
Cluster Comput (2015) 18:1503–1526
DOI 10.1007/s10586-015-0494-0

Runtime self-monitoring approach of business process compliance
in cloud environments

Ahmed Barnawi1 · Ahmed Awad2 · Amal Elgammal2 ·
Radwa El Shawi3 · Abdullah Almalaise1 · Sherif Sakr4

Received: 31 July 2015 / Revised: 12 September 2015 / Accepted: 14 September 2015 / Published online: 13 October 2015
© Springer Science+Business Media New York 2015

Abstract Recently, several industrial studies have con-
cluded that compliance management is one of the major
challenges companies face nowadays. In practice, runtime
compliance monitoring is of utmost importance for com-
pliance assurance as during the design-time compliance
checking phase, only a subset of the imposed compliance
requirements can be statically checked due to the absence
of required variable instantiation and contextual informa-
tion. Furthermore, the fact that a business process model has
been statically checked for compliance during design-time
does not guarantee that the corresponding running business
process instances are usually compliant due to human and
machine errors. The problem of runtime monitoring of busi-
ness process compliance becomes more challenging when
business processes are executed in cloud computing envi-

B Ahmed Awad
a.gaafar@fci-cu.edu.eg

Ahmed Barnawi
ambarnawi@kau.edu.sa

Amal Elgammal
a.elgammal@fci-cu.edu.eg

Radwa El Shawi
rmelshawi@pnu.edu.sa

Abdullah Almalaise
aalmalaise@kau.edu.sa

Sherif Sakr
sakrs@ksau-hs.edu.au

1 King Abdulaziz University, Jeddah, Saudi Arabia

2 Cairo University, Giza, Egypt

3 Princess Nourah Bint Abdulrahman University, Riyadh,
Saudi Arabia

4 King Saud bin Abdulaziz University for Health Sciences,
Riyadh, Saudi Arabia

ronments. In this context, the compliance process can not
rely on external components as the whole execution envi-
ronment is mainly controlled by the cloud providers. In this
article, we propose a novel approach to tackle this problem
by adopting and configuring the business processmodels into
a form that augment the associated compliance rules so that
they can be monitored without the need to rely on exter-
nal monitoring components. Compared to approaches that
depend on an external monitoring component, our approach
requires less sophisticated infrastructure when hosted on
the cloud as well as less traffic footprint as communica-
tion with an external component for monitoring is no longer
needed.

Keywords Cloud computing · Cloud monitoring ·
Business process compliance

1 Introduction

Compliance management has become a pressing concern for
organizations operating in all industrial sectors, especially
heavily regulated domains such as the financial, pharma-
ceutical and manufacturing sectors. In today’s business
environment, organizations are continuously required to cope
with an increasing number of compliance constraints origi-
nating from various sources, including laws and regulations
(such as Sarbanes-Oxley, US patriot act, HIPAA), standards
and code of practice (such as ISO9001), internal policies, and
business partner contracts (such as service level agreements-
SLAs).

This is causing significant problems for organizations in
almost all industrial sectors, as the complexities of hard and
soft regulations are little understood or appreciated [7]. For
example, banking regulations such as anti-Money Launder-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-015-0494-0&domain=pdf

1504 Cluster Comput (2015) 18:1503–1526

ing directives are generally complex and far-reaching, with
a raft of major banks found to be not in compliance in
2012. Standard Chartered Bank, London, and HSBC Hold-
ings Plc. for example, were fined a total of $459million and
$1.92billion, respectively, in 2012.1 These incidents were
preceded by scandals and business failures such as Enron,
and WorldCom back in 2001. Subsequently, much attention
has been paid to compliance management from both the aca-
demic and the industrial communities. Many research efforts
have contributed to the compliance management of business
processes. The vast majority of these contributions focus on
compliance checking at process design time [4,19,20,32], to
name just a few. Although compliance checking at design-
time is of crucial importance to identify and resolve as
many as non-compliance scenarios, however, it does not
provide a guarantee that the execution of cases based on
compliant models will also be compliant. This is due to
the complexity of the runtime phenomenon and the exis-
tence of several external factors such as human performers of
activities within a process. Enforcing compliance at process
configuration time has gained little focus [39] and still does
not guarantee compliant execution especially to compli-
ance requirements related to timing constraints. Post-mortem
analysis of execution history automates the auditing and iden-
tification of violations but with no chance to remedy these
violations [8,55,57].

