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Abstract Data placement decision of Hadoop distributed
file system (HDFS) is very important for the data local-
ity which is a primary criterion for task scheduling of
MapReduce model and eventually affects the application
performance. The existing HDFS’s rack-aware data place-
ment strategy and replication scheme are work well with
MapReduce framework in homogeneous Hadoop clusters,
but in practice, such data placement policy can noticeably
reduceMapReduce performance andmay cause increasingly
energy dissipation in heterogeneous environments. Besides
that,HDFSemploys an inflexible replica factor acquiescently
for each data block, whichwill give rise to unnecessarywaste
of storage spacewhen there is a lot of inactive data inHadoop
system. In this paper, we propose a novel data placement
strategy (SLDP) for heterogeneous Hadoop clusters. SLDP
adopts a heterogeneity aware algorithm to divide various
nodes into several virtual storage tiers (VSTs) firstly, and then
places data blocks across nodes in each VST circuitously
according to the hotness of data. Furthermore, SLDP uses
a hotness proportional replication to save disk space and
also has an effective power control function. Experimen-
tal results on two real data-intensive applications show that
SLDP is energy-efficient, space-saving and able to improve
MapReduce performance in a heterogeneous Hadoop cluster
significantly.
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1 Introduction

With the recent emergence of cloud computing [1] based
services on the Internet (such as e-commerce websites, on-
line video and social networks), enormous volumes of data
or called “big data” [2] is being generated by these services
around us at all times. As a potential gold mine for high
economic and social value, big data is creating a culture
in which business and IT leaders must join forces to real-
ize value from all kinds of data. But escalating demand for
insights requires not only analytic capabilities and skills but
also optimal processing power, which means that to extract
meaningful value from big data, it needs a fundamentally
new approach to architecture, tools and practices.

TheMapReduce [3] model popularized by Google is very
attractive for ad-hoc parallel processing of arbitrary big data
sets as mentioned above. MapReduce breaks a computation
into small tasks that run in parallel onmultiple machines, and
scales easily to very large clusters of inexpensive commodity
computers. Its popular open-source implementation, Hadoop
[4], was developed primarily by Yahoo!, where it runs jobs
that produce hundreds of terabytes of data on a large amount
of cores. The Hadoop runtime system provides a distributed
file system (HDFS) [5] and a framework for the analysis and
transformation of very large data sets using the MapReduce
paradigm. Apart from web data-intensive applications, sci-
entific data-intensive applications (e.g., seismic simulation
and natural language processing) take considerable benefits
from the Hadoop system [6].

The MapReduce model was conceived with the princi-
ple that “moving computation is much cheaper than moving
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data” [7]. Data locality determined by the data placement
strategy of HDFS is a primary criterion for MapReduce jobs
scheduling on Hadoop clusters, and eventually affects the
applications performance. To the best of our knowledge,
however, three main problems are observed in current data
placement strategy of HDFS:

Firstly, and most importantly, the existing data placement
strategy of HDFS [8] may noticeably reduce MapReduce
performance in heterogeneous environments. Essentially,
Hadoop system is designed to run on a set of homoge-
neous nodes. Such a homogeneous configuration of Hadoop
allows the MapReduce framework to effectively schedule
computing tasks on an array of nodes where data blocks
are residing, leading to a high aggregate bandwidth across
the entire Hadoop cluster. But, in practice, the homogene-
ity assumptions do not always hold [9]. On the one hand,
Hadoop clusters scale computation power, storage capacity
and I/O bandwidth by simply adding commodity servers, and
consist of hundreds or thousands of machines. Therefore,
machine failures are common. It needs frequent equipment
renewal, and there are multiple generations of hardware in
a cluster. On the other hand, with virtualization techniques
being widely used in cloud computing data centers [10],
massive virtual machines with variations in performance are
deployed to process large amounts of data-intensive appli-
cations. In such a heterogeneous Hadoop cluster, a high
performance node is capable of processing local data faster
than a low performance node. After the fast node finished
processing data residing in its local disk, the node has to
handle unprocessed data from a remote slow node. The over-
head of transferring unprocessed data from slow nodes to fast
peers is high if the amount ofmoved data is huge. That means
Hadoop’s homogeneity assumptions will lead to incorrect
and excessive speculative executions, and degrade MapRe-
duce performance in heterogeneous environments.

Secondly, according to the current data placement strategy
of HDFS, a Hadoop cluster has to keep all nodes active to
ensure data availability, and even if significant periods of
inactivity are observed during data processing, the need for
data availability prohibits the shutting down of idle nodes.
Such data placement strategy may negatively impact energy
efficiency for lack of energy-proportional ability [11].

In addition, each data block is replicated to ensure data
availability in case of connectivity failure to nodes or even
complete racks, and Hadoop implements a 3-way rack-aware
block replication policy for the files that are stored on HDFS.
For the default replica factor of three, HDFS’s replica place-
ment strategy is to put one replica of the block on one node in
the local rack, another on a different node in the same rack,
and the third on a node in some other rack. Such replication
policy will result in an unnecessary waste of storage space
when there is a lot of inactive data.

In this paper, we address the above challenges by propos-
ing a novel data placement strategy for HDFS in heteroge-
neous Hadoop clusters to improveMapReduce performance,
reduce power consumption and enhance the efficiency of
storage space.

Our Contributions The main contributions of this paper
are summarized as follows:

• We propose a heterogeneity aware algorithm (Haag) for
nodes inHadoop clusters, which can divide various nodes
into several virtual storage tiers (VSTs) according to the
performance properties of each node.

• We present a hotness-proportional replication policy
(HP) to determine the replica factor of each data block
based on its hotness (i.e., the hotness of a data block is
higher its replica factor will be larger).

• We design a snakelike data placement strategy (SLDP)
by integrating Haag and HP to distribute data blocks
acrossDataNodes in eachVST circuitously like a slowly-
swimming snake shape, which can place hot data blocks
into the high performance VSTs and those cold data into
the low performance VSTs.

• We implement a power control scheme to endow with
energy-proportional capacity for Hadoop clusters based
on the data blocks distribution results from SLDP, to
reduce the power consumptionwithout affectingMapRe-
duce performance.

• We realize our work on Apache Hadoop-2.3.0 release
and evaluate it with two real data-intensive applications.
Experimental results show that SLDP is energy-efficient,
space-saving and able to improve MapReduce perfor-
mance in heterogeneous Hadoop clusters.

