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Abstract Various studies have shown the educational use
of robots to be effective in science and mathematics edu-
cation. However, such studies have not considered the
psychological factors affecting users of the new technology,
only external factors, such as the range of affordable robotic
platforms and ready-for-lesson materials for a robot-assisted
learning environment. It is necessary to extend the use of
robots and cloud platforms to support education for sus-
tainable development. To that end, this study first assessed
the possibility of using robots in education for sustainable
development by providing them to children from low-income
families, since they often show abnormal behaviors and have
few opportunities to access robots in education. The long-
term changes in their behavior resulting from this outreach
program were examined. Qualitative as well as quantitative
methods were used to evaluate and discuss the changes in
self-efficacy and learning attitudes of students during the
year. Second, we proposed a technology acceptance model,
termed RSAM, for teachers in robot-assisted learning envi-
ronments with a cloud service platform. Acceptance factors
were estimated using a weighted average method based on
teacher focus group interviews. The challenges associated
with robot-assisted learning considering cloud services are
discussed.
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1 Introduction

It is well known that hands-on education, such as robot
assembly and creative robot construction, provides more
powerful motivation than the learning of abstract knowledge,
and STEM (science, technology, engineering, and math)
education may expand with new educational tools based
on robotics [2,35]. STEM-related industries are expected
to show steep growth over the next decade compared to
non-STEM related industries. However, students’ interest in
STEM-related jobs and careers has been decreasing. The pro-
portions of females, African Americans, Hispanics, Native
Americans, and possibly Asian-Pacific islanders participat-
ing in STEM-related industries are expected to be relatively
low [3]. To solve this problem, there has been world-wide
effort to promote various types of STEM education. Among
them, as a tool to increase students’ interest in science and
technology, robots have been actively used in many coun-
tries, including theU.S., Canada, England, Germany, France,
Korea, India, Israel, Mexico, and Chile.

However, to make effective robotics education possible,
several obstacles must be addressed. Mataric et al. (2007)
listed several challenges that must be overcome to engage a
child’s interest in STEM, such as the lack of affordable robot
kits, the lack of ready-for-use lesson materials, the lack of
age-suitable academic materials, the lack of teacher time,
and the lack of teacher training [25]. In spite of the advan-
tages of robot education, the high price of robot kits also
often limit youths from low-income families from accessing
the educational opportunities necessary to learn and practice

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-016-0558-9&domain=pdf


988 Cluster Comput (2016) 19:987–999

these skills. Related to this trend, robot studies have gener-
ally targeted average students, whereas only a few studies
have targeted low-income students [20,33].

The goal of Education for Sustainable Development
(ESD) is to allow every human to acquire the knowledge,
skills, attitudes and values necessary to shape a sustainable
future. It also requires participatory teaching and learning
methods that motivate and empower learners to change their
behavior and take action for sustainable development. ESD
consequently promotes competencies such as critical think-
ing, imagining future scenarios, and making decisions in a
collaborative manner [37]. Although outreach of robotics
may fall within the ESD category, due to the expense of robot
kits, not many attempts are being made to implement their
use. Dias et al. (2005) examined robotics as education for
sustainable development in Sri Lanka, Ghana, and the USA
[9]. Several universities have supported various robotics-
centered outreach activities for students from low-income
families with few opportunities [10,17,22,28,32,33]. Simi-
larly, in Korea, most students from low-income families who
are housed in childwelfare facilities supported by the govern-
ment have difficulty receiving services, and so paying tuition
and buying a robot kit can be prohibitively expensive for
them. Moreover, it is estimated that many students who are
housed in child welfare centers and who have participated
in such experiments have learning disabilities and/or ADHD
(Attention Deficit Hyperactivity Disorder).

In this study we conducted a 1 year outreach program
using robots for students from low-income families and per-
formed qualitative and quantitative analyses to determine its
effect on 112 students who show abnormal behaviors, such
as ADHD in Sect. 3. In Sect. 3.1, social officers’ views
of children from low-income families who received ESD
through education involving robots for one year are qualita-
tively observed and we provide a quantitative analysis based
on long-term evaluations of changes in learning attitudes, as
a reflection of students’ self-efficacy in mental health areas
in Sect. 3.4. We also propose and estimate a TAM (Technol-
ogy Acceptance Model), termed RSAM (the Robot Service
Acceptance Model), of 267 teachers under the cloud service
platform in a robot-assisted learning environment in Sect.
4. It shows the barriers preventing the spread of robots in
learning and teaching environments and the challenges are
discussed.