In practice, compliance monitoring at process execution
time is of crucial importance as it complements the design-
and configuration-time checking with techniques to detect
violations that are hard or even impossible to address at
the earlier stages of the process lifecycle, e.g., time span
constraints between tasks, and it also saves the effort of
running several checks over the process logs to identify
violations. Moreover, it allows for proactive management
of violations where a violation scenario could be avoided.
Recently, compliance monitoring of business processes has
begun to gain more attention from the research commu-
nity [3,10,31,33–35,56] where various approaches were
introduced to accomplish the task of compliance monitor-
ing. In most of these approaches, an external monitoring
component needs to be built and linked to the process
execution environment. The monitoring component usually
listens to event streams originating from the process exe-
cution environment where technologies like complex event
processing (CEP) [30] are used to check the compliance
status of the running instances against different compliance
rules.

As the cloud computing model is gaining in prominence
and increasingly being adopted by organizations of all sizes,
it is inevitable that business processes supporting these orga-

1 http://www.accuity.com/industry-updates/free-resources/
trends-in-aml-compliance-infographic/.

nizations will also be executed on the cloud in a distributed
environment. Yet, these processes have to adhere to com-
pliance requirements from various and diverse compliance
sources. Moreover, large volumes of events are expected to
be generated as a direct impact of running these processes.
According to the NIST definition [38], cloud computing sup-
port three levels of service models: (1) Infrastructure as a
Service (IaaS) which describes the provisioning process of
computing resources such as servers, network bandwidth,
storage, and related tools which are necessary to build an
application environment from scratch. (2) Platform as a Ser-
vice (PaaS)which provides a higher-level environmentwhere
developers can write customized software applications. (3)
Software as a Service (SaaS)which refers to special-purpose
softwares that can be made available through the Internet.
In these models, especially, PaaS and SaaS, the monitor-
ing facilities of the cloud users are quite limited, if any. In
particular, the full access control on the cloud computing
resources and software is ultimately on the provider side.
Thus, the possibility of achieving the business process com-
pliance via external monitoring components becomes quite
limited.

In this paper, we propose a novel approach that allows
reporting compliance status of timing and resource assign-
ment compliance rules directly by the process instance itself
without the need to have an external monitoring component.
Compared to approaches that depend on an external monitor-
ing component [2,10,31,33–35,56], our proposed approach
requires less sophisticated infrastructure when hosted on the
cloud as well as less traffic footprint as communication with
an external component for monitoring is no longer needed.
In particular, our approach is targeted to BPMN processes
as they have a rich set of constructs that can be exploited to
report about compliance status as will be shown later. The
contributions of this paper are:

– An automatic pattern-based approach to rewrite process
models to include violation monitoring logic within
the process, where compliance patterns are high-level
abstractions of frequently used compliance requirements,
which help non-technical users to abstractly represent
desired properties and constraints.

– Coverage of patterns that lend them selves to runtime
detection like timing and resource assignment con-
straints,

– The approach ismainlydesigned forBPMN2.0processes
but applicability to BPEL 2.0 is also discussed as they are
the two standard process execution languages,

– An integrated tool-suite has been developed as a proof-
of-concept that ascertains the implementability of the
proposed approach,

– Validation of the approach using a case study from the
financial sector about anti money laundering,

123

http://www.accuity.com/industry-updates/free-resources/trends-in-aml-compliance-infographic/
http://www.accuity.com/industry-updates/free-resources/trends-in-aml-compliance-infographic/

Cluster Comput (2015) 18:1503–1526 1505

The rest of this paper is structured as follows: Background
concepts are discussed in Sect. 2. The contribution of the
paper through a pattern-based process rewriting is discussed
in details in Sect. 3. Implementation and evaluation on a case
study are discussed in Sect. 4. Related work is presented and
discussed in Sect. 5, by comparing to the approach proposed
in this paper. Finally, Sect. 6 concludes the paper with a crit-
ical discussion of the presented approach.

2 Background

This section introduces the main concepts and techniques
that form the groundwork for our approach.

2.1 Compliance patterns

In general, pattern-based modeling of compliance rules is
well accepted in the community and several studies have
provided a comprehensive set of patterns that cover the dif-
ferent aspects as control flow, data flow, resource allocation
and timing as summarized by Ly et al. [31]. In this work,
we build on top of those patterns. In particular, Fig. 1 sum-
marizes the set of compliance patterns which are supported
by our framework. We use pattern and rule interchangeably
where a rule is an instantiation of a pattern.