The remainder of the paper is organized as follows.
Section 2 introduces the data placement and replicationman-
agement in HDFS and the need for power control in Hadoop.
Next, we describe the detailed design and implementation of
a Hadoop system architecture that using SLDP and its rele-
vant algorithms in Sect. 3. Section 4 evaluates our work with
two real data-intensive applications from three perspectives.
Section 5 reviews the related work and Sect. 6 concludes the
paper with future research directions.

2 Background and motivation

2.1 Data placement and replication policy in HDFS

HDFS stores file system meta-data and application data sep-
arately. As in other distributed file systems, like PVFS [12],
Lustre [13], and GFS [14], HDFS stores meta-data on a ded-
icated server, called the NameNode. Application data are
stored on other servers called DataNodes. All servers are
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fully connected and communicatewith eachother usingTCP-
based protocols. Unlike Lustre and PVFS, the DataNodes
in HDFS do not rely on data protection mechanisms such
as RAID to make the data durable. Instead, like GFS, the
file content is replicated on multiple DataNodes for reliabil-
ity. Each file stored on HDFS is split into smaller chunks of
even-sized called data blocks and these blocks are distributed
equally across the cluster. Each block is replicated to ensure
data availability in case of connectivity failure to nodes or
even complete racks. And Hadoop implements a rack-aware
data block replication policy for the data that is stored on
HDFS. For the default replica factor of three, HDFS’s replica
placement policy is to place thefirst replica on the nodewhere
the writer is located. The rest are placed on random nodes
with restrictions that no more than one replica is placed at
any one node and no more than two replicas are placed in the
same rack, if possible.

Unlike conventional file systems, HDFS provides an API
that exposes the locations of file blocks. This allows appli-
cations like the MapReduce framework to schedule a task to
where the data are located and thus improve the read perfor-
mance. It also allows an application to set the replica factor
of a file severally. By default, a file’s replica factor is three
in HDFS. For critical files or files which are accessed very
frequently, having a higher replica factor improves tolerance
against faults and increases read bandwidth.

In a word, the localities of blocks and their replicas are
critical toHDFS reliability and theMapReduce performance.
Optimizing data placement distinguishes HDFS from most
other distributed file systems. This is a feature that needs lots
of tunings and experiences.

2.2 Need for a power controller in Hadoop

With the increase in the sheer volume of big data that needs
to be stored and processed, data center footprint is becoming
extremely large-scale. Data centers are known to be expen-
sive to operate and they consume huge amounts of electric
power. And over the lifetime of IT equipment, the operating
energy cost is comparable to the initial equipment acquisi-
tion cost and constitutes a significant part of the total cost of
ownership (TCO) of a data center [15].Hence, energy conser-
vation of the extremely large-scale, commodity server farms,
such as Google cluster, has become a priority. Meanwhile,
Google’s study on server utilization and energy consump-
tion reports that the energy efficiency peaks at full utilization
and significantly drops as the utilization level decreases [16].
And the power consumption at zero utilization is still consid-
erably high (around50%), as illustrated in Fig. 1.Apparently,
even an idle server consumes about half its maximum power.
It’s also observed that the energy efficiency of these servers
lies in the range of 20–60% when operating under 20–50%
utilization.

Fig. 1 Server power usage and energy efficiency at varying utilization
levels

Hadoop as a Google’s in house MapReduce implemen-
tation also has similar problem, and it may consume large
quantities of power even while being low-utilization status.
In light of our observation, this is mainly due to the current
data placement strategy ofHDFSwhichwill make all DataN-
odes being active all the time to ensure data availability, i.e.,
the Hadoop cluster is short of the energy-proportional abil-
ity [11,17]. This indicates us that dynamically reconfiguring
the number of active DataNodes according to the current
applications workload is a good way to improve the energy
efficiency of a heterogeneous Hadoop cluster.

2.3 Motivation

The existing data placement strategy and replication scheme
of HDFS are working well with MapReduce framework
in a homogeneous Hadoop cluster, but in reality, such
homogeneity assumption can noticeably reduce MapReduce
performance and may cause increasingly energy dissipation
in heterogeneous environments. Besides that,HDFSemploys
an inflexible replica factor acquiescently for each data block,
which will give rise to unnecessary waste of storage space
when there is a lot of inactive data in Hadoop system.

All of the above analytical results motivate us to develop
a new data placement strategy, which is energy-efficient,
space-saving and able to improve MapReduce performance
in heterogeneous Hadoop clusters.

3 System model and implementation

In this section, we discuss the detailed design of Hadoop
system model that using SLDP and its relevant algorithms.

3.1 Heterogeneous Hadoop system model

Figure 2 illustrates the overall architecture of a heterogeneous
Hadoop cluster system forwhich our proposed algorithms are
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Fig. 2 Overview of a Hadoop
system using SLDP

adopted. In this system, in order to improve the MapReduce
performance and reduce the waste of power and storage-
space consumptions, the following four main components
are projected:

Component 1 (Heterogeneity-aware Module, HaM). As
a heterogeneity perceptron for multifarious DataNodes
in the cluster, this component uses a heterogeneity-
aware algorithm (named Haag, the details can be seen in
Sect. 3.2) to divide these DataNodes into several VSTs
according to their performance properties. And the nodes
with similar performance configuration will be catego-
rized into a same VST.
Component 2 (HotnessMonitor, HoM). HDFS is able to
log all file system access requests. The logging is imple-
mented usinglog4j and once enabled, logs everyHDFS
event in the NameNode’s log. This module monitors the
HDFS meta-data checkpoint and logs for analysis, and
then figures out the real-time hotness of all data blocks,
based on that, it will use hotness-proportional replication
policy (HP) to determine the replica factor of each data
file.
Component 3 (Snakelike Data Placement Module,
SLDP). By integrating the information collected from
HoMandHaM, thismodule can spread data blocks across
DataNodes in each VST circuitously like a slowly swim-
ming snake, and place hot data into the high performance
VSTs and cold data into the low performance VSTs, such
that, most of the MapReduce tasks will be processed on
the faster DataNodes and rest of them can be done on the
slower DataNodes.
Component 4 (Power Controller, PoC). According to the
scheme of data blocks placement determined by SLDP,
this module can scale the number of active DataNodes in
eachVSTdynamically, andmanage the energy consump-

tion of the entire Hadoop cluster by using an intelligent
power control strategy (PCS). It is a channel between the
cluster’s electric meter and HDFS.

The four main components mentioned above cooperate with
each other to improve MapReduce performance, reduce sys-
tempower consumption and enhance the efficiency of storage
space in a heterogeneousHadoop cluster. The detailed design
of primary algorithms for them are described in the following
subsections.

