
Cluster Comput (2016) 19:1–11
DOI 10.1007/s10586-016-0534-4

Dynamic load balancing on heterogeneous clusters for parallel
ant colony optimization

Antonio Llanes1 · José M. Cecilia1 · Antonia Sánchez1 ·
José M. García2 · Martyn Amos3 · Manuel Ujaldón4

Received: 30 March 2015 / Revised: 4 January 2016 / Accepted: 5 January 2016 / Published online: 27 January 2016
© Springer Science+Business Media New York 2016

Abstract Ant colony optimisation (ACO) is a nature-
inspired, population-based metaheuristic that has been used
to solve a wide variety of computationally hard problems. In
order to take full advantage of the inherently stochastic and
distributed nature of the method, we describe a paralleliza-
tion strategy that leverages these features on heterogeneous
and large-scale, massively-parallel hardware systems. Our
approach balances workload effectively, by dynamically
assigning jobs to heterogeneous resources which then run
ACO implementations using different search strategies. Our
experimental results confirm that we can obtain significant
improvements in terms of both solution quality and energy
expenditure, thus opening up new possibilities for the devel-
opment of metaheuristic-based solutions to “real world”
problems on high-performance, energy-efficient contempo-
rary heterogeneous computing platforms.

Keywords Heterogeneous computing · Ant colony
optimization · CUDA · Power-aware systems

B Manuel Ujaldón
ujaldon@uma.es

1 Department of Computer Science, Universidad Católica San
Antonio de Murcia (UCAM), 30107 Murcia, Spain

2 Department of Computer Engineering, University of Murcia,
30080 Murcia, Spain

3 School of Computing, Mathematics and Digital Technology,
Manchester Metropolitan University, Manchester, UK

4 Department of Computer Architecture, University of Málaga,
29071 Málaga, Spain

1 Introduction

Heterogeneous systems combine different types of processor,
and computing nodes may use a combination of traditional
multicore architectures (CPUs) and accelerators (mostly
Nvidia GPUs [31] or Intel Xeon Phi cards [35]). Although
such systems are becoming more common [42], they present
a new set of specific challenges, such as scalability, energy
efficiency, data management, programmability and reliabil-
ity [2].

The role of the software developer will be increasingly
important as such systems grow in popularity. They will
be expected to manage the inherent tension between per-
formance and power consumption, exploit the most useful
feature of each component type, and be able to handle the
complexity implied by combinations of hardware, instruction
sets and programming models. So far, the efficient mapping
of system components to computationswithin heterogeneous
systems is largely the responsibility of the programmer (that
is, the ability of the run-time system to achieve this is rela-
tively immature).

The hardware/software co-design methodology has
emerged since the 1990s as an approach to providing both
analysismethods (which allow developers to assess whether
or not a systemmeets its goals in termsof performance, power
usage, etc.), and synthesis methods (which allow develop-
ers and researchers to rapidly explore the space of design
methodologies) [8,44].

This approach has facilitated significant advances in high-
performance computing, which has, in turn, allowed for
developments in computational modelling, image analysis,
and many other areas [25,38].

A particular application domain of interest to us is
metaheuristics; specifically, algorithms inspired by natural
processes or phenomena [37]. Many of these methods (such

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-016-0534-4&domain=pdf

2 Cluster Comput (2016) 19:1–11

as the genetic algorithm [18], or particle swarm optimiza-
tion [23]) are population-based: theymaintain a collection of
individual solutionswhich “evolves” in somewayas the com-
putation proceeds. These algorithms are generally stochastic,
as they tend to rely on randomized search techniques. Addi-
tionally, they are inherently parallel, and many such variants
have been described [1].

One nature-based method of particular interest is Ant
Colony Optimization (ACO) [10,14,16]. This algorithm is
based on foraging behavior observed in colonies of ants, and
has been applied to a wide variety of problems, including
vehicle routing [45], feature selection [7] and autonomous
robot navigation [17]. The method relies on “ants” (i.e.,
mobile agents) constructing paths on a graph representing
a particular problem, where the paths represent a given solu-
tion. Paths are assessed according to the quality of the solu-
tion that they represent, and ants then deposit “pheromone”
(i.e., signalling chemicals) accordingly (the better the solu-
tion, the higher the pheromone concentration). The algorithm
takes advantage of positive feedback behaviour that emerges
from the multi-agent system, where distributed selection
quickly drives the population to high quality solutions.

The original ACO method (called the Ant System [12])
was developed by Dorigo in the 1990s, and this version (or
slight variants thereof, such as the MAX-MIN Ant System
(MMAS) [41]) is still in regular use [6,22,24]. Parallel ver-
sions of the Ant System have been developed [9,27,40,46]
(see also [33] for a survey), and, in recent work, we have pre-
sented a GPU-based version of ACO that, for the first time,
parallelizes both main phases of the algorithm (that is, tour
construction and pheromone deposition) [3,4].

The initial version of our ACO algorithm [3,4] was imple-
mented in CUDA (Compute Unified Device Architecture)
and written in C, which gave access to the parallel processing
capabilities of the GPU. This paper extends our framework
to encompass large-scale supercomputers, thus enabling its
implementation inMPI and OpenMP (in addition to CUDA),
and also incorporating different generations of Nvidia GPUs.

Since the advent of CUDA in 2006, at least four differ-
ent generations of GPUs have been released: Tesla, Fermi,
Kepler and Maxwell. Our algorithmic design investigates
the potential to deploy a load-balancing strategy across sev-
eral generations of Nvidia GPUs, for maximum performance
and minimum power consumption. In what follows, we use
our well-established ACO based metaheuristic as a both a
benchmarking application and an illustration of the long-term
potential for this method. Our experimental study covers a
wide range of computing systems, from consumer-market
devices to high-end servers.