2 Background

2.1 Robotic education

Goodrich and Schultz (2007) classified educational robots
into two categories, assistive and educational robots [11].
Han (2010) also divided them into two categories: hands-

on robots (also referred to as educational robots) for STEM
education, and educational service robots (also referred to
as assistive robots) such as those for language learning [12].
This paper focuses on hands-on robots.

The use of robots in education is known to increase
students’ interest in STEM areas as well as their problem-
solving abilities and creativity [31] while also promoting
active exploration, cooperative group learning, frequent
interaction and feedback, and real-world connectivity [16,
19]. Studies have shown that students are willing to partici-
pate outside of school to learn with robots [2,33], and robots
have been shown to increase the interest of female students in
STEM education [39]. Barker and Ansorge (2007) compared
the pre-test and post-test scores of students who attended
robotics education with those of students in a control group.
The results revealed that the studentswho used robots in class
had significantly increased mean scores on the post-test [2].

In the twenty-first century, the primary focus of theworld’s
major countries on ESD is on narrowing the gaps in educa-
tional opportunity and performance. In the U.S., 39 % of
all students are from low-income families, and 62% of all
parents have no education beyond high school, with Lati-
nos and African-Americans accounting for 54% of the total
[9]. Most students from low-income families who have been
exposed to poor living and economic conditions show low
confidence, low self-efficacy, and low concentration abilities.
These characteristics can lead to low school grades, which in
turn results in low school entrance rates, forming a vicious
circle of poverty.

On the other hand, it is well known that when students
gain confidence in one area, it can affect other areas of
performance, and improve the rate of success experienced
by the students. From such gains, confidence can improve
self-efficacy. It has been reported that students with high self-
efficacy as adolescents show lowunemployment rates and are
highly satisfiedwith their jobs [29]. Faith and self-confidence
acquired during a student’s adolescence can affect not only
their school life but also their future job success.

Various outreach programs for students from low-income
families are being operated around universities with the goals
of increasing their educational opportunities, theirmotivation
to undertake a science education, and their heath knowledge,
among other areas. For example, the StanfordMedical Youth
Science Program (SMYSP) works to increase knowledge
about the sciences and health professions, and offers guid-
ance about the college admissions process to low-income
and/or underrepresented minority students [36]. Evaluations
of SMYSP have shown that the university- and school-
based programs have been highly successful in reaching
low-income students and preparing them for medical and
other careers.

ESD programs, such as outreach programs using robots,
are also being attempted by universities and companies to
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Fig. 1 Comparison of previous and our criteria in the r-Learning service framework [12,13]

narrow the gaps in educational opportunity and performance
stemming from the gap between rich and poor segments of
society, thus integrating society and increasing its growth
potential. Dias et al. (2005) conducted an ESD study with
robots as a solution to global poverty [9]. Salamon et al.
(2011) did not observe any differences in performance levels
between low-income students and middle-income students
with respect to teamwork, programming concepts, and sup-
port in a robot outreach program [33]. If the approach could
be freed from the cost of the robot kits and the cost of robot
training camps, robot outreach programs are likely to be
meaningful as an ESD program.

2.2 Human robot interaction in a cloud environment

Cloud computing is a promising paradigm that provides
ready-for-use lesson materials for robotics education. In
order for cloud service providers to meet their quality of
service objectives, it is important to examine how software
architectures can be described to take full advantage of the
capabilities introduced by such platforms [4,24]. r-Learning
services are defined as pedagogical and interactive activities
which can be reciprocally conducted for interaction between
learners and robots in both real and virtual worlds [12]. The

r-Learning service framework can adopt types of cloud based
distributed applications that are identified from [4], or social
learning platforms based on collective intelligence from the
interactions between students, teachers and robot in an edu-
cational environment from [18].