3.2 Haag: heterogeneity-aware algorithm

The heterogeneity of DataNodes in Hadoop clusters is
becoming a more and more sensitive factor to MapReduce
framework performance. Xie et al. [18] developed a data
placement mechanism in HDFS that distributed and stored a
large data set across multiple heterogeneous nodes in accor-
dance to the computing capacity of each node. However, the
I/O performance parameter of a DataNode is another key
factor that should not be neglected especially for most of
data-intensive applications. Consequently, as the first release
of the year 2014, Hadoop-2.3.0 brings a significant enhance-
ment to HDFS, that is, support for heterogeneous storage
hierarchy in HDFS (HDFS-2832) [19]. Unfortunately, the
differences between storage types are described qualitatively
by this prototype without a quantitative calculation.

In this subsection, we attempt to introduce a heterogene-
ity aware algorithm (Haag) to distinguish the comprehensive
performance of all DataNodes by a rational mathematic
method. The core idea of Haag is, based on fuzzy classifier
method [20], taking into account the multiple performance
parameters (such as computing capacity, memory size and
IOPS, etc.) of the DataNodes, and then quantificationally
dividing them into several VSTs. Thereby, Haag can allow
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HDFS to make better decisions about the distribution of data
blocks with input from applications to an appropriate VST.

Without loss of generality, we denote theDataNodes set as
DN = {dn1, dn2, · · · , dnn}, and the performance indicators
set of eachDataNode isY = {y1, y2, · · · , ym}. The j-th indi-
cator value of DataNode dni is denoted by xi j = dni ⊗ y j ,
and we can get a relation matrix about the n DataNodes’ per-
formance, that is, X = DN ⊗ Y = (xi j )n×m . Based on such
relation matrix X , the Haag can deal with it to distinguish the
comprehensive performance of all DataNodes. The specific
steps are depicted as follows:

Step 1. Get the standardization of all DataNodes’ per-
formance indicators. From the viewpoint of mathematics,
an exact classification is determined by a generalized rela-
tion of equivalence, and the fuzzy classification system is
identified with a fuzzy equivalent relation matrix. In order to
construct a fuzzy relation matrix, we need to pre-process all
quantitative values of DataNodes’ performance indicators,
and normalize them into [0,1] interval. Specifically, we first
calculate the average value and standard deviation of each
performance indicator for all DataNodes by the following
formulas (1) and (2) respectively.

x j = 1

n

n∑

i=1

xi j , (xi j ∈ X) (1)

S j =
√√√√1

n

n∑

i=1

(xi j − x j )
2 (2)

And then, we introduce Eq. (3) to standardize the value of
raw data xi j , and we have:

x∗
i j = xi j − x j

S j
(3)

After that, based on the extreme values, we use Eq. (4) to
normalize x∗

i j into [0,1] interval:

xi j = x∗
i j − x∗

jmin

x∗
jmax − x∗

jmin
(4)

where, x∗
j min = min{x∗

i j |i ∈ [1, n]}, and x∗
j max =

max{x∗
i j |i ∈ [1, n]}. Obviously, there is xi j = 0 when

x∗
i j = x∗

j min, and xi j = 1 when x∗
i j = x∗

j max.
Step 2. Get the calibration of fuzzy similar matrix using

Cosine method. We introduce λ-similarity factor ri j to con-
struct the fuzzy similar matrix R by using Cosine method,
and we can get:

R =

⎛

⎜⎜⎝

r11 r12 · · · r1n

r21 r22 · · · r2n

· · · · · · · · · · · ·
rn1 rn2 · · · rnn

⎞

⎟⎟⎠ (5)

where ri j =
m∑

k=1
xik ·x jk

√( m∑
k=1

(xik)
2
)
·
( m∑

k=1
(x jk)

2
) is a variable that can

indicates the level of similarity between DataNode dni and
dn j . If ri j is closer to 1, it means the performance difference
between DataNode dni and dn j is smaller.

Step 3. Get the transformation of R by using Transitive
Closure method. Here gives two important primary defini-
tions firstly.

Definition 1 (Transitive Closure). LetR be a fuzzy relation
matrix, the lowest transitive fuzzy matrix t (R) that contains
R is called the transitive closure of R if:

1. t (R) ⊗ t (R) ⊆ t (R);
2. t (R) ⊇ R;
3. If S ⊇ R and S2 ⊆ S, then there is S ⊇ t (R).

Definition 2 (Fuzzy Equivalence Relation). Let R =
(ri j )n×n be a fuzzy equivalence relation matrix, if it satis-
fies the following axioms:

1. Reflexivity, i.e., rii = 1 (i = 1, 2, · · · , n);
2. Symmetry, that is, ri j = r ji (i, j = 1, 2, · · · , n);
3. Transitivity, i.e., R ⊗ R ⊆ R.

In general, the calibration of fuzzy similar matrix R
obtained from Step 2 by using Cosine method is not a fuzzy
equivalence relation matrix for lack of transitivity. Fortu-
nately, [21] has proved that given a fuzzy similar matrix R
on finite universe, there exists a transitive closure of R, that
is t (R) = Rk , which is a fuzzy equivalence relation matrix,
where k � n.

As a consequence, we use a matrix exponential function
f (R) = R2 to figure out the transitive closure of R after finite
calculations, that is, R �→ R2 �→ R4 �→ · · · �→ R2k , then we
have Rk = (Rk)2, and t (R) = Rk is the fuzzy equivalence
relation matrix that we want.

Step 4. Analyse the classification of all DataNodes. Once
the fuzzy equivalence relation matrix Rk is acquired from
Step 3, we can use an intercept factor λ to reconstruct a
new classification matrix Rk

λ. Concretely, by traversing all
elements of the matrix Rk , we can set a element of Rk

λ to
be 1 if the corresponding element is greater than or equal
to λ, otherwise assign it to be 0. And, finally, we obtain the
reconstruct matrix Rk

λ.
Step 5. Get the virtual storage tiers. We divide all DataN-

odes that have the same row value of Rk
λ into a same VST

region, such that we can distinguish the performance of all
DataNodes clearly.

With the above five steps, we can divide various Hadoop
DataNodes into several VSTs according to the performance
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properties of each DataNode. And then, the hot data will be
spread into high performance VSTs, and vice versa.

