7 a 9

Req's per Hr

O 1 20 a 5 & 7 a9

Fig. 9 Data processing time
and response time comparison
in the three scenarios

Comparison
200

100

Time (mas)

Cverall Response Time

Comparing simulation results

Data center hourly loading performance of scenario 1 depicts
in Fig. 6, scenario 2 depicts in Fig. 7, and scenario 3
depicts in Fig. 8. The results compare all the three scenar-
ios considering the overall cost and average response time
for each of the three scenarios. Due to some unforeseen
errors and the limitation of CloudSim at the time of our test-
ing such as CloudSim only supports static assignment with
pre-determined resources and tasks, we couldn’t apply our
proposed schedule algorithm. However, we used the throt-
tled algorithm because is closely similar to our scheduling
algorithm although we have added and done improved mod-
ification in our algorithm.

10 11 12 1912 1S 16 17 1@ 192021 22 20 Hrs

10 11 12 1212 1S 16 17 1@ 192021 22 20 Hrs

Overall Response Time & Data Processing Time

I Scenario 1
B Scenario 2
B Scenario 3

Data Processing Time

From the results of the three scenarios as shown in Fig. 9,
undoubtedly we can see that applying performance optimized
routing and throttled load balancer algorithm seems to be the
best approach for web application hosting and deployment.

6 Conclusion

In this paper, we looked at application optimization and
deployment. Based on the challenges in application deploy-
ment environment and the numerous advantages of Docker,
we proposed a multi-task cloud infrastructure using Docker
and AWS services for rapid deployment, application opti-
mization and isolation. We saw that this platform is for

@ Springer

1596

Cluster Comput (2016) 19:1585-1597

building, shipping, and running applications. We can build
any application in any language using any stack, docker-
ized the application and the application can run anywhere
on anything (device). Additionally, we saw how Amazon
ECS helps solve challenging problems when running multi-
ple container-based applications and services on a shared
compute cluster. Finally we concluded with experiment
and evaluations of our work. Our evaluation would bene-
fit developers and system admins immensely in identifying
the optional setup for their applications. Moreover, the
evaluation generated valuable insights into designing cloud
platform services especially in data centers; load balancing
algorithms and potentially optimizing the application perfor-
mance and cost.

For future work, we intend to fully complete the imple-
mentation of our proposed cloud platform and scale it up
with Amazon EC2 container service for high performance
container management. We will then conduct thorough eval-
uation to demonstrate the flexibility and simplicity of our
platform and then compare it with related existing platform.

Acknowledgments This work was supported by *The Cross-Ministry
Giga KOREA Project’ grant from the Ministry of Science, ICT and
Future Planning, Rep. of Korea (GK16P0100, Development of Tele
Experience Service SW Platform based on Giga Media).

References

1. Zhang, Qi, Cheng, Lu, Boutaba, Raouf: Cloud computing: state-of-
the-art and research challenges. J. Internet Serv. Appl. 1(1), 7-18
(2010)

2. Mell, P, Grance, T.: The NIST definition of cloud computing. NIST
Special Publication 800-145, Technical Report, pp. 20-23 (2011)

3. Yang, T.A., Joshy, N., Rojas, E., Anumula, S., Moola, J.: Virtual-
ization and data center design. Glob. J. Technol. 9, 36-54 (2015)

4. Kratzke, N.: Cloud Computing Costs and Benefits. Cloud Com-
puting and Services Science, pp. 185-203. Springer, New York
(2012)

5. Kratzke, N.: Lightweight virtualization cluster how to overcome
cloud vendor lock-in. J. Comput. Commun. 2(12), 1-7 (2014)

6. Caballer, M., Blanquer, 1., Molto, G., de Alfonso, C.: Dynamic
management of virtual infrastructures. J. Grid Comput. 13(1), 53—
70 (2015)

7. Merkel, D.: Docker: lightweight linux containers for consistent
development and deployment. Linux J. 239, 2014 (2014)

8. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S.,
Youseff, L., Zagorodnov, D.: The eucalyptus open-source cloud-
computing system. In: CCGRID’09. 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid, pp. 124-131.
IEEE (2009)

9. Caballer, M., Blanquer, 1., Molto, G., de Alfonso, C.: Dynamic
management of virtual infrastruc-tures. J. Grid Comput. 13(1), 53—
70 (2014)

10. Regola, N., Ducom, J.-C.: Recommendations for virtualization
technologies in high performance computing. In: 2010 IEEE Sec-
ond International Conference on Cloud Computing Technology
and Science (CloudCom), pp. 409—416. IEEE (2010)

@ Springer

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Marshall, P., Keahey, K., Freeman, T.: Elastic site: using clouds to
elastically extend site resources. In: Proceedings of the 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, pp. 43-52. IEEE Computer Society (2010)

LXC - Linux Containers. https://linuxcontainers.org/Ixc/
introduction (2014)

Docker. www.docker.com (2013)

Carrion, J.V., Molto, G., De Alfonso, C., Caballer, M., Hernandez,
V.: A generic catalog and repository service for virtual machine
images. In: 2nd International ICST Conference on Cloud Comput-
ing (CloudComp 2010). pp. 1-15 (2010)

AmazonWebServices. AWSEC2. http://docs.aws.amazon.com/
AmazonECS/latest/developerguide (2014)