An r-Learning service framework from (b) of Fig. 1 is
typically based on a cloud environment in the same style as
e-Learning services with an operational environment. These
are known as the Learning Management System (LMS) and
the Learning Contents Management System (LCMS), as
shown in (a) of Fig. 1 (see [12] in detail)]. It consists of
the Teaching Management System (TMS), which is a sym-
metrical point to LMS; the Teaching Contents Management
System (TCMS) to LCMS, and Robot Management System
(RMS). LMS does not depend on the device type (computer,
lap-top, smartphone, and etc.) but robots have copious non-
verbal messages through their various appearance-hardware.
Since the r-Learning service framework is assumed by
numerous robots, not just one robot, RMS is needed to
manage the robots from various robot providers. TMS in
the r-Learning service framework may recommend context-
aware personalized resources from TCMS according to the
learners’ historical sequential patterns in [23]. However, the
robot based contents of TCMS are quite unlike any other e-
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Learning resources which can be made by such multimedia
tools for distributed synchronous cooperative providers, as
mentioned in [34]. The robot based contents are linked to a
number of robot hardware platforms.

In face to face communication, the channel can be omitted
from Berlo’s SMCR (Sender-Message-Channel-Receiver)
model [1]. Themessage is the idea, opinion, emotion or infor-
mation conveyed by the sender. It includes various things like
language, gestures, body language, and whatever contents
the sender speaks from beginning to end. According to the
law of Mehrabian, there are basically three elements in any
face-to-face communication: verbal message (words), para-
verbalmessage (e.g., tone of voice), andnonverbal behaviour
(e.g., facial expression); these have also become known as
the 7–38–55%, based on their relative impact. Specifically,
the nonverbal component is 55% of the total impact, with
the balance comprised of facial expression (35%) and body
language (20%) [26].

Choi et al. (2012) and Choi et al. (2013) divided the mes-
sage into three categories, which are colored red broken
lines as shown in Fig. 1a: verbal message, nonverbal mes-
sage, and visual learning contents-message. They considered
visual learning contents (photos, videos being downloaded
or uploaded) to be a type of message, and then proposed
three assessment criteria: visual learning contents-message
based on computers, verbal messages (speech recognition
abilities, attention, questions, instructions, learning error cor-
rection feedback, and motivation reinforcement feedback)
[5], and nonverbal messages (gestures, facial expressions,
semi-verbal messages, distances, physical contact, interfaces
and time) [6].

However, their studies only focused on the message
and did not examine the robot as a sender in the Sender-
Message-Receiver model. As a sender, the robot is the one
who transfers the information to the receiver after care-
fully putting its thoughts into words or visual contents.
The robot has to possess communication skills, attitude
towards the receiver based on his/her information and learn-
ing history, and knowledge about the subject one is going to
communicate. These features may be distributed in a cloud
environment of the r-Learning service framework as in (b) of
Fig. 1, nonetheless their criteria have been suggested with-
out a cloud platform, with respect to the r-Learning service
framework.

To create new assessment criteria for robot assisted learn-
ing, it is necessary to define a Human Robot Interaction
(HRI) model. Considering the distributed features of the
robot, our HRI model consists of four factors: Robot-Cloud
Environment-Message-Receiver (Human). The cloud envi-
ronment deals with the robot’s information, the learner’s
information, learning history, and so on. The message
includes all the contents in the class the robot gives, such
as words, visual learning materials, the nonverbal way in

which the message is passed on or delivered. Thus, for robot
assisted learning, the cloud environment of the r-Learning
service framework should be considered. To establish the
assessment criteria for robot assisted learning, it is reasonable
to assume our HRI model (colored gray) based on the entire
r-Learning framework shown in Fig. 1b (see also Fig. 5).

To be adopted and spread, new technologies need to
have certain critical features, such as a relative advantage,
compatibility, complexity, trial ability, and observability.
The main idea of the spread of new technology can be
attributed to Roger’s innovation diffusion theory [30]. The
technology acceptance model (TAM) included this belief-
attitude-intention-behavior chain to the determinants behind
IT acceptance and use [8].

Most previous studies have focused on new technologies
such as computers or mobile phones. As the demand for
robot-assisted learning has grown, the issue of robot accep-
tance has increased in importance. Previous studies have
highlighted not only the user’s cognitive appraisal of a new
technology but also adoption theories that reflect engineer-
ing aspects. Hu et al. (2003) reported that a teacher’s TAM
was not related to consider job relevance whenmaking initial
acceptance decisions as well as after their use of technology
[15]. It was argued that a teacher’s TAM has a highly promi-
nent and significant path, from job relevance to perceived
usefulness, according to longitudinal surveys of 130 teach-
ers. One study of TAM concentrated on a robot which was
an Almere model of an assistive social agent for the elderly
[14].But it did not consider children in the learning and teach-
ing environment.Moreover, robot-assisted learninghasmany
features which differ from those of computer aided learn-
ing [12]. We consider two barriers preventing the spread of
robots in learning and teaching environments except the psy-
chological barriers of teachers: a range of affordable robot
kits, including the price and repair costs, and cloud services
from education authorities in Sect. 4.