3.3 HP: hotness-proportional replication policy

Astudy ofYahoo!’sHadoop clusters illustrated in [22] shows
significant variation in the access patterns of the data files
stored in the cluster. We could find existence of a significant
amount of data in the system which either wasn’t accessed
at all or rarely accessed after some amount of elapsed time.
As shown in [22], theFileLifeSpanCFR (the file lifespan
between the file creation and first file read access) of 90.26%
of data is less than 2 days. Thus, data is accessed soon after
its creation. 89.61% of data has a FileLifeSpanCLR (the
file lifespan between the file creation and the last file read
access) of less than 10days. This indicates thatmajority of the
data is hot for less than 10 days after its creation in the system.
40% of the data in the cluster has a FileLifeSpanLRD
(the file lifespan between last file read access and file dele-
tion) of higher than 20 days. This prompts that 40% of the
data lies untouched in a dormant state in the cluster for more
than 20 days. In such a situation, for the default fixed replica
factor of three, HDFS’s replication policy will result in an
unnecessary waste of storage space when there is a lot of
cold data in Hadoop system.

But fortunately, this study indicates that there are tremen-
dous opportunities to distinguish the data files into different
replication classes in a Hadoop cluster. Thus, we propose
a hotness-proportional replication policy (HP) for HDFS
to improve the efficiency of storage space. More specifi-
cally, HP will determine the replica factor of each data block
according to its hotness (which reflects the popularity of data,
and is usually calculated by the access frequency of the data
in a specific time slot. If the hotness of a data block is high,
we can say it is a hot or active block, else if the hotness is
low, this data block is cold or inactive), that means if the hot-
ness of a data block is higher its replica factor will be larger.
Therefore, how to determine the hotness of data is a critical
process for the realization of HP policy.

In a practical application, the data hotness is not only deter-
mined by the access frequency, but also closely interrelated to
the time series of access requests. Taking the physics analy-
sis of AMS-02 experiment [23,24] as an example, scientists
around the world from AMS group will frequently access
scientific data named root files that reconstructed on our clus-
ter with specific raw data collected from International Space
Station. We randomly selected three different root files and
counted the number of access times per hour of them in a
same time slot Tt (oneweek), and thenwe obtained the results
as shown in Fig. 3. As demonstrated in this figure, although
the total number of times that each root file was accessed
are almost identical to each other, the root file of Scenario 1
was frequently accessed earlier in the week, and the root file

Fig. 3 Different scenarios about data access frequency in a same time
slot T (1 week)

of Scenario 2 was accessed in three main waves throughout
the whole week, meanwhile, the root file of Scenario 3 was
accessed mostly at the end of the week. From the viewpoint
of the principle of program locality, there is a higher possibil-
ity for the most recently used files will be accessed again in
a near future. Thus, intuitively, the data hotness of Scenario
3 is higher than the others, and data file in Scenario 1 is the
coldest one.

Based on this, we had analysed a large amounts of history
monitoring data collected from HoM module as illustrated
in Fig. 2, and then put forward the following experiential
formulas (6) and (7) to calculate the hotness of each data
blocks. The NameNode maintains a time-stamp queue and
stores the corresponding hotness for every data block into a
dedicated table. Once a new time-stamp Tt+1 is added into
the queue of block bi , the NameNode will update its hotness
according to the Eq. (7).

h0(bi ) = 0 (6)

ht+1(bi ) = ht (bi ) × e−λ(Tt+1−Tt ) + k × Rt (7)

where, ht+1(bi ) denotes the updated hotness of data block bi

when the (t +1)th access request for this block is arriving. Rt

is the number of access requests in Tt time slot. k ∈ (0, 1) is a
constant coefficient, and the positive number λ is the hotness
extraction coefficient.

Formula (7) can synthetically take into account the effects
of time interval 	T = Tt+1 − Tt , the number of access
requests Rt and the pre-update hotness ht (bi ) for the value
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of upcoming hotness, that means, it can reflect the long term
trends in data files’ access patterns.

Then, the HoMmodule will refresh and record the replica
factor for all data blocks stored in HDFS by using the follow-
ing Eq. (8) periodically (about once a week in our system,
and can be dynamically adjusted by administrator according
to need of the practical application).

r f (bi ) = ht

(
bi |

∧
θmle

)
(8)

where r f (bi ) denotes the replica factor of data block bi ,
ht (bi ) is the hotness of it that can be queried from NameN-
ode, and

∧
θmle = argmax

θ∈�

m∑

i=1

ln ht (bi |θ)

is the maximum likelihood estimator (mle) of the vector of
parameters θ ∈ � observed from HDFS’ logs by using the
Maximum Likelihood Estimation [25].

3.4 SLDP: snakelike data placement strategy

From the above two subsections, we could acquire the
information of VSTs (that is, for every DataNode, which
VST should it belong to), and the hotness, replica fac-
tor of each data block also. Based on that, we design a
novel SLDP for HDFS, which can spread the hot data
into the high-performance VSTs and the cold data into the
low-performance VSTs. Specific procedures of SLDP are
described as follows:

Step 1. SLDP divides all the DataNodes into g VSTs by
using Haag algorithm, that is, we can get the virtual stor-
age tiers set as VST . The number of DataNodes classified in
VSTk ∈ VST is T (k), where the index k ∈ [1, g] is a natural
number (line 1 in Algorithm 1).

Step 1.1. For each VSTk ∈ VST , SLDP sorts all the T (k)

DataNodes in eachVSTk according to the IOPS performance
parameter of them (line 3 in Algorithm 1), for main applica-
tions served by SLDP are data-intensive computing and the
I/O resources are the most important resource. As a result,
we can get VST∗

k , which is the collection of the DataNodes in
VSTk ordered by IOPS. Where, dnk,l is the DataNode with
l-th highest IOPS and in the k-th highest comprehensive per-
formances tier of the whole Hadoop cluster.

Step 1.2.The total storage space of eachVST∗
k , denoted by

Sk , is accumulated by all disk space size of the DataNodes in
this tier (line 4 inAlgorithm1), so that, SLDP can determined
the data blocks collection that will be stored in it according
to Sk .

Algorithm 1: DataNodes classification and ranking
Input: DN(the set with n DataNodes), λ(the intercept factor)
Output: VST∗, S
VST = {VSTk |k ∈ [1, g], |VSTk | = T (k)} ← Haag(DN, λ)1
for k = 1 → g do2

VST∗
k = {dnk,l |l ∈ [1, T (k)]} ←sort all the T (k) DataNodes3

in VSTk by the IOPS performance parameter
Sk ← accumulate the total space of DataNodes in VST∗

k4
(MB)

end5
VST∗ = {VST∗

k |k ∈ [1, g]}6
S = {Sk |k ∈ [1, g]}7
return VST∗, S8

Step 2. SLDP sorts the hotness of all data blocks and
calculates the replica factor of each data block according to
Eq. (8) through Algorithm 2.