This paper is organized as follows. Section 2 reviews
the ACO method, the CUDA programming model and our
ACO-based algorithm. Section 3 describes our paralleliza-
tion techniques to enhance ACO simulation on GPU-based

heterogeneous clusters, which form the main contribution
of this work. Section 4 focuses on the experimental results,
Sect. 5 gives a performance analysis, and we conclude in
Sect. 6 with an overall assessment and suggestions for future
work.

2 Background

2.1 Ant colony optimisation for the traveling salesman
problem

In what follows, we reprise our description of the algorithm,
which was first given in [5]. The Traveling Salesman Prob-
lem (TSP) [26] involves finding the shortest (or “cheapest”)
round-trip route that visits each of a number of “cities”
exactly once. The symmetric TSP on n cities may be rep-
resented as a complete weighted graph, G, with n nodes,
with each weighted edge, ei, j , representing the inter-city
distance di, j = d j,i between cities i and j . The TSP is a
well-known NP-hard optimisation problem, and is used as a
standard benchmark for many heuristic algorithms [21].

The TSP was the first problem solved by Ant Colony
Optimisation (ACO) [11,13]. This method uses a number
of simulated “ants” (or agents), which perform distributed
search on a graph. Each ant moves through on the graph until
it completes a tour, and then offers this tour as its suggested
solution. In order to do this, each ant may drop “pheromone”
on the edges contained in its proposed solution. The amount
of pheromone dropped, if any, is determined by the quality
of the ant’s solution relative to those obtained by the other
ants. The ants probabilistically choose the next city to visit,
based on heuristic information obtained from inter-city dis-
tances and the net pheromone trail. Although such heuristic
information drives the ants towards an optimal solution, a
process of “evaporation” is also applied in order to prevent
the process stalling in a local minimum.

The Ant System (AS) is an early variant of ACO, first
proposed by Dorigo [11]. The AS algorithm is divided into
two main stages: Tour construction and Pheromone update.
Tour construction is basedonm ants building tours in parallel.
Initially, ants are randomly placed. At each construction step,
each ant applies a probabilistic action choice rule, called the
random proportional rule, in order to decide which city to
visit next. The probability for ant k, placed at city i , of visiting
city j is given by the Eq. 1

pki, j =
[
τi, j

]α [
ηi, j

]β

∑
l∈Nk

i

[
τi,l

]α [
ηi,l

]β , i f j ∈ Nk
i , (1)

where ηi, j = 1/di, j is a heuristic value that is available
a priori, α and β are two parameters which determine the

123

Cluster Comput (2016) 19:1–11 3

relative influences of the pheromone trail and the heuristic
information respectively, and Nk

i is the feasible neighbour-
hood of ant k when at city i . This latter set represents the
set of cities that ant k has not yet visited; the probability
of choosing a city outside Nk

i is zero (this prevents an ant
returning to a city, which is not allowed in the TSP). By
this probabilistic rule, the probability of choosing a partic-
ular edge (i, j) increases with the value of the associated
pheromone trail τi, j and of the heuristic information value
ηi, j . The numerator of the Eq. 1 is pretty much the same
for every ant in a single run, thus, computation times can
be saved by storing this information in additional matrix,
called choice_info matrix as showed in [15]. The random
proportional rule ends with a selection procedure, which is
done analogously to the roulette wheel selection procedure of
evolutionary computation (for more detail see [15,19]). Each
value choice_in f o[current_ci ty][j] of a city j that ant k has
not visited yet determines a slice on a circular roulette wheel,
the size of the slice being proportional to the weight of the
associated choice. Next, the wheel is spun and the city to
which the marker points is chosen as the next city for ant
k. Furthermore, each ant k maintains a memory, Mk , called
the tabu list, which contains the cities already visited, in the
order they were visited. This memory is used to define the
feasible neighbourhood, and also allows an ant to both to
compute the length of the tour T k it generated, and to retrace
the path to deposit pheromone.

After all ants have constructed their tours, the pheromone
trails are updated. This is achieved by first lowering the
pheromone value on all edges by a constant factor, and then
adding pheromone on edges that ants have crossed in their
tours. Pheromone evaporation is implemented by

τi, j ← (1 − ρ)τi, j , ∀(i, j) ∈ L , (2)

where 0 < ρ ≤ 1 is the pheromone evaporation rate.
After evaporation, all ants deposit pheromone on their visited
edges:

τi, j ← τi, j +
m∑

k=1

�τ ki, j , ∀(i, j) ∈ L , (3)

where �τi j is the amount of pheromone ant k deposits. This
is defined as follows:

�τ ki, j =
{
1/Ck if e(i, j)k belongs to T k

0 otherwise
(4)

where Ck , the length of the tour T k built by the k-th ant, is
computed as the sum of the lengths of the edges belonging
to T k. According to Eq. 4, the better an ant’s tour, the more
pheromone the edges belonging to this tour receive. In gen-
eral, edges that are used by many ants (and which are part
of short tours), receive more pheromone, and are therefore
more likely to be chosen by ants in future iterations of the
algorithm.

2.2 The CUDA programming model

ComputeUnifiedDeviceArchitecture (CUDA) [29] is a plat-
form for Graphics Processing Units (GPUs), covering both
hardware and software. On the hardware side, the GPU con-
sists of N multiprocessors which are replicated within the
silicon area, each endowed with M cores sharing the control
unit, and a shared memory (a small cache explicitly managed
by the programmer). Each GPU generation has increased
CUDA Compute Capabilities (CCC), as well as increasing
the number of cores and shared memory size (see Table 1).
In conjunction with these developments, power consumption
has been reduced by a factor of 2 at each new generation.