3 Using robots in education for sustainable
development

Most of the students being cared for at the child welfare
centers in Korea are orphans, or are from single parents,
grandparents, or even defector families from North Korea.
According to social welfare officers involved in the present
outreach program, it is estimated that approximately 50%
of the students who participated had learning disabilities
or ADHD. The Korean government already supports vari-
ous after-school programs for these children. Though robots
may be tools to foster a student’s self-efficacy in ESD, it
is an enormous task to support a robot outreach program.
The key problem pertains to how a robot outreach program
can change students from low-income families over time.We

123



Cluster Comput (2016) 19:987–999 991

provide a qualitatively analysis in Sect. 3.3 and a quantitative
in Sect. 3.4.

3.1 Participants

For this study, eight facilities were randomly chosen from
among the child welfare centers and the centers for North
Korean defectors (the HANA Center) in Korea. The scale of
seven of the centers was nearly identical (9–12 participants),
but the largest center had fifty participants. In total, 131
students from eight centers participated in this outreach pro-
gram, which lasted one year, alternating between six months
with two types of robots. That is, for the first six months the
seven centers adopted a CCA-type robot, and the largest cen-
ter had aDCA-type robot. Then the centers exchanged robots
for another six months. All of the participants in the outreach
program thus experienced both types of robots. Eleven stu-
dents dropped out in the second half of the program due
to personal reasons, such as moves, hospitalizations, enroll-
ments in after-school programs, and others. Table 1 shows
the statistics of the 112 participants in the second half of
the outreach program after the eight non-responsive students
were excluded.

Table 1 Demographic statistics of participants

Item Number of people

Gender

Boy 97

Girl 15

Age

8–9 24

10–11 55

12–15 33

Housemate

Parent 33

Single father or mother 10

Relative 2

Protection facility (orphan) 50

Not regular 17

3.2 Robots and outreach program

Depending on their hardware configuration, the robots were
divided into the centralized controller architecture (CCA)
type and the decentralized controller architecture (DCA)
type, as shown in Fig. 2. For the CCA-type robots, the
connectors for the actuators and sensors needed to be
individually connected to the controller in the manner
of LEGO Mindstorm. This involved simple construction,
but connections were only possible for a limited number
of components. The robotic activities of the CCA type
focused on creativity, problem solving, and self-portrayal
through the robots. The DCA-type robots used a controller
where modules were connected via daisy-chain cabling; a
sub-processor was mounted on parts such as a motor or
sensor to build the module. Given that a DCA-type robot
can connect hundreds of various modules or more to one
communication connector, complex multi-axis robots such
as humanoid robots can easily be built. The robot activ-
ities of the DCA-type focused on reasoning skills and
expressiveness.

As shown in Table 2(a), the instructors prepared occa-
sional and weekly reports for the classes for which they
are responsible. To improve the quality of education, each
report was required to contain detailed descriptions of
observations of individual students. Based on the instruc-
tor’s reports, a project manager monitored how the class
progressed. The instructors and the project manager pro-
duced semester and final reports together. The report sys-
tem was organized into two stages for better education
management. Moreover, issues pertaining to success/failure
cases, performances, and improvements were shared through
one joint workshop per semester and through occasional
meetings.

Thirteen social officers of the child welfare centers, six-
teen robot expert instructors, and sixteen undergraduate and
some graduate volunteers who were majoring in robotics
ran the program in two six-month programs. There were
approximately ten students, one instructor, and two volun-
teers per class. Each program, as shown in Table 2(b), was

Fig. 2 The two types of robots used in the study. a CCA-type robot. b DCA-type robot
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Table 2 Robot outreach program for sustainable development

(a)Class Management (b)Weekly Curriculum
week CCA-type robot class DCA-type robot class

1 Introduction and setting Introduction and setting
2 Car with an IR sensor Joint setting and position 

control3
4 Moth with a CdS sensor Door lock with one motor
5 Gripper with two motors
6 Flytrap with a Limit sensor Car with four motors
7 Humanoid assemble
8 Doll with a Microphone
9 Sample motion play
10 Automatic door with an IR sensor Motion download
11 Programming tool  

instruction12 Biped robot and link
13 Insect programming Hello motion
14 Planetary gear Motion speed modification
15 Larva robot with a limit sensor Push-up motion
16 Big bow motion
17 Bebel gear Motion data combination
18 Sensor selection method
19 Timing belt Motion library 

manipulation20 Line tracer with a DC motor and 
an IR sensor21 Robot dance

composed of regular classes at the centers, which were run
for two hours/two times a week by the instructors, as well
as a one-time session involving the demonstration of robot
games operated by the volunteers.