Algorithm 2: Rank hotness and calculate replica factor
Input: B(the collection with m data blocks)
Output: H, B∗, RF
H = {h(bi )|i ∈ [1, m]} ←get hotness from the NameNode1
through the HoM module
B∗ = {b∗

i |i ∈ [1, m]} ← sort all m data blocks in B according to2
their hotness by the HoM module
RF = {r f (b∗

i )|i ∈ [1, m]} ← figure out the replica factor for3
each block by Eq. (8) based on its hotness
return H, B∗, RF4

Step 3. For each data block, its replica factor is dynami-
cally changed according to the hotness of it in different time
slot.We use Algorithm 3 to calculate the number of primitive
data blocks stored in each VSTk ∈ VST , k ∈ [1, g]. Where α

is the default block size (MB) and β is used to reserve some
disk space.

Algorithm 3: Calculate the number of primitive data
blocks stored in VST
Input: S(the space collection of VST ), RF
Output: D(the number collection of primitive data blocks stored

in VST )
α ← 128, β ← 0.9, i ← 11
for k = 1 → g do2

D(k) ← i , sumSize ← 03
while Sk × β > sumSize do4

sumSize ←sumSize + α × (r f (b∗
i ) − 1)5

i ← i + 16
end7
D(k) ← i − D(k)8

end9
D = {D(k)|k ∈ [1, g]}10
return D11

Step 4. SLDP distributes the data blocks across DataN-
odes in each VSTk ∈ VST , k ∈ [1, g] circuitously like a
slowly-swimming snake, as shown in Fig. 4.
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Fig. 4 Snakelike data placement diagram

Fig. 5 Conflict situation and its solution during snakelike data place-
ment

Step 4.1. The hottest block is placed in the first DataNode
with highest IOPS performance in VST∗

k , k ∈ [1, g − 1], the
second hottest block is placed in the second DataNode with
the second highest IOPS performance, and the rest can be
done in the same manner (line 5–32 in Algorithm 4, Fig. 4,
left), except the last replica of each data block (done in Step.
4.3, Fig. 4, right).

SLDP can spread data blocks across the nodes in a het-
erogeneous Hadoop cluster to take full advantage of the
high-performance DataNodes, and can also improve the hot
data locality of MapReduce computation in the meantime.
While benefiting in terms of performance, this design prin-
ciple simplifies power-management to endow with energy
proportional ability for Hadoop clusters. However, during
the process of data placement in Hadoop clusters, SLDPmay
suffer from a “conflict” situation that occurred in the “corner”
of the snake shape as illustrated in Fig. 5, left, for violating
the restriction that a DataNode could not store a two same
data blocks to ensure data durability (line 18 in Algorithm
4).

Step 4.2. In order to deal with such conflict situation, a
“rescue queue” named RQ is purposely designed to store the
“homeless” data blocks temporarily in each VST∗

k (line 3 in

Algorithm 4: SLDP Strategy
Input: B∗, VST∗, D, RF
Output: DP[n][m]
D(0) ← 0, D∗(0) ← 0, DP[n][m] ← 01
for k = 1 → g − 1 do2

RQ ← φ, l ← 1, d ← 03

D∗(k) ←
D(k)∑

i=1
(r f (b∗

(i+D(k−1))) − 1)
4

for j = (k − 1)D∗(k − 1) + 1 → D∗(k) do5
doPlace ← true6
while doPlace is true do7

if left space of dnk,l is enough then8
if b∗

j is not in dnk,l then9
DP[(k − 1)T (k − 1) + l][ j] ← 110
if d == 0 then11

if l == T (k) then d ← 112
else l ← l + 113

else14
if l == 1 then d ← 015
else l ← l − 116

end17
else18

RQ ← b∗
j19

end20
doPlace ← false21

else22
if d == 0 then23

if l == T (k) then d ← 1, l ← l − 124
else l ← l + 125

else26
if l == 1 then d ← 0, l ← 227
else l ← l − 128

end29
end30

end31
end32
for each b∗

j ∈ RQ do33
for l = 1 → T (k) do34

if b∗
j /∈ dnk,l and space is enough then35
DP[(k − 1)T (k − 1) + l][ j] ← 136
break37

end38
end39

end40
end41
D∗∗(0) ← 042
for l = 1 → T (g) do43

D∗∗(l) ← ⌊
leftSpaceOf(dng,l ) × β/α

⌋
44

for j = (l − 1)D∗∗(l − 1) + 1 → D∗∗(l) do45
DP[(g − 1)T (g − 1) + l][ j] ← 146

end47
end48
return DP[n][m]49

Algorithm 4). And RQ will be handled after the remainder
of blocks were placed successfully already. These homeless
blocks residing in RQ are distributed into the DataNodes
belong to VST∗

k according to FIFO approach. As demon-
strated in Fig. 5, right, the head block in RQ will be placed in
the first DataNode, which is on the top of IOPS performance
in VST∗

k and has enough storage space as well as without
storing the same block. Otherwise, the block will be placed
to the next one DataNode that satisfies these preconditions.
The rest can be done in the same manner recursively (line
33–40 in Algorithm 4).

Step 4.3. The last replica of each data block will be placed
in the lowest-performance VST∗

g separately like a transverse
slowly-swimming snake (Fig. 4, right, line 42–48 in Algo-
rithm 4). This might be necessary because, technically, it
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is possible to keep a behind-the-scenes replica for each data
block to ensure fault-tolerant capacity. More importantly, the
DataNodes in VST∗

g can be treated as inactive nodes that can
be configured to power-off mode to save energy consump-
tion. And once one of these DataNodes is waken to recover
some data blocks, all the data blocks stored in it with similar
hotness are available, that will improve the entire Hadoop
performance apparently.

Through the above steps, every data block can be success-
fully placed into an appropriateDataNode in a heterogeneous
Hadoop cluster according to its hotness.

3.5 PCS: power control scheme

SLDP spreads data blocks and their replicas across the
DataNodes circuitously according to the hotness of them
like a slowly swimming snake for higher MapReduce
performance, load-balancing and resiliency, as described
in Sect. 3.4. With all the data blocks being distributed
into Hadoop clusters already, those with high performance
DataNodes may be frequently participating in the reading,
writing, or computation of a batch of data blocks in most of
time. Such data placement mechanism not only improves the
MapReduce framework performance, but also endows with
energy-proportionality for the Hadoop clusters. That means
SLDP makes it possible to generate significant periods of
idleness for some DataNodes in the Hadoop clusters, and it
can render usage of inactive power modes feasible.