Keahey, K., Freeman, T.: Contextualization: providing one-click
virtual clusters. In: IEEE Fourth International Conference on IEEE
eScience eScience’08, pp. 301-308 (2008)

Marshall, P., et al.: Architecting a Large-scale Elastic Environment-
Recontextualization and Adaptive Cloud Services for Scientific
Computing. In: ICSOFT, pp. 409-418 (2012)

Bresnahan, J., Freeman, T., LaBissoniere, D., Keahey, K.: Man-
aging appliance launches in infrastructure clouds. In: Proceedings
of the 2011 TeraGrid Conference: Extreme Digital Discovery, vol.
12, pp. 1-7. ACM (2011)

Binz, T., Breitenbcher, U., Haupt, F., Kopp, O., Leymann, F.,
Nowak, A., Wagner, S.: OpenTOSCA? A Runtime for TOSCA-
Based Cloud Applications. Service-Oriented Computing, pp. 692—
695. Springer, Berlin (2013)

Papadopoulos, P.M., Katz, M.J., Bruno, G.: NPACI rocks: tools and
techniques for easily deploying manageable linux clusters. Con-
curr. Comput. 00, 1-20 (2001)

Mehra, P.: Guest editor’s introduction. IEEE Internet Comput. 5,
38-40 (2002)

Guo, T., Sharma, U., Shenoy, P., Wood, T., Sahu, S.: Cost-aware
cloud bursting for enterprise applications. ACM Trans. Internet
Technol. (TOIT) 13(3), 1-22 (2014)

Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F.,
Buyya, R.: CloudSim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provi-
sioning algorithms. J. Softw.-Pract. Exp. 41(1), 23-50 (2011)

Gemoh Maliva Tihfon received
his B.Sc. Degree in Com-
puter Science from Osmania
University, Hyderabad-India in
2013. He is currently study-
ing for his Master Degree
(M.S.) in the School of Elec-
tronics and Computer Engineer-
ing, Chonnam National Univer-
sity, Gwangju, South Korea. His
research interests include Cloud
computing designs and optimiza-
tion, Cloud virtualization, IoT
technology, mobile computing,
and other Computer Network
related topics.

https://linuxcontainers.org/lxc/introduction
https://linuxcontainers.org/lxc/introduction
www.docker.com
http://docs.aws.amazon.com/AmazonECS/latest/developerguide
http://docs.aws.amazon.com/AmazonECS/latest/developerguide

Cluster Comput (2016) 19:1585-1597

1597

Sanghyun Park received the
B.S. Degree in Computer and
Information from the University
of Korea Nazarene in 2010, and
the M.S. degree in School of
Electronics and Computer Engi-
neering, Chonnam National Uni-
versity, South Korea. He worked
as an engineer in System Devel-
opment Team of Media Flow
Company from 2010 to 2012. He
is now studying Ph.D. Degree
in School of Electronics and
Computer Engineering, Chon-
nam National University. His
research interests are Interactive
Media, Systems Development, Embedded systems, Digital Media and
Cloud computing.

Jinsul Kim received the B.S.
Degree in computer science from
University of Utah, Salt Lake
City, Utah, USA, in 2001, and the
M.S. and Ph.D. degrees in digital
media engineering, department
of information and communica-
tions from Korea Advanced Insti-
tute of Science and Technology
(KAIST), Daejeon, South Korea,
in 2005 and 2008. He worked as
a researcher in IPTV Infrastruc-
ture Technology Research Lab-
oratory, Broadcasting/Tele
communications Convergence
Research Division, Electronics
and Telecommunications Research Institute (ETRI), Daejeon, Korea
from 2005 to 2008. He worked as a professor in Korea Nazarene Uni-
versity, Chon-an, Korea from 2009 to 2011. Currently, he is a professor
in Chonnam National University, Gwangju, Korea. He has been invited
reviewer for IEEE Trans. Multimedia since 2008. He was General Chair
of IWICT2013/2014/2015, ICITCS2014, ICISA2015, ICMWT2015
and ICISS2015. His research interests include QoS/QoE, Measurement/
Management, IPTV, Mobile IPTV, Smart TV, Multimedia Communi-
cation and Smart Space/Works.

Yong-Min Kim received the
B.S., M.S. and Ph.D. degrees in
Computer Science and Statistics
from Chonnam National Univer-
sity in Korea. From 2004 to 2006,
he worked at Yeosu National
University as a full-time profes-
sor. Since 2006, he has been
working at Chonnam National
University, Yeosu in Korea as an
associate professor in Electronic
Commerce, Division of Culture
Contents. His current research
interests include IT Media Con-
vergence, Multimedia Commu-

nication, Electronic Commerce System, Internet Security & Privacy.

@ Springer

	An efficient multi-task PaaS cloud infrastructure based on docker and AWS ECS for application deployment
	Abstract
	1 Introduction
	2 Problem statement and background
	2.1 Background of containers and docker

	3 Related works
	4 Proposed cloud infrastructure
	5 Experimentation and evaluation
	5.1 Docker image experiment
	5.2 Docker containers evaluation
	5.3 App deployment and scheduling simulation

	Experiment results and analysis
	Comparing simulation results
	6 Conclusion
	Acknowledgments
	References