The class was two segments 50 min long with a 10-
min break, thus lasting for 2 h. For learning activities with
the CCA-type robots, students talked about their dreams
and hopes freely, to self-reflect, and to draw subject mat-
ter related to their dreams and hopes. An instructor guided
students in imagining robots related to their subject matter
and drawing the function and appearance of their imag-
ined robots. The instructor then explained the robot parts
and assembly instructions and supported each student as
they designed and expressed their own robots in detail
using these parts. The instructor let students discuss the
robot parts that were prepared with great variety as well
as their designs and let them exchange opinions about
the robots. In an activity, students drew the problems that
were solved by robots or solved them by themselves. An
instructor encouraged each student to think creatively and to
design naturally and differently while not offering straight-
forward solutions. The students were seriously devoted
to their assembly tasks and continuously interacted ver-
bally. The program encouraged students to reflect in various
ways by comparing their robot assembly processes through
presentations.

Secondly, to learn activities with DCA-type robots, the
DCA-type humanoid robotswere set to produce various basic
motions (e.g., sitting, walking, turning around, hurrying).
These were collected for motion programming (e.g., greet-

ing, repeatedly sitting and standing, pushing up) and con-
figured with work programming for any situation (moving
three steps forward and sticking a flagpole). By programming
motions and complex robot behaviors, the logical thinking of
the students rather than creativity could be improved. Dur-
ing the final week, the instructor presented the most complex
behavior scenarios in various situations for the students to
discuss the programming. Students had to conceive of meth-
ods for solving the problems in the scenarios, such as obstacle
avoidance, climbing stairs, and others.

3.3 Qualitative evaluation of behavioral changes

Given that our outreach programdid not have a control group,
we interviewed thirteen social officers whowere stayingwith
the students at the child welfare center. They qualitatively
evaluated students’ behavioral improvements with five-point
Likert scales (much better, better, no change, worse, and
much worse), as shown in Fig. 3. One non-response (7%),
due to the replacement of a social officer in the middle of the
term, was excluded from the results. As shown in Fig. 3a, the
students’ behavioral changes with the CCA-type robot were
as follows: 16.7% of the students showed highly improved
behavior, 66.7% improved somewhat and 16.7% remained
the same. As shown in Fig. 3b, the behavioral changes of the
students with the DCA-type robots led to similar percent-
ages for highly improved, improved, and remaining the same.
Because therewere no reports ofworse ormuchworse behav-
ior for either type of robot, robotics education canbe expected
to be effective in improving the behavior of students.
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Fig. 3 Social officers’ evaluations of changes in students’ behaviors. a CCA-type robots. b DCA-type robots

Table 3 Some scenes of attitude changes over the six months of the course

ID 2nd week (February) 7th week (March) 21st week (June)

Y

C

Two individual success stories based on the accumulated
weekly reports are shown in Table 3. For the CCA type, the
representative success story was about student Y (a boy, 12
years old) who conducted himself negatively. In the early
weeks, Y showed a considerably annoying attitude, saying
that he could not understand how to make a robot at all. A
picture from the seventh week showed that Y had created a
helicopter by himself, though he did not complete the tail part
of the helicopter. Instead, he decided to complete it during
the next class. In the last week, Y made a smiling robot that
performed acrobatics in combination with a seesaw. Y fin-
ished sooner than the other students and therefore had time
to decorate the robot. Y thus developed the habit of finishing
what he set out to do. Secondly, the representative success-
ful case with the DCA-type robot involved student C (a boy,
10 years old). In the early weeks, C refused to participate in
the robot class and ran around inattentively with other kids,

spoiling the class. The instructor was so bothered by this that
she preferred his absence from the class. In the 7th week,
although C still chatted too much during the class, he was
gaining a competitive mind. C began to show growing inter-
est in robots, trying to make other motions by himself. He
started to nag his instructor to help himwhen his robot did not
move as well as others’ robots. During the 21st week, C did
not chat anymore and became immersed in the programming
of the robot’s motion. Although he was irritated when his
programming did not work well, C participated very well in
general.