When obtaining the data blocks placement scheme matrix
by SLDP, we propose an optimal power control scheme
(PCS), and implement a channel named PoC between the
cluster’s power controller and HDFS (see Fig. 2). According
to our proposed PCS, the component PoC can scale the num-
ber of active DataNodes in each VST dynamically to meet
the service demands of the data-intensive applications, and
can minimize the energy consumption for the whole Hadoop
runtime system.

3.5.1 Mathematical model of PCS

As mentioned above, we denote the n DataNodes set in a
heterogeneous Hadoop cluster as DN , and the parameter set
of power consumption of all DataNodes is denoted by PC.
Them data blocks set isB. Then, based on the data placement
result determined by SLDP,minimizing the energy consump-
tion for the Hadoop clusters can be illustrated as obtaining a
status vector SV about all DataNodes to keep the availability
of all data blocks (i.e., there is an active replica for each block
at least). Hence, we can present the mathematical model of
PCS as follows:

MinimizePoC(PC, SV) = PC × SV T

s.t.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

DP = DN ⊗ B ← SL D P(DN, B)

∀bai � 1(bai ∈ SV ⊗ DP, 1 � i � m)

∀pci > 0(pci ∈ PC, 1 � i � n)

∀svi ∈ SV =
{
1, active
0, inactive

, 1 � i � n

(9)

where the first constraint condition indicates this power con-
trol strategy is based on the data placement result of SLDP;
the second constraint condition can guarantee the availabil-
ity of all data blocks; the third one ensures the power cost of
arbitrary DataNode is positive; and the last one restricts the
status of every DataNode can only to be active (the value is
1) or inactive (the value is 0).

3.5.2 Solution for PCS based on bipartite matching

Formally, the above problem can be explained by a relaxation
of the maximum bipartite matching problem called semi-
matching problem in the weighted case as follows. Let G =
(U

⋃
V, E) be a weighted bipartite graph, where U is a set

of DataNodes and V is a set of data blocks. For any edge uv,
let pcuv be its weight. Each weight of an edge uv indicates
power consumption it takes u to process data block v, as
shown in Fig. 6.

Let n denote the number of DataNodes and m denote the
number of primary data blocks in G. A set M ⊆ E is a semi-
matching if each block v ∈ V is incident with exactly one
edge in M . For any semi-matching M , we define the cost of
M , denoted by cost(M), as follows. So, for any DataNode
u ∈ U in a semi-matching M , its cost with respect to M is

costM(u) =
∑

(u,v)∈M

pcuv (10)

Intuitively, this is the total power consumption of process-
ing data blocks assigned to u. Now, the cost of the semi-
matching M is simply the summation of the cost over all
u ∈ U in M :

nx
3x

2x

1x

Fig. 6 A weighted bipartite graph for PCS
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cost(M) =
∑

u∈U

costM (u) (11)

Then, the goal is to find an optimal semi-matching with
minimum cost, and the set of DataNodes in it are the tar-
get nodes should be active and the rest of DataNodes in the
Hadoop cluster should be deployed into sleepmode to reduce
energy consumption. Since we all know, the Kuhn–Munkres
algorithm (KM) is a classical and efficient solution for bipar-
tite matching problem [26], based on that we propose an
improved algorithmnamedminPowerMatch to determine the
optimal semi-matching M for PCS as shown in Algorithm 5.

Algorithm 5: minPowerMatch
Input: G = (U

⋃
V, E) (a weighted bipartite graph, |U | � |V |)

if |U | == |V | then1
M ← KM(G)2

else3
k ← |V | − |U |, X ← {x1, x2, · · · , xk}4

Û ← U ∪ X5

Ê ← E ∪ {〈xi , vi 〉 |i ∈ [1, |X |], j ∈ [1, |V |], pcxi ,v j = 0}6

Ĝ(Û ∪ V, Ê) ← Transform G according to the results of7
Step 5 and 6
M̂ ← KM(Ĝ)8

M ← Eliminate Ê† = {〈xi , v j
〉 |xi ∈ X} from M̂9

end10
Set all DataNodes (∈ M) into active mode and the rest of11
DataNodes (/∈ M) in the Hadoop cluster into sleep mode.

In this way, we can optimize power cost of the whole
Hadoop cluster by managing the status of all DataNodes
dynamically through minPowerMatch algorithm.

4 Evaluation results

In this section, we evaluate the performance of SLDP and
the relevant algorithms from three perspectives with two real
data-intensive applications. Before discussing the evaluation
results, we will first describe the experimental setup.

4.1 Experimental setup

The experiments were conducted on a 252-node Hadoop
cluster located in a data center of Southeast University (or
SEU), whose overall architecture is illustrated in Fig. 7
including network and hardware configurations. This data
center has been expanded three times for equipment renewal
and modernization since 2011, and there are multiple gener-
ations of hardware in the cluster. The detailed configurations
are shown in Table 1. Even two DataNodes have the same
CPU model, they may own different disks or RAMs, that is,
it is a typical heterogeneous Hadoop cluster.

We realized our work on theApacheHadoop-2.3.0 release
including the heterogeneity aware algorithm, hotness propor-
tional replication, snakelike data blocks placement strategy
and the power control function. We evaluated them with the
e−/e+-Identify (similar to Word-Count) jobs and AMS-02
Physics Analysis jobs (to study the universe and its origin by
searching for antimatter, dark matter while performing pre-
cision measurements of cosmic rays composition and flux,
based on the raw data collected from the International Space
Station or ISS and Monte Carlo simulation results) [23] [24]
on the Hadoop cluster at SEU.

The experimental data set consisted of 3TB raw data
acquired in February 2014 from ISS with its reconstructed
data (about 15TB) and 8TB Monte Carlo simulations data
produced at SEU over the same period. In this 26TB data
set, there are approximately 1.3 billion events that recorded
the information of the high-energy particles passed through
AMS-02’s sub-detectors (including category, energy, veloc-
ity, flight direction, etc.).

4.2 Hadoop cluster performance evaluation

The data locality determined by HDFS’ data placement strat-
egy is an important factor for MapReduce performance.
Especially in a heterogeneous environment, the current
default data placement policy of HDFS can cause severe per-
formance degradation. In order to verify the effectiveness and
efficiency of our proposed SLDP and relevant algorithms,
we had run two different MapReduce jobs that have differ-
ent data access patterns. Similar to Word-Count application,
the first one job is called e−/e+-Identify procedure whose
purpose is to count the frequency and energy of electron and
positron recorded in all data blocks respectively. The second
one is designed to analyze the actual spectrum structure and
fluctuation of e−/e+ whose energy are greater than 100 GeV,
named AMS-02 Physics Analysis job. All results obtained
from these two jobs are significant to deduce the origin of
those superfluous positrons in the universe.