The CUDA software paradigm is based on a hierarchy
of abstraction layers: the thread is the basic execution unit;
threads are grouped into blocks, and blocks are mapped to
multiprocessors. C language procedures to be ported toGPUs
are transformed into CUDA kernels, mapped to many-cores
in a SIMD (Single Instruction Multiple Data) fashion (that
is, with all threads running the same code but having differ-
ent IDs). The programmer deploys parallelism by declaring a

Table 1 CUDA summary by
hardware generation since its
inception (four generations up to
2015)

Hardware generation and starting year Tesla 2007 Fermi 2010 Kepler 2012 Maxwell 2014

Multiprocessors per die (up to) 30 16 15 16

Cores per multiprocessor 8 32 192 128

Total number of cores (up to) 240 512 2880 2048

Shared memory size (maximum in
Kbytes, per multiprocessor)

16 48 48 96

CUDA Compute Capabilities (CCC) 1.3 2.1 3.5 5.2

Peak single-precision performance
(GFLOPS)

672 1178 4290 4980

Performance per watt (approximated
and normalized)

1 2 6 12

123

4 Cluster Comput (2016) 19:1–11

grid composed of blocks equally distributed among all multi-
processors. A kernel is therefore executed by a grid of thread
blocks, where threads run simultaneously grouped in batches
called warps, which are the main scheduling units.

2.3 Our initial CUDA implementation

In previous work, we developed a CUDA-based ACO imple-
mentation, with an emphasis on data parallelism [4].We now
summarize this algorithm, as it provides the foundation of the
current work.

Recall that ourACO implementation involves antsmoving
on a graph, deciding where to move next based on simulated
pheromone concentrations. When an ant makes a decision
on which city/node to visit next, it must calculate heuristic
values which are the same for all ants at any one time step
(that is, the heuristic information constitutes information on
nodes, which must be consistent and accessible to all ants). It
makes sense, therefore, to split the computation of heuristic
values into a separate heuristic info kernel, which is then
executed prior to tour construction. Transition probabilities
are stored in a two-dimensional choice matrix, which is used
to inform “roulette wheel” (Monte Carlo) selection by each
ant.

In the tour construction kernel, each ant is associated with
a thread block, such that each thread represents a city (or
cities) that the ant may visit. This avoids the problem of warp
divergences, and enhances data parallelism, as all threads
within a block may cooperate. The degree of parallelism
improves by a factor of 1 : w, where w is the number of
CUDA threads per block.

Finally, the pheromone kernel performs evaporation and
deposition. Evaporation is straightforward, as a single thread
can independently lower each entry in the pheromone matrix
by a constant factor. Deposition is more challenging, since
each ant generates its own private tour in parallel, and will
eventually visit the same edge as another ant. In order to pre-
vent race conditions, we require the use of CUDA atomic
operations when accessing the pheromone matrix in this
stage.

3 Scaling to heterogeneous clusters

Traditional parallel implementations are not always efficient
when ported to heterogeneus systems. They are often inher-
ited from scalable supercomputers, where all nodes in the
cluster have the same compute capabilities, and they there-
fore lack the ability to distinguish computational deviceswith
assymmetric computational power and energy consumption.
Differences are not limited to fundamental hardware design
(CPUs vs. GPUs), but also occur within the same family
of processors. For example, the Kepler family (see Table 1)

Fig. 1 Heterogeneous system based on different Nvidia GPU genera-
tions

includes Tesla K20, K20X and K40 models, endowed with
13, 14 and 15 multiprocessors, respectively (the K80 model
even reaches 30 multiprocessors split into two chips). Fig-
ure 1 shows a heterogeneous cluster which, nowadays, may
include different Nvidia GPU generations, even within the
same node.

With this scenario in mind, we introduce a heteroge-
neity-aware parallelization of ACO applied to the Travelling
Salesman Problem as introduced in Sect. 2.1. Our depar-
ture point is (1) the CUDA-based implementation of ACO
described in Sect. 2.3, and (2) the parallelization strategy
proposed by Stützle [39], where independent instances of
the ACO algorithm are run on different processors (GPUs in
our case, having assorted CUDA Compute Capabilities).

Parallel runs do not incur any communication overhead,
and the final solution is chosen across all independent exe-
cutions, taking advantage of the stochastic nature of ACO
algorithms. The execution time of each independent execu-
tionmay differ, as it depends on (1) the underlying GPU each
ACO instance runs on,which is actually unknownat compile-
time, and (2) the TSP instance size (the same in principle for
all processors, but affected by GPU heterogeneity). Given
that the slowest GPU will determine the overall execution
time, our mission is to make use of the idle time offered
by the most powerful GPUs. Performance and energy differ-
ences shown in the last two rows of Table 1 lead us to believe
that there is ample room for improvement here.

We have designed an implementation with three main
focuses: (1) Resources accounting through MPI processes,
(2) performance monitoring via OpenMP threads, and (3)
power consumption balance using GPU Boost. We now
expand on each of these in the following subsections.

3.1 Resources accounting

First, our algorithm defines a MPI thread for each existing
node in the cluster where we run our simulation. Heuristic

123

Cluster Comput (2016) 19:1–11 5

information about inter-city distances is sent to each node,
where supporting data structures are also created to avoid
communication overhead. Then each MPI thread creates as
many OpenMP threads as GPUs are available on a node,
which is easily attained by querying the GPU properties at
runtime (using cudaGetDeviceCount from the CUDA
API) and NVML (Nvidia Management Library).

3.2 Performance monitoring

Secondly, a warm-up phase is performed to establish per-
formance differences among all targeted GPUs running the
particular TSP instance to be solved. This phase measures,
at run-time, the execution time of a small number of itera-
tions of the ACO algorithm (five to ten) in order to detect
these differences. Importantly, at this stage, the algorithm is
not trying to solve the TSP problem in any meaningful sense
(five to ten iterations is not enough to do so) but these runs
allow us to calculate the performance differences between
GPUs. The execution times spent at this warm-up phase on
all GPUs are reduced to obtain the maximum value using
MPI_Allreduce. Thus, the Percent parameter is eventu-
ally determined according to Eq. 5. The slowest GPU will
have Percent = 1, a GPU two times faster than slowest
GPU would have Percent = 0.5, and so on.