The following reports are from interviews with two social
officers.

A: “I am supporting the operation of many education
classes for students with ADHD or from low-income
families inmy center. These students show problematic
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behaviors even after they go on tomiddle school.When
Iwas involved in other programs, it was very difficult to
make the children concentrate on the program. Frankly
speaking, I was very skeptical about robot education
at the beginning, like the other programs. Therefore,
when the programwas advertised to students, I strongly
urged the exclusion of any ADHD student. However,
the project manager from a university said, “I under-
stand. Please give them a chance to take part. To help
you and the instructors, undergraduate or graduate stu-
dents majoring in robots will be there as volunteer
teaching assistants.” Thus, I agreed to include students
with ADHD. Actually, it was so amazing to see how
distracted children gradually changed to pay attention
in the class. It was very hopeful to see these children
able to concentrate and participate in the programswith
their friends.”

B: “In the robot class, individual differences are some-
what severe because the intelligence and behavioral
problem levels are diverse, but it was touching to see the
opportunity given to students to discover their talents.
Most children in this center have never had learn-
ing opportunities involving robotics because of money
and/or unconcerned parents. In a special lecture, the
professor told the children that someone with the high-
est achievement in the robot contests could enter the
robot department of his university in the future. I am
sure there were several talented children at this cen-
ter who could achieve this. If they were born into an
ordinary family, they would not have missed such an
opportunity. The children in my center would have
missed it if this program had not been supported. I feel
very sorry for ending this program in only one year.
I hope the program will be continued in the future.
Specifically, talented children should be provided with
the opportunity to continue their learning in the sec-
ond and third years, not limiting them to a one-time
participation.”

3.4 Quantitative analysis for mental health

In this section, the effects of robot education targeting
low-income children during a year, involving aspects of
changes in mental health areas (immersion experience, ego-
resiliency, depression, discouragement, aggression) were
analyzed quantitatively, similar to the method in Choi et al.
[7]. Because it is uncertain whether robot education was the
only effect that influenced the participants during the year
(a long time) in which the program was run, a set of control
group data was created by selecting 30 students who were
in the same environment, but did not participate in the robot
education, and surveying them with the same questions. A

pre-test was conducted in the form of a self-answered survey
during the first week, and the aspects of change were mea-
sured by conducting a post-test during the final week of the
session year. For this assessment, we chose the tool used in
Jung et al. (2008) [17]. We randomly selected an experimen-
tal group (50 students out of 119 students) and a control group
(50 students) who had had no experience of robot education,
and then compared the pre and post-test for the two groups as
shown in Table 4. The child psychologist said that the results
of the comparison could not be treated as significant because
of the uncertainties involved in child mental health area and
the experiment period (a year).

It was found that the effects of the immersion experi-
ence and ego-resiliency were significant at α = 0.1 in
the mental health areas. It can be said that students who
received robot education enhanced their levels of immersion
and/or ego-resiliency, helping them improve their capacity
to overcome difficulties. However, because there were no
significant differences in other factors (depression, discour-
agement, aggression), it can be interpreted that there are no
side effects of robot education. In other words, it was shown
that students’ positive capabilities improved at the same time
there were no side effects, such as an increase in negative fea-
tures, as a result of the robot education. The following graphs
show this (Table 4 and Fig. 4).

4 TAM for robots on cloud platform

4.1 Robot service acceptance model

As an emerging technology, robots presently have a relatively
slow adoption trend, as they are not yet cost-competitive
for many applications. However, there is an opening of
new opportunities for robots in the education sector. Unlike
devices such as computers, lap-tops, and smartphones,
anthropomorphized robots can produce numerous nonverbal
messages with their facial expressions, arms, and legs. Addi-
tionally, robots can adopt their voice engine-TTS (Text to
Sound)- with various pitches as para-verbal messages. Thus
traditional TAM may not be reasonable for robots that have
the types of external factors discussed here, as mentioned in
Sect. 2.2, because it considers the inner factors of users of
new technology.