During the evaluation, we compared three data place-
ment mechanisms of HDFS, that is, (1) default-Strategy: the
default data placement strategy of current HDFS release; (2)
non-EC-SLDP: the snakelike data placement strategy pre-
sented by this paper without regard to energy conservation;
(3) EC-SLDP: the snakelike data placement strategy pro-
posed by this paper taking energy conservation into account.
Based on this, we had run the two MapReduce jobs as men-
tioned above on the Hadoop cluster at SEU that deployed the
three data placement mechanisms separately. The numbers
of each job were set from 500 to 3000 with 500 increment
each time, and the default data block size α was configured as
128 MB/256 MB respectively. Figure 8 reveals the specifics
about final experimental results.
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Fig. 7 Overall architecture of a Hadoop cluster at Southeast University

Table 1 Different
configurations for the
DataNodes in the Hadoop
cluster at Southeast University

CPU RAM Disk

Model Speed Cores Type IOPS Size

X5650 2.66GHz 6 24GB 7.2K SATA 70 2TB

X3850 2.66GHz 6 64GB 10K SAS 100 1TB

X240 2.70GHz 12 256GB SLC SSD 5000 120GB

E5-2670 2.60GHz 8 64GB 15K SAS 150 300GB

(a) (b)

Fig. 8 Performance of two MapReduce jobs based on three different data placement strategies

From Fig. 8a, we can find out that the three data place-
ment mechanisms have little effect on the e−/e+-Identify
MapReduce job, except that the ES-SLDP’s performance is
less impressive than the others. That’s because this kind of
job has to scan the whole raw data set every time during

processing, and there is no evidence of hot data blocks such
that it couldn’t take full advantages of SLDP.

However, SLDP is more important for AMS-02 Physics
Analysis jobs as illustrated in Fig. 8b. The reason is that, this
kind of job is focusing on the blocks containing the elec-
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Fig. 9 IOPS and throughput performances of three different VSTs

trons and positrons whose energy are greater than 100 GeV,
which means these jobs’ data access patterns are skewed and
may generate hot data spots. In addition, we noticed that the
MapReduce performance is better when the default block
size was set to 256 MB than to set as 128MB from Fig. 8a, b.
This interesting phenomenon indicates that there is an oppor-
tunity to optimize the MapReduce performance, by figuring
out the optimal value of the block default size with perform-
ing a large number of experiments in our future work.

Furthermore, through out thewhole evaluation, all DataN-
odes in the Hadoop cluster at SEU are divided into three
VSTs by using Haag algorithm. To be precise, there are ten
DataNodes in VST1 and 74 DataNodes in VST2, and the
rest 168 DataNodes are belong to VST3. The ranking about
comprehensive performances of them are VST1 > VST2 >

VST3. When we tested the MapRreduce performance of our
Hadoop system,we alsomeasured the accumulated IOPS and
throughput performance of all DataNodes in each VST. We
have built into our test scripts a 30-second pause between
the individual tests. This pause is used to avoid distortion
throughput writing tests measurements for flash-based stor-
age (i.e., SSD). The final results are demonstrated in Fig. 9.

As shown in Fig. 9, we can conclude that, on average,
VST1 contributes more than 58% of the total I/O perfor-
mance (including both IOPS & throughput measurements)
for the entire Hadoop cluster, VST3 can only provide about
9% of the whole performance, and the rest 33% are offered
up by VST2. Obviously, it is because the storage devices
deployed on DataNodes in VST1 are all the highest perfor-
mance SSDs and those attached to DataNodes in VST3 are
all the lowest performance 7200 RPM SATA drives, mean-
while, the DataNodes in VST2 employ 10K/15K SAS disk
drives. All of the above also offer another perspective on the
effectiveness of our proposed Haag algorithm.

4.3 Hadoop cluster energy consumption evaluation

The current default data placement strategy of HDFS will
make all DataNodes being active all the time to ensure
data availability, so that the Hadoop clusters are short of
the energy-proportional ability. Fortunately, based on the
proposed SLDP, even a heterogeneous Hadoop cluster can
become an energy-efficient pioneer.

In this subsection, we validated the power consumptions
of the Hadoop cluster at SEU using snakelike data placement
strategy (named “PCS-Strategy”), and compared itwith other
three different energy-saving strategies (one is adopting the
default placement strategy named “Default-Strategy”, and
the others named “CS-Strategy” and “All-In-Strategy” are
proposed by [27] and [28] respectively).

During the test, we had run a six groups of AMS-02
Physics Analysis jobs on the Hadoop cluster continuously,
and used a functional electric meter to record power cost
consumed by all nodes. The results are shown in Fig. 10.

From Fig. 10, we can observe that the power consumption
was degradedmostwhen theHadoop cluster using our energy
control policy which is based on SLDP mechanism, and the
fluctuation ismore gradual than the other strategies during the
experiment. The power consumption ratio decreased (about
30%) is so impressive by comparison to the default strategy
used by HDFS. In addition, the load of Hadoop cluster was
keeping in heavy pressure during the test, and we can find
out that the energy saving of “All-In-Strategy” is nearly neg-
ligible and no better than the default strategy. Consequently,
we hold the opinion that, this policy is more applicable to the
batch jobs with longer intervals.

Besides that, we also calculated the power consumption
of each VST during the evaluation. Although the I/O perfor-
mance of VST1 is highest, it consumes the least energy cost,
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Fig. 10 Cluster power consumption with different energy saving
strategies
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Fig. 11 I/O performance and power consumption statistical propor-
tions of three different VSTs

as depicted in Fig. 11, only about 12% of the whole Hadoop
cluster power cost. It is because of that SSDs adopted by
DataNodes in VST1 use significantly less power at peak load
than hard drives used in other VSTs, and their energy effi-
ciency can deliver less power strain on system. This is also
why we have to identify the difference between DataNodes
by using our Haag algorithm, and we can take full advantage
of the high-performance VSTs in our heterogeneous Hadoop
cluster.

4.4 Hadoop cluster storage utilization evaluation

With the rapid growth of volume and velocity of big data, the
storage costs are playing an increasingly large proportion of
the data center cost. Improving the storage space efficiency
is an important means of mitigating the TCO of data centers.
For the default replica factor of three, HDFS’s replica place-
ment strategy may result in an unnecessary massive waste of
storage space when there is a lot of inactive data. To take the
data storage system at SEU for the AMS-02 experiment as
example, there is about 25TB new experimental data needs

to be stored into our data center every month. During the data
processing and analysis, we need 75TB excess disk space per
month if the Hadoop system using HDFS’s default replica-
tion strategy. It is a heavy burden on our budge for equipment
spending.