Percent = Ex .t imeactualGPU

Ex .t imeslowestGPU
(5)

We then establish the time-budget, which is a threshold
that determines the maximum completion time for that ACO
algorithm on everyGPU. It corresponds to the execution time
required to perform a number of iterations of ACO on the
slowest GPU available. This number of iterations (referred
to as δ from now on) is a configuration parameter of our
algorithm, and is known by all nodes in the simulation. It
is empirically determined to be good enough to find out a
good solution to the TSP on our CUDA implementation of
ACO. For instance, in our experimental section δ is set to
1000 iterations.

Each OpenMP thread then calculates the slot that it can
use for the simulation (γ , with γ > δ). This slot can be used
for a deeper search (thus computing additional iterations of
ACO), or for reducing the power consumption (by relaxing
the clock rate in GPU cores). In addition, when γ ≥ δ/2, the
algorithm can even do a restart to avoid becoming “trapped”
in a local minimum.

Additional iterations (γ) are obtained by Eq. 6.

γ = δ ∗ (1/percent) (6)

where “percent” is the performance difference identified
among GPUs at warm-up stage, which we have previously
explained.

The number of restarts or additional iterations that each
GPU may perform is calculated by Eq. 7

γ = 1/percent (7)

as the numerator represents the percent for the slowest GPU,
which is always set to 1.

Finally, if we wish to reduce the overall power consump-
tion of our simulation, we may use GPU Boost™, which is
a new hardware feature introduced by Nvidia from the K40
Kepler GPU onwards. GPUBoost manipulates the clock rate
of the GPU cores to trade performance by energy. The idea
is to sacrifice time in favour of power consumption when the
latter is more critical. Developers can use the nvidia-smi
shell command to set up the frequency in the GPU, usu-
ally exceeding/reducing the nominal value around 20%. To
prevent excessive thermal stress,Nvidia does not allowdevel-
opers to change this parameter at run-time or within an
application, as the Intel SpeedStep™does. Moreover, the
GPU is required to work in Persistence Mode, which ensures
that driver stays loaded even when the GPU has no work
to run on it. The range of clocks supported can be queried
by the nvidia-smi -d SUPPORTED_CLOCKS com-
mand, and changed with the -ac option (see [32] for more
details and a full list of commands). Clock changes require
superuser privileges, or developers can use the NVIDIA
Management Library (NVML) [30] instead. NVML is a C-
based API for monitoring and managing diverse states of
NVIDIA GPU devices (including clock settings), without
requiring the user to run nvidia-smi prior to launching
the application on the GPU. The real-time power consump-
tion measurement of individual GPU components using a
software approach is only supported by the Nvidia Kepler
architecture GPU. This is also done by using NVML,
which reports the GPU power usage at real-time. We use
nvmlDeviceGetPowerUsage command to obtain po-
wer usage.

4 Experimental setup

4.1 Hardware environment

For this experimental study, we used the following platforms:

– On the CPU side: Four Intel Xeon X7550 processors
running at 2 GHz and plugged into a quad-channel
motherboard endowed with 128 Gigabytes of DDR3
memory.

– On the GPU side: Four GPUs, starting with anTesla
C2050 (Fermi generation, approximately 4 years old) and
ending with a brand new GeForce GTX 980 (Maxwell
generation), with two Kepler models in between (K20

123

6 Cluster Comput (2016) 19:1–11

Table 2 Hardware resources and experimental setup used during our executions

Vendor and type Intel CPU Nvidia GPUs

Family Haswell Fermi Kepler Kepler Maxwell
Class Xeon Tesla Tesla Tesla GeForce
Model X7550 C2050 K20c K40c GTX 980
Year 2015 2012 2013 2014 2015

Processing elements Cores per multiprocessor (does not apply) 32 192 192 128

Number of multiprocessors 14 13 15 16

Total number of cores 8 448 2496 2880 2048

Clock frequency (MHz) 2000 1147 706 745 1216

Maximum number of GPU
threads

Per multiprocessor (does not apply) 1536 2048 2048 2048

Per block 1024 1024 1024 1024

Per warp 32 32 32 32

Register file 32-bit registers (per multiprocessor) 32768 65536 65536 65536

SRAM memory (per
multiproc.on GPUs)

Shared (only GPUs) (32 KB L1D and 32
KB L1I)

16 or 48 KB 16 or 48 KB 16 or 48 KB 96 KB

L1 cache 48 or 16 KB 48 or 16 KB 48 or 16 KB (48 KB per block)

(Shared + L1) 64 KB 64 KB 64 KB

L2 cache (shared by all cores) 256 KB 768 KB 1280 KB 1536 KB 2048 KB

L3 cache 16 MB (does not apply)

DRAM memory Size (Megabytes) 131072 2687 4800 11520 4096

Speed (MHz) 2x666 2x1546 2x2600 2x3004 2x3505

Width (bits) 256 384 320 384 256

Bandwidth (Gbytes/s) 42.66 148.41 208 288.38 224.32

Technology DDR3 GDDR5 GDDR5 GDDR5 GDDR5

CUDA Compute Capabilities (d.n.a.) 2.0 3.5 3.5 5.2

and K40), all sharing the motherboard space with PCI-e
3.0 slots to communicate with the CPUs.

Table 2 gives a detailed description of all these platforms.
Weuse gcc 4.8.2with the -O3flag to compile on theCPU, and
the CUDA compiler/driver/runtime version 6.5 to compile
and run on the GPU.

4.2 Benchmarking

We test our designs using a set of benchmark instances
from thewell-knownTSPLIB library [36,43].All benchmark
instances are defined on a complete graph, and all distances
are defined as integer numbers. Table 3 shows a list of all
targeted benchmark instances with information on the num-
ber of cities, the type of distance and the length of optimal
tours.

ACOparameters such as the number of ants (m), and those
values to set up their behaviour, like α, β, ρ, and so on, are set
according to the values recommended in [15]. In particular,
m = n (being n the number of cities), α = 1, β = 2 and
ρ = 0.5.