Cloud computing is becoming an attractive technology
in the teaching and learning environments discussed above.
MOODLE (Modular Object-Oriented Dynamic Learning
Environment), a free online learning management system,
provides students access to others who may be located far
away, in a massive, open, and connected setting. Most cloud
computing studies that are focused on learning consist of top-
ics such as technology for the future long-distance education
cloud, teaching information systems, the integration of teach-
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Table 4 Comparison of changes in mental health areas

Group Standard variable Mean Standard deviation t-value Degrees of freedom p-value

Experimental group Immersion experience Pre-test 7.90 1.85 (1.66) 49.00 0.10*

Post-test 8.56 2.41

Ego-resiliency Pre-test 7.85 1.86 (1.82) 47.00 0.08*

Post-test 8.52 2.18

Depression Pre-test 6.67 2.09 0.71 48.00 0.48

Post-test 6.35 2.78

Discouragement Pre-test 6.77 1.43 0.36 47.00 0.72

Post-test 6.67 1.85

Aggression Pre-test 6.50 2.02 (0.14) 47.00 0.89

Post-test 6.56 2.78

Control group Immersion experience Pre-test 8.47 2.42 (0.68) 29.00 0.50

Post-test 8.77 2.03

Ego-resiliency Pre-test 8.70 2.26 (0.18) 29.00 0.86

Post-test 8.77 2.01

Depression Pre-test 6.48 2.53 0.10 28.00 0.92

Post-test 6.41 2.81

Discouragement Pre-test 6.93 1.70 0.95 29.00 0.35

Post-test 6.53 1.80

Aggression Pre-test 6.79 2.44 (0.30) 28.00 0.77

Post-test 6.97 2.67

Fig. 4 Comparison of mental health areas

ing resources, and teaching systems development [23]. Mitra
(2013) prepared for future learning using Self-Organized
Learning Environments (SOLE) and by connecting them
with a global team of volunteer mediators known asGrannies
[27,38]. MOOC (Massive Open Online Courses) for higher
education [21] may be extended and shared by robotics edu-
cators in MOODLE to overcome the lack of ready-for-use
lesson materials.

The HRI model in a cloud environment consists of 1©
the robot, 2© the message (verbal, para-verbal, non-verbal),

3© the learning/teaching cloud environment, and the human
receiver, as mentioned in Sect. 2.2. We have proposed a
technology acceptance model, designated a RSAM (Robot
ServiceAcceptanceModel) basedHRImodel in a cloud envi-
ronment, as shown in (b) of Fig. 1. The three components of
RSAM shown in Fig. 5 are the important criteria factors for
teachers (or educational public officials) who seek to adopt
robot assisted learning in schools.

Using a pilot interview with seven teachers who are
involved in robot-assisted learning, we determined the pri-
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Fig. 5 RSAM model, which is similar to the gray area in (b) of Fig. 1

mary sub-factors of three components, as follows (see also
Fig. 2). For 1© the robot, these are price-competitiveness and
the ability of the hardware to express the robot characteris-
tics well. The price of a robot is in inverse proportion to the
expressiveness of the robot body: expressiveness is simple
if the price is low, and the robot will have a hardware body
that can express many concepts if the price is high. For 2©
thismessage, the robot act of communication involves verbal,
nonverbal, and para-verbal components similar to the human
communication model of the law of Mehrabian. For 3© the
cloud platform, cloud service for learning/teaching activities,
remote communicators for tele-operated robots (or teachers
for autonomous robots) and technical support are prerequi-
sites for a learning and teaching environment. Specifically,
technical support including repairs, training and advice, as
would be provided to customers (teachers) by certain robot
providers, is a basic requirement for the adoption of robots
in schools.

We discriminated the relative importance of these factors
using a surveywith a focus group to collect the views of users
of RSAM, i.e., teachers, in the next section.

4.2 Estimating the relative importance of RSAM

RSAM,whichuses a decision tree for robot-assisted learning,
is shown in Fig. 6. To estimate the weight values between the
RSAM factors, five surveyors received an orientation session
for face-to-face interviews and were trained. A three-minute
video of simulated robot-assisted learning was filmed before
the survey. The interviewee gave weights to each of three
factors (robot, messages, learning and teaching environment)
on a scale of 1–100 for the question ‘How important do you
think these factors are to adopting robot assisted learning in
school?’. The sum total in the first depth of the decision tree
must be 100%. Then the sub-factors in the second depthwere
weighted to allow an amount of 100% in all.

Fig. 6 Estimated weighted values of RSAM

The survey was carried out with 270 elementary teach-
ers in five face-to-face sessions. Three data instances were
eliminated because the sub-factors of RSAM did not add up
to 100%. Figure 6 shows the weighted values of the rela-
tive importance assigned by teachers for adopting robots in a
teaching and learning environment. The relative ratios of the
first depth for robot-assisted learning are 27.8% for robots,
37.8% formessages, and 34.5% for the environment. Teach-
ers felt that the robot (verbal, nonverbal and para-verbal)
message in classwas slightlymore important, as they focused
on the activities of the robots in their classes.