In practice, any pattern can optionally be limited to a scope
in which the rule is required to hold. The scope represents
a time window that is bounded by case or task instance-
related events. In principle, the default scope is the whole
process instance execution. Also, the pattern can be refined
by a condition where the rule is required to hold only when
this condition is true. The condition may refer to process
execution data that are reflected in the event data payload.
With each pattern, two actions are defined. The Violation
Action describes the action taken by the monitoring com-
ponent when the violation occurs whereas the Prediction

Action describes the action taken when there is a possibil-
ity of violation. The nature of the action depends on how the
monitoring component is integrated with the execution envi-
ronment. For instance, the simplest action that can be taken
is to alert administrators.

Definition 1 (Atomic Compliance Rule) Let PM be the set
of all process models to be monitored. A compliance rule is
a tuple (pattern,model, antecedent, consequent, condi
tion, scope start, scope end,multiplici t y,W A, time
span, alert time span, isWithin, violation action,

predictiveaction, role, user) where:

– pattern ∈ {Exists, Absence, Sequence, Next, Prec
edes, One to one precedes, Response, One to one
response,
SoD, BoD, Per f ormed by role, Per f ormed by
resource} defines the pattern from which the rule is
instantiated,

– model ∈ PM is a reference to the process model against
which the rule has to be monitored,

– antecedent ∈ {ex, not (ex)|ex ∈ RE} where not (ex)
means that event ex has not been observed,

– consequent ∈ {ex, not (ex)|ex ∈ RE} where not (ex)
means that event ex has not been observed,

– condition is the data condition that is to be examined at
the occurrence of the rule’s antecedent

– scope start ∈ RE defines the delimiting start event of
the rule’s scope,

– scope end ∈ RE defines the delimiting end event of the
rule’s scope,

– multiplici t y is a constraint on the number of occur-
rences of the rule’s antecedent ,

– W A ⊂ RE is the set of events that must not occur
between the antecedent and consequent ,

– t ime span is the time window in/out of which the
consequent event must be observed,

Event

Composite
Pa�erns

Occurrence
Pa�erns

Atomic
Pa�erns

0..1

Antecendent

Consequent
Compliance Pa�erns

PerformedBy

Segrega�on
OfDuty

Binding
OfDuty

Resource
Pa�erns

Sequence
isNext

Existence
Mul�plicity

Absence

Order Pa�erns
With Absence
Time Span
Alert Time Span
isBefore

Precedence
isOneToOne

Response
isOneToOne

Fig. 1 Compliance patterns

123

1506 Cluster Comput (2015) 18:1503–1526

– alert time span is the time window after which there
is a possibility of violation if the consequent was not
observed,

– isWithin ∈ {true, f alse} is a Boolean value indicating
wether the consequent event must be observed before or
after the end of the t ime span

– violation action ∈ {alert, suspend} defines the action
to be taken upon the occurrence of a violation,

– predictive action ∈ {alert, suspend} defines the
action to be taken when there is a possibility of a vio-
lation,

– role defines the user role that is referred to when
pattern = Per f ormed by role,

– user defines the user that is referred to when pattern =
Per f ormed by resource.

When any property does not apply to a rule pattern, it is
represented as ⊥. We define CR as the set of all compliance
rules registered with the monitoring component.

As per Definition 1, there might be a time span win-
dow that puts further constraints on the observation of the
consequent event with respect to the antecedent event.
This is also further controlled by the isWithin property. So, if
isWithin = true, the pattern requires that the consequent
event to be observed before time span elapses otherwise
there is a violation. Whereas, if isWithin = f alse, then
consequent has to be observed after the time span elapses.

Composite patterns are used to logically connect other
patterns by Boolean operators AND, OR, NOT , etc. This
is used to define complex rules that can not be expressed
merely by atomic patterns, which is especially helpful when
sub-ideal level of compliance is also needed [31].

2.2 Process runtime APIs

Our approach relies on the following set of application pro-
gramming interface (APIs) which are commonly supported
by the runtime business process execution environments:

– GetProcessInstanceID(TaskInstance):
Returns the process instance identifier in which a task
instance is currently running.

– GetCompletionTimestampOfTask(Task,
Instance): Returns from execution history the Date
Time value at which the specified Task was completed
within the specified Instance.

– GetPerformerOfTask(Task, Instance):
Returns the user object who has completed an instance
of task Task in process instance this.

– GetRolesOfUser (User): Returns the set of roles
assigned to the user User.