Table 3 Description of benchmark instances from TSPLIB library
(EUC_2D stands for 2D euclidean distance)

Name Cities Type Best tour length

d198 198 EUC_2D 15,780

a280 280 EUC_2D 2579

lin318 318 EUC_2D 42,029

pcb442 442 EUC_2D 50,778

rat783 783 EUC_2D 8806

pr1002 1002 EUC_2D 259,045

5 Experimental results

Given the fact that our techniques establish the experimental
setup dynamically, results shown below are platform depen-
dent.

5.1 Performance and workload balance

Figure 2 shows performance differences across different
GPU generations when they run several TSP instances.

123

Cluster Comput (2016) 19:1–11 7

Fig. 2 Execution times in
seconds on different Nvidia
GPU generations for several
TSP instances. Although we
have used a Tesla s2050 in our
experiments, the figure only
shows the performance of a
single GPU of the S2050 server
(i.e. Tesla C2050)

Fig. 3 Quality of the results obtained for different TSP Lib instances, normalized to the optimal solution

Results are recorded for 1000 iterations, and averaged over
10 different runs. The fastest GPU belongs to the latest gen-
eration (Maxwell-based GeForce GTX 980), outperforming
the slowest GPU by up to a 4.2× factor. This slowest GPU
is the Tesla C2050, which determines the time-budget for
the entire execution. Tesla K20c, the Kepler model, obtains
intermediate results, with up to 1.6× gain versus the Tesla
C2050.

Results are measured statically for the sake of show-
ing performance differences in a real scenario. However, as
described, our methodology includes awarm-up stage to cal-
culate these differences at run-time. In previous work [4],
more details about performance analysis are given; in partic-
ular, we reported up to 20× speed-up factor on average for a
Tesla C2050 versus a single-threaded CPU.

Wenowenhanceour parallelization strategy to take advan-
tage of the time that Kepler and Maxwell GPUs are idle, in
order to improve the quality of the results. One idea, which
we call DeepSearch, is to increase the number of iterations in
order to perform a deeper searchwithin the same time budget.
For instance, GeForce GTX 980 carries out 4102 iterations,
Tesla K40 carries out 1946 iterations, Tesla K20c carries out
1654 iterations, and Tesla C2050 just 1000 iterations (the
time-budget established for this simulation).

Another possibility is to include a restart to avoid being
trapped in a local minimum. That is possible if and only if
the performance gap is at least twice the slowest GPU per-
formance. These two goals can be merged to create a hybrid
approach which we call Deep Search + Restart. Driven by
this combination, GeForce GTX 980 may perform up to four
restarts of 1000 iterations each (as its percent value is 0.24
on pr1002 TSP instance), whereas Tesla K40 and Tesla K20c
only perform a single phase with a deeper search involving
1946 and 1657 iterations, respectively (0.51 and 0.60 % val-
ues are not enough to complete two restarts).

Figure 3 shows a tour quality comparison across the
sequential run and all parallel strategies for a variety of
benchmarks normalized by the optimal solution. The first bar
represents the sequential code, written in ANSI C, provided
by Stuzle in [15]. This code runs for 1000 ACO iterations on
a single-threaded CPU. The second bar is the result quality
for our GPU version over 1000ACO iterations. Figures show
that the quality of solutions obtained for these two versions
are relatively similar to each other.

The third bar shows our GPU Deep Search strategy, and
the fourth bar represents Deep Search + Restart. These two
last versions improve results by significant margin within the
same time-budget,with a small advantage forDeepSearch on

123

8 Cluster Comput (2016) 19:1–11

Fig. 4 Execution times in
seconds on a Tesla K40 GPU for
several TSP instances using
different clock frequencies

Fig. 5 Power consumption (in
milliwatts) measured for the
Tesla K40 GPU on different
clock frequencies and TSP
instances

average. Note that Deep Search performs restarts implicitly,
as different searches are executed ondifferentGPUs,whereas
Deep Search + Restarts includes restarts explicitly on the
same GPU.

5.2 Power consumption

Figure 4 shows the power budget for our simulation under
different clock settings. Performance gains reflect up to 1.3×
speed-up factor, in line with the 31% increment in the clock
rate (frequency raises from 666 to 875 MHz).

Figure 5 outlines power consumption in milliwatts for dif-
ferent clock rates. As expected, power consumption raises
with higher clock frequencies.

The overall power budget is correlated to the total exe-
cution time of the application (see Fig. 6a). However, the
745 MHz clock setting—which is actually set by default on
Nvidia’s driver for the Tesla K40—is the most energy effi-
cient.

5.3 Power-aware performance metrics

Researchers have proposed metrics combining performance
and power measures into a single index. The most popular in
low-power circuit design is in the form of EDn [34], where

E is the energy, D is the circuit delay, and n is a nonnegative
integer. The power-delay product (PDP), the energy-delay
product (EDP) [20] and the energy-delay-squared product
(ED2P) [28] are all special cases of EDn with n = 0, 1, 2,
respectively.

Intuitively, EDn captures the energy usage per operation,
with a lower value reflecting the fact that power is more effi-
ciently translated into the speed of operation. The parameter
n implies that a 1% reduction in circuit delay is worth pay-
ing an n% increase in energy usage; thus, different n values
represent varying degrees of emphasis on deliverable perfor-
mance over power consumption.

Figure 6b shows the Energy Delay Product (EDP) for our
ACO simulation, and Fig. 6c the Energy Delay Square Prod-
uct (triple weight on performance). These couple of metrics
prioritize performance over energy. Figure 4 shows that per-
formance differences among different clock frequencies are
remarkable, to benefit fastest settings.

6 Conclusions and future work

We present a parallelization strategy tailored to heteroge-
neous and massively parallel systems. Heterogeneity may
limit acceleration and waste energy unless programmers

123

Cluster Comput (2016) 19:1–11 9

Fig. 6 Energy consumption in Joules/1000 (mJ) measured on different clock frequencies for the Tesla K40 GPU. Measurements are taken for
the execution on all targeted TSP instances, and averaged over 10 launches. a Total energy, b Energy delay product (EDP), and c Energy delay
square product

develop smarter applications to wisely control those fea-
tures on the road towards an optimal performance/watt ratio.
Our proposal cares about accuracy, joules and time equally,
deploying those magnitudes on an equilateral triangle man-
aged by a cooperative scheduling of jobs to attain an optimal
balance among them at run-time. This makes our strategy
particularly useful for non-deterministic algorithms and sto-
chastics behaviours where real-time and/or energy contraints
must be fulfilled. With the user setting up those constraints
properly, our method may even grant priority to any of the
goals composing the metaheuristic.