In the second depth for the factor robot, price (51.7%)was
amore important sub-factor than expression (48.2%). For the
factor, message, teachers expected that the verbal message
was most important with a relative importance proportion
of 36.5%. They considered para-verbal at 30.7% and non-
verbal at 32.8% quite different from the law of Mehrabian
as cited in Sect. 2.2. For the factor teaching and learning
environment, they expressed the need for a cloud environment
at a rate of 39.2%.

The highest total weighted proportion among eight sub-
factors was the price of the robot, which came in first at
14.4% (=0.2783×0.5169), followed by the verbalmessage
at 13.8%. They considered the price of the robot to be the
most important issue preventing the use of robots in schools.
Cloud services and expressions came next.

5 Conclusions and discussion

The first contribution of this paper is the examination of the
long-term potential of robot education for children from low-
income families, quantitatively aswell as qualitatively.While
the usefulness of robot education has been studied many
times, the number of studies focusing on ESD is relatively
low. There are no studies comparing the effect of outreach
robot education on behavior changes andmental health areas.
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It was qualitatively and quantitatively observed that stu-
dents from low-income families with low self-efficacy and
learning disabilities can improve through robotics education
in the long-term. In this study, effective education meth-
ods and observations were presented and shared through
individual learning activity reports, which were prepared
with instructors, social officers, volunteer students as teach-
ing assistants, and a project manager every month. The
social officers and instructors identified success stories in
which students’ self-efficacy levels and learning attitudes
improved.

In addition, we compared the differences of two types of
robot used in the outreach education. Specifically, the social
officers found that DCA-type humanoid robots resulted in
more positive effects thanCDA-type robots. Therefore, it can
be assumed that intelligent robots (the DCA-type humanoid
robots) are somewhat more effective than a creative type of
assembly robot in achieving positive student outcomes.

In the results of surveys on long-term changes in mental
health areas, based on comparisons of pre- and post-tests
of participants and a control group, it was found that the
level of immersion and ego-resiliency factors were increased
through robot education. Therefore, according to the results
of a qualitative analysis based on social officers’ judgments,
and the quantitative analyses, it can be said that both show
positive results.

Further studies which compare CDA-type and DCA-type
robots by groups could expand the analysis in various impor-
tant areas (capability of effectiveness and self-understanding,
feelings of happiness, social capability-interpersonal rela-
tionships, family relationships, intellectual capacity-math
intelligence, and linguistic intelligence) and thus should be
carried out in the future.

Along the current trends ofMOODLE, the r-Learning ser-
vice framework comes in near future. This condition requires
the development of assessment criteria to evaluate robot
assisted learning.

In that regard, the second contribution of this paper is
in defining an HRI model and a technology acceptance
model for robots, RSAM, as assessment criteria within the r-
Learning service framework. While the effectiveness of this
type of robot education is being studied in diverseways, there
is no study of TAMswhich involve robot-assisted learning in
schools. There are several studies of TAMs involving assis-
tive social robots, but they focus on psychological factors
such as the attitudes and enjoyment of elderly users, and not
children.

In addition, some previous works on criteria for robot
assisted learning have concentrated on the robot based mes-
sage and did not consider the robot as a sender (or receiver).
Since theknowledgeof the robot is distributed in a cloud envi-
ronment, we suggested a RSAM based on a cloud platform
and aHRImodel for robot-assisted learning. The RSAMwas

used to estimate the relative importance of factors affecting
teachers whomay adopt robots in teaching and learning envi-
ronments, using focus group interviews. It was determined
in the RSAM that robot providers should consider the most
important factor to be the price of the robot, followed by the
verbal message that the robot delivers and the cloud platform
and expressionswhen constructing a robot service framework
for use in teaching and learning environments.

Given the challenges faced by proponents of robot-
assisted learning, especially considering cloud services, we
can suggest that tele-operated robots will become leaders in
the area of robot-assisted learning given the dominant factors
in the RSAM. Tele-operated robots are less expensive than
autonomous robots and can easily deliver their own verbal
and non-verbalmessages via the internet. Further studies are
needed for a practical assessment of tele-operated robots in
robot-assisted learning.
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