However, we had observed that about 20% of data files
archived in our system are active objects, and the other 80%
are “lazy boots” as illustrated in Fig. 12, left. Moreover, we
also found out that, there are about 20% of files of the active
data are extremely popular that accessed by AMS-02 col-
leagues frequently. Thismotivates us to present the following
replication policy inHDFS. For the 20%× 20%=4%called
“red-hot” data blocks, we set their replica factors (or rf for
short) as 4, the rest 16% of active data blocks’ rf as 3, and
the other (80%) cold data’s rf as 2.

Based on such a simplified hotness-proportional replica
factor strategy, the excess disk space we have to extend
monthly in our data center at SEU just only needs 25TB
× [(20% × 20%) × 4 + (20% × 80%) × 3 + 80% ×
2] = 56TB. That means, we can save 25.33% disk over-
head every month, and can reduce about 250TB disk space
consumption every year. Consequently, the storage capital
expenditure savings can reach a quarter of million dollars
per year, if the unit price of enterprise hard disk is 1$ per
GB. More importantly, Fig. 12, right depicts a fact that, the
efficiency of our storage system for AMS-02 experiment [23]
is improved significantly (probably be around 30%), since
we adopted this replication policy at the end of January of
year 2014.

5 Related work

Increasing evidence shows that heterogeneity problemsmust
be tackled in MapReduce frameworks. Zaharia et al. imple-
mented a new scheduling algorithm (LATE) in Hadoop
to improve MapReduce performance by speculatively exe-
cuting tasks that hurt response time the most [9]. LATE
scheduling algorithm takes the heterogeneity assumptions
into consideration, but has poor performance due to the static
manner in computing the progress of the tasks. Asymmet-
ric multi-core processors address the I/O bottleneck issue,
using double buffering and asynchronous I/O to support
MapReduce functions in clusters with asymmetric compo-
nents [29]. Work by Fadika et al. [30] presented MARLA, a
load-adaptive MapReduce framework espousing a task ori-
ented approach to MapReduce application processing faced
with the source of cluster heterogeneity. MARLA creates a
multitude of tasks born from input splits, many times greater
in number than the sum of its nodes. This approach allows
the participating nodes to request tasks at their own pace.
[31] proposed resource stealing which enables running tasks
to steal the unutilized resources and return them when new
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Fig. 12 Percentage of the hot and cold data and the associated file count in a Hadoop cluster at Southeast University

tasks were assigned. Besides that, they presented a Benefit
Aware Speculative Execution, which predicts the benefit of
running new speculative tasks and greatly eliminates unnec-
essary runs to alleviate the issue, that the current mechanism
adopted to trigger speculative execution by heterogeneous
Hadoop created many unnecessary speculative tasks that
were killed soon after creation as the original tasks complete
earlier. Although the above techniques can improve MapRe-
duce performance of heterogeneous clusters, they do not take
into account data locality and data movement overhead.

Data locality management is one of the features that have
worse effect on the MapReduce performance [32], which
is determined by HDFS’ data placement strategy. Bad data
localitymanagement increases the execution time ofMapRe-
duce jobs. Someof approaches [18,33,34] have been recently
introduced to improve the data locality management in het-
erogeneous MapReduce clusters. These approaches have
some limitations. The first approach [18] of data locality
management did not consider the data replication during
data placement. If a node crashes, its input files are lost
because there was no duplication of the input files. Addi-
tionally, it does not automatically support the fault tolerance
feature. This approach can be enhanced by handling the
redundancy issue of data allocation in the cluster, and design-
ing a dynamic distribution mechanism for multiple data
intensive applications. The second approach [33] of data
locality management did not consider the workload het-
erogeneity. This approach can be enhanced by developing
more effective technique for transmitting the data sets in the
Hadoop environments. Also, this approach can be enhanced
by a more accurate estimation of the transmission time. The
third approach named ADAPT [34] dispatched data blocks
based on the availability of each node and can reduced

network traffic, improve data locality, and optimize the appli-
cation performance, but will incur extra overheads to the
existing Hadoop framework as it is an add-on feature of
Hadoop.

All of the above approaches have an impact on energy
efficiency as even idle machines remain powered on to
ensure data availability. In order to address the issue of
power conservation for clusters of nodes that run MapRe-
duce jobs, Leverich et al. [27] presented amodified design for
Hadoop that allows scale-down of operational clusters. They
proposed the notion of “Covering Subset” during block repli-
cation that at least one replica of a data blockmust be stored in
the covering subset. This ensures data availability, evenwhen
all the nodes not in the covering subset are turned off. Lang
et al. [28] proposed a new energy management for MapRe-
duce clusters called the All-In Strategy (AIS). AIS uses all
the nodes in the cluster to run a workload and then powers
down the entire cluster. But this policy is more applicable
to the batch jobs with longer intervals. Vasić et al. [35] pre-
sented a design for energy aware MapReduce and HDFS,
where they leverage the sleeping state of machines to save
power. Their work also proposeed a model for collaborative
powermanagementwhere a common control platform acts as
a communication channel between the cluster powermanage-
ment and services running on the cluster. Maheshwari et al.
in [36] proposed an energy efficient data placement and
cluster reconfiguration algorithm that dynamically scales the
cluster in accordance with the workload imposed on it to
address the problem of energy conservation for large data-
centers that run MapReduce jobs. However, the efficacy of
this approach would depend on how quickly a node can be
activated and the efficiency of storage space was still very
low.
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6 Conclusions and future work

The existing data placement strategy and replication scheme
of HDFS can noticeably reduce MapReduce performance
and may cause increasingly energy dissipation in hetero-
geneous environments. Besides that, HDFS employs an
inflexible replica factor acquiescently for each data block,
which will give rise to unnecessary waste of storage space
when there is a lot of inactive data in Hadoop system. In this
paper, we propose a novel snakelike data placement strat-
egy (named SLDP) to solve these problems. The evaluation
results show that SLDP is energy-efficient, space-saving and
able to improveMapReduce performance in a heterogeneous
Hadoop cluster.

In the future, we will focus on exploring more opti-
mization techniques to make the power control policy more
intelligent and efficient. We also want to figure out the opti-
mal value of the block default size by performing a large
number of experiments, thus the MapReduce performance
can be fine-grained optimized based on that. Moreover,
we plan to develop a dedicated Hadoop subsystem (called
amsHadoop) based on Apache Hadoop-2.3.0 release by
integrating our approaches proposed in this study to serve
AMS-02 experiment data production and physics analysis
better.
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