In a preliminary stage of development, we have illus-
trated our ideas usingAnt ColonyOptimization as case study.
Given the scalability demonstrated along our experimental
study, we foresee an immense potential to extend and refine
our methods in future heterogeneous systems. In particular,
queries tomeasure energies and temperatureswithin theGPU
are weak and almost non-existing on low-power devices like
Tegra heterogeneous plaforms. Given the long way ahead for
improvement and how vendors are enthusiastically endors-
ing low-power devices, we believe the ideas presented here
will greatly benefit from incoming sensors, hardware coun-
ters, middleware, libraries and tools, to provide the research
community solid pillars to face the expected growth of het-
erogeneous systems in a much better power-aware manner.

Acknowledgments This work is jointly supported by the Fundación
Séneca (Agencia Regional de Ciencia y Tecnología, Región deMurcia)
under Grants 15290/PI/2010 and 18946/JLI/13, by the Spanish MEC
under grants TIN2012-31345 and TIN2013-42253-P, by the Nils Coor-
dinated Mobility under Grant 012-ABEL-CM-2014A, in part financed
by the European Regional Development Fund (ERDF), and by the Junta
deAndalucía under Project of Excellence P12-TIC-1741.We also thank
Nvidia for hardware donations within UCAM and UMACUDA Teach-
ing and Research Centers awards.

References

1. Alba, E., Luque, G., Nesmachnow, S.: Parallel metaheuristics:
recent advances and new trends. Int. Trans. Oper. Res. 20(1), 1–48
(2013). doi:10.1111/j.1475-3995.2012.00862.x

2. Carretero, J., Garcia-Blas, J., Singh, D.E., Isaila, F., Fahringer, T.,
Prodan, R., Bosilca, G., Lastovetsky, A., Symeonidou, C., Perez-
Sanchez, H., et al.: Optimizations to enhance sustainability of mpi
applications. In: Proceedings of the 21st European MPI Users’
Group Meeting, p. 145. ACM (2014)

3. Cecilia, J.M., Garcia, J.M., Ujaldon, M., Nisbet, A., Amos, M.:
Parallelization strategies for ant colony optimisation on GPUs. In:
Proceedings of the 2011 IEEE International SymposiumonParallel
and Distributed Processing, pp. 339–346. IEEE (2011)

4. Cecilia, J.M., Garcia, J.M., Nisbet, A., Amos, M., Ujaldón, M.:
Enhancing data parallelism for ant colony optimization on GPUs.
J. Parallel Distrib. Comput. 73(1), 42–51 (2013)

5. Cecilia, J.M., Nisbet, A., Amos, M., Garcia, J.M., Ujaldón,
M.: Enhancing GPU parallelism in nature-inspired algorithms. J.
Supercomput. 63(3), 773–789 (2013)

6. Chang, R.S.S., Chang, J.S.S., Lin, P.S.S.: An ant algorithm for bal-
anced job scheduling in grids. Future Gener. Comput. Syst. 25(1),
20–27 (2009). doi:10.1016/j.future.2008.06.004

7. Chen, Y., Miao, D., Wang, R.: A rough set approach to feature
selection based on ant colony optimization. Pattern Recognit. Lett.
31(3), 226–233 (2010). doi:10.1016/j.patrec.2009.10.013

8. De Michell, G., Gupta, R.K.: Hardware/software co-design. Proc.
IEEE 85(3), 349–365 (1997)

9. Delévacq, A., Delisle, P., Gravel, M., Krajecki, M.: Parallel ant
colony optimization on graphics processing units. J. Parallel Dis-
trib. Comput. 73, 52–61 (2013). doi:10.1016/j.jpdc.2012.01.003

10. Dorigo, M., Di Caro, G.: Ant colony optimization: a new meta-
heuristic. In: Proceedings of the 1999 Congress on Evolutionary
Computation (CEC’99), pp. 1470–1477. IEEE Press (1999)

11. Dorigo, M.: Optimization, learning and natural algorithms. Ph.D.
thesis, Politecnico di Milano, Italy (1992)

12. Dorigo,M.,Maniezzo,V., Colorni,A.:Ant system: optimization by
a colony of cooperating agents. IEEE Trans. Syst. Man Cybernet.
B 26(1), 29–41 (1996)

13. Dorigo, M., Maniezzo, V., Colorni, A.: The ant system: optimiza-
tion by a colony of cooperating agents. IEEE Trans. Syst. Man
Cybernet. B 26, 29–41 (1996)

14. Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization.
IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)

15. Dorigo, M., Stutzle, T.: Ant Colony Optimization. Bradford Com-
pany, Scituate (2004)

16. Dorigo, M., Stützle, T.: Ant colony optimization: overview and
recent advances. Handbook of Metaheuristics, pp. 227–263.
Springer, Berlin (2010)

17. Garcia, M.P., Montiel, O., Castillo, O., Sepúlveda, R., Melin, P.:
Path planning for autonomous mobile robot navigation with ant
colony optimization and fuzzy cost function evaluation. Appl. Soft
Comput. 9(3), 1102–1110 (2009). doi:10.1016/j.asoc.2009.02.014

123

http://dx.doi.org/10.1111/j.1475-3995.2012.00862.x
http://dx.doi.org/10.1016/j.future.2008.06.004
http://dx.doi.org/10.1016/j.patrec.2009.10.013
http://dx.doi.org/10.1016/j.jpdc.2012.01.003
http://dx.doi.org/10.1016/j.asoc.2009.02.014

10 Cluster Comput (2016) 19:1–11

18. Goldberg, D.E.: Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison-Wesley Professional, New York
(1989)

19. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and
Machine Learning, 1st edn. Addison-Wesley Longman Publishing
Co. Inc, Boston (1989)

20. González, R., Horowitz, M.: Energy dissipation in general purpose
microprocessors. IEEE J. Solid-State Circuits 31(9), 1277–1284
(1996)

21. Johnson, D.S., Mcgeoch, L.A.: The Traveling Salesman Problem:
A Case Study in Local Optimization. Wiley, New York (1997)

22. Ke, B.R., Chen, M.C., Lin, C.L.: Block-layout design using max-
min ant system for saving energy on mass rapid transit systems.
IEEE Trans. Intell. Transp. Syst. 10(2), 226–235 (2009). doi:10.
1109/TITS.2009.2018324

23. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Pro-
ceedings of IEEE International Conference on Neural Networks,
vol. 4, pp. 1942–1948. IEEE (1995)

24. Komarudin, Wong, K.Y.: Applying ant system for solving unequal
area facility layout problems. Eur. J. Oper. Res. 202(3), 730–746
(2010). doi:10.1016/j.ejor.2009.06.016

25. Krueger, J., Donofrio, D., Shalf, J., Mohiyuddin, M., Williams, S.,
Oliker, L., Pfreund, F.J.: Hardware/software co-design for energy-
efficient seismic modeling. In: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Stor-
age and Analysis, p. 73. ACM (2011)

26. Lawler, E., Lenstra, J., Kan, A., Shmoys, D.: The Traveling Sales-
man Problem. Wiley, New York (1987)

27. Manfrin, M., Manfrin, M., Stützle, T., Dorigo, M.: Parallel
ant colony optimization for the traveling salesman problem.
Ant Colony Optimization and Swarm Intelligence, pp. 224–234.
Springer, Berlin (2006)

28. Martin, A.: Towards an energy complexity of computations. Inf.
Process. Lett. 77, 181–187 (2001)

29. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel
programming with cuda. Queue 6(2), 40–53 (2008)

30. Nvidia Corporation. NVML API Reference ([last accesed 15
November 2014]). http://developer.download.Nvidia.com/assets/
cuda/files/CUDADownloads/NVML/nvml.pdf

31. NVIDIA: NVIDIA CUDA C Programming Guide 6.5 (2014)
32. Parallel forall blog. Nvidia CUDA Zone. http://devblogs.nvid

ia.com/parallelforall/increase-performance-gpu-boost-k80-autob
oost/ [11 March 2015]

33. Pedemonte,M., Nesmachnow, S., Cancela, H.: A survey on parallel
ant colony optimization. Appl. Soft Comput. 11(8), 5181–5197
(2011). doi:10.1016/j.asoc.2011.05.042

34. Pénzes, P., Martin, A.: Energy-delay efficiency of vlsi computa-
tions. In: Proceedings of the ACM Great Lakes Symposium on
VLSI (GLSVLSI). IEEE (2002)

35. Rahman,R.:Xeonphi systemsoftware. Intel®XeonPhiCoproces-
sor Architecture and Tools, pp. 97–112. Springer, Berlin (2013)

36. Reinelt, G.: TSPLIB—a traveling salesman problem library.ORSA
J. Comput. 3(4), 376–384 (1991)

37. Rozenberg, G., Bäck, T., Kok, J.N.: Handbook of Natural Comput-
ing. Springer, Berlin (2011)

38. Shalf, J., Quinlan, D., Janssen, C.: Rethinking hardware-software
codesign for exascale systems. Computer 44(11), 22–30 (2011)

39. Stützle, T.: Parallelization strategies for ant colonyoptimization. In:
PPSNV: Proceedings of the 5th International Conference on Paral-
lel Problem Solving from Nature, pp. 722–731. Springer, London
(1998)

40. Stützle, T.: Parallelization strategies for ant colony optimization.
Parallel Problem Solving from Nature (PPSN V), pp. 722–731.
Springer, Berlin (1998)

41. Stutzle, T., Hoos, H.H.: MAX-MIN ant system. Future Gener.
Comput. Syst. 16(8), 889–914 (2000)

42. Top 500 supercomputer site ([last accesed 15 November 2014]).
http://www.top500.org/

43. TSPLIB Webpage (2011). http://comopt.ifi.uni-heidelberg.de/
software/TSPLIB95/

44. Wolf, W.: A decade of hardware/software codesign. Computer
36(4), 38–43 (2003)

45. Yu, B., Yang, Z.Z., Yao, B.: An improved ant colony optimization
for vehicle routing problem. Eur. J. Oper. Res. 196(1), 171–176
(2009). doi:10.1016/j.ejor.2008.02.028

46. Zhu, W., Curry, J.: Parallel ant colony for nonlinear function
optimization with graphics hardware acceleration. In: IEEE Inter-
national Conference on Systems, Man and Cybernetics, SMC, pp.
1803–1808. IEEE (2009)

Antonio Llanes obtained his
B.S. degree in Computer Sci-
ence in Univ. of Murcia (Spain,
2006), he also received his M.S.
in Univ. ofMurcia (Spain, 2010).
He is Lecturer at Catholic Uni-
versity of Murcia (Spain) from
2006. Nowadays, he is work-
ing in his Ph.D. at Catholic
University of Murcia (Spain,
2014–). He has been involved
in several regional and interna-
tional projects, like SENECA
and NILS mobility. His main
research interests are parallel

computing, AI, and bioinformatics applications.

José M. Cecilia received his
B.S. degree in Computer Science
from the University of Murcia
(Spain, 2005), his M.S. degree
in Computer Science from the
University of Cranfield (United
Kingdom, 2007), and his Ph.D.
degree in Computer Science
from the University of Mur-
cia (Spain, 2011). Dr. Cecilia
was predoctoral researcher at
Manchester Metropolitan Uni-
versity (United Kingdom, 2010),
supported by a collaboration
grant from the European Net-

work of Excellence on High Performance and Embedded Architecture
and Compilation (HiPEAC) and visiting professor at the Impact group
leaded by Professor Wen-Mei Hwu at University of Illinois (Urbana,
IL, USA). He has published several papers in international peer-
reviewed journals and conferences. His research interest includes
heterogeneous architecture as well as bio-inspired algorithms for evalu-
ating the newest frontiers of computing. He is also working in applying
these techniques to challenging problems in the fields of Science and
Engineering. Now, he is working as Assistant Professor at the Com-
puter Science Department in the Catholic University of Murcia. He is
teaching several lectures such as Introduction to Parallel Computing,
Object-Oriented Programming, Operative System, Computer Architec-
ture, Computer Graphics; all of them are part of the Computer Science
degree.

123

http://dx.doi.org/10.1109/TITS.2009.2018324
http://dx.doi.org/10.1109/TITS.2009.2018324
http://dx.doi.org/10.1016/j.ejor.2009.06.016
http://developer.download.Nvidia.com/assets/cuda/files/CUDADownloads/NVML/nvml.pdf
http://developer.download.Nvidia.com/assets/cuda/files/CUDADownloads/NVML/nvml.pdf
http://devblogs.nvidia.com/parallelforall/increase-performance-gpu-boost-k80-autoboost/
http://devblogs.nvidia.com/parallelforall/increase-performance-gpu-boost-k80-autoboost/
http://devblogs.nvidia.com/parallelforall/increase-performance-gpu-boost-k80-autoboost/
http://dx.doi.org/10.1016/j.asoc.2011.05.042
http://www.top500.org/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://dx.doi.org/10.1016/j.ejor.2008.02.028

Cluster Comput (2016) 19:1–11 11

Antonia Sánchez was born in
Cartagena, Spain. She graduated
in Computer Engineering at the
University of Murcia. She stud-
ied a master’s degree in Math-
ematics and Computer science
Applied in Sciences and Engi-
neering. During 1998 and 1999
she was a Research Assistant
in the Computer and System
Dept. at theUniversity ofMurcia.
Since 1999 is working at Depart-
ment of Computer Science, Uni-
versidadCatólicaSanAntonio de
Murcia (UCAM), Spain, where

she is Assistant Professor. She recovers different positions of manage-
ment in her university as Subdirector of the Degree in IT Engineering,
Responsible for planning of schedules and spaces. Her main research
interests are in Supervisory Control. Nowadays, she is researching in
topics such as bioinformatics, and high performance computer among
others, focused on databases. She has published papers in international
journals and conferences and participated in different research projects.

José M. García is profes-
sor of Computer Architecture
at the Department of Computer
Engineering at the University of
Murcia (Spain), and also the
Head of the Research Group
on Parallel Computer Architec-
ture. He served as the Dean of
the School of Computer Sci-
ence from 2006 to 2012. Prof.
García has developed several
courses on Computer Structure,
Computer Architecture, Parallel
Computer Architecture, Periph-
eral Devices, andMulticomputer

Design. He was involved in the “EA-Grid: Euro-Asia United Estab-
lishment of Double Degree Master Programme in Grid Computing”,
which was an Education and Research Network in Grid Computing
between the EU andAsia funded by the European Commission. He spe-
cializes in Computer Architecture, Parallel Application Processing and
Interconnection Networks. He has supervised fifteen doctoral Theses
and has published more than 140 refereed papers in different journals
and conferences in these fields. Prof. García is a member of several
international associations such as HiPEAC, the European Network of
Excellence onHighPerformance andEmbeddedArchitecture andCom-
pilation, and also IEEEandACM.His current research interests lie in the
design of power-efficient heterogeneous systems, and the development
of data-intensive applications for those systems (especially bioinspired
evolutionary algorithms, and bioinformatics applications).

Martyn Amos is Professor of
Novel Computation and Direc-
tor of the Informatics Research
Centre, Manchester Metropoli-
tan University, UK. His research
interests include nature-inspired
computing, synthetic biology,
complex systems and crowd sci-
ence, and he is the author of
“Genesis Machines: The New
Science of Biocomputing”.

Manuel Ujaldón received his
B.S. degree in Computer Sci-
ence from the Univ. of Granada
(Spain, 1991) and his M.S. and
Ph.D. degrees in Computer Sci-
ence from the Univ. of Malaga
(Spain, 1993 and 1996). During
1994 and 1995 hewas aResearch
Assistant in the Computer Archi-
tecture Dept. at the University of
Malaga, where he became Assis-
tant Professor in 1996, Associate
Professor in 1999 and credited
by ANECA as Full Professor in
2013. Dr. Ujaldon was a predoc-

toral and postdoctoral researcher at the Computer Science Dept. of the
University of Maryland (USA, 1994, 1996–97) and visiting researcher
at Biomedical Informatics Dept. of the Ohio State University (USA,
2003–08). He was also Conjoint Senior Lecturer at the University of
Newcastle (Australia, 2012–2015). He has published 8 books on com-
puter architecture and around 100 papers in international peer-reviewed
journals and conferences. He was awarded CUDA Fellow by Nvidia in
2012, and over the last five years he has been involved in more than 100
activities about GPU computing worldwide, including 20 invited talks
and 17 tutorials in ACM/IEEE conferences. His main research interest
are GPGPU computing for image processing, biomedical applications
and evolutionary computation.

123

	Dynamic load balancing on heterogeneous clusters for parallel ant colony optimization
	Abstract
	1 Introduction
	2 Background
	2.1 Ant colony optimisation for the traveling salesman problem
	2.2 The CUDA programming model
	2.3 Our initial CUDA implementation

	3 Scaling to heterogeneous clusters
	3.1 Resources accounting
	3.2 Performance monitoring

	4 Experimental setup
	4.1 Hardware environment
	4.2 Benchmarking

	5 Experimental results
	5.1 Performance and workload balance
	5.2 Power consumption
	5.3 Power-aware performance metrics

	6 Conclusions and future work
	Acknowledgments
	References