Examples for these APIs are available in the documenta-
tion of the open source BPMN execution engine, Activiti,2

and the commercial execution engine, Camunda.3

3 Rewriting processes to alert for violations

In this section, we describe our approach for adapting the
business process model design and configuration in order to
support self-alerting for compliance violations at runtime in
cloud environments. Section 3.1 provides an overview of our
approach and the flow of steps that link between business
process models and compliance rules in order to produce
a violation-aware business process models which are ready
for execution. In Sect. 3.2, we describe in detail our contribu-
tion with respect to adopting the business process model for
alerting compliance violations when they occur at runtime
with respect to timed order pattern. In Sect. 3.3, we describe
adopting the business process models to alert for runtime
violations of resource-related patterns.

3.1 Overview

We follow a pattern-based approach which is based on the
compliance patterns discussed in Sect. 2. As can be noted,
the patterns can be verified in two phases, design time and
runtime. We assume that design time verification has been
done and the model is statically compliant by design. How-
ever, in practice, not all compliance requirements can be
checked during design-time due to the lack of some con-
textual information and variable instantiation that is only
available during the runtime phase of the business process
lifecycle [2,22]. Therefore, in this article, we address only
patterns that need further verification at runtime. To be more
specific, we address order patterns that have either the time
span or the alert time span in addition to resource patterns
(See Sect. 2.1). Both timing information and user assign-
ments to tasks and activities are usually not known until
runtime.

As shown in Fig. 2, there are basically two threads, the rule
modeling and the process modeling threads. A compliance
expert can visually specify the compliance rules based on
patterns described in Sect. 2.1. These rules are then stored in
the repository. Similarly, a process/business expert defines
the logic of a BPMN process model that is also saved to
the repository. Both the rule and the process model are the
inputs to the component “Self-Alerting Logic of BP Augmen-
tation”. Actually, an arbitrary number of compliance rules
can be taken as input in addition to the process model. This
component applies changes to the input process model based

2 http://www.activiti.org/javadocs/index.html.
3 http://docs.camunda.org/latest/api-references/javadoc/.

123

http://www.activiti.org/javadocs/index.html
http://docs.camunda.org/latest/api-references/javadoc/

Cluster Comput (2015) 18:1503–1526 1507

Fig. 2 Framework overview

on the input rule(s) in order to make the process model alert
for/prevent violations to the rules at runtime. This compo-
nent is the core contribution of this article and the details of
how it works are discussed in the following subsections.

3.2 Timed order patterns

In general, order patterns, cf. Fig. 1, are concerned with the
execution sequence of activities within a process instance.
Moreover, this execution ordering might be required to occur
within a time window, time span property, when the prop-
erty isWithin is set to true or that the time window has to
elapse before the consequent of the rule may occur, when the
isWithin is set to false. In practice, verifying that a process
design complies with the execution order between a rule’s
antecedent and consequent can be accomplished by design-
time compliance checking techniques such as [4–6,23]. In
this case, a faithful execution of the process by a central
execution engine shall guarantee compliance to the rule.
However, if the rule is decorated with timing constraints,
design-time-only does not provide a sufficient guarantee that
enacted instances of the process model will obey that con-
straint. Thus,we need a runtime support tomonitor and detect
violations to such timing constraints on order patterns.

Timed Response Pattern

As shown in Fig. 1, the time constraint imposed on the occur-
rence of the rule’s consequent might occur either:

– Before the time span elapses from the time the rule’s
antecedent occurs or,

– After the time span elapses from the time the rule’s
antecedent occurs.

For the former case, an example rule, based on Defini-
tion1, couldbe Response(antecedent = A, consequent =
B, condition = T, scopeStart = ProcessStart, scope
End = ProcessEnd,multiplici t y = N/A,W A =,

timeSpan = 5days, isWithin = true, alertT imeSpan
= 4days, violationAction, predictiveAction)

To enable execution awareness of possible violations, we
basically do three steps

– Insert a throwing signal event right after the rule’s
antecedent task signaling antecedent task completion,

– Insert a throwing signal event right after the rule’s con-
sequent task signaling consequent task completion,

– Insert a non-interrupting event subprocess that is trig-
gered by the antecedent’s signal event and that awaits for
the consequent signal event or a timer to occur.

A signal event [48] broadcasts a predefined event that
is of a business value. The throwing signal event generates
and broadcasts an instance of that event whereas the catch-
ing event listens to the occurrence of those event instances.
The dissemination of the event instance is via throwing the
signal event that crosses over the process instance bound-
ary and even cross process definition. That is, any catching
signal event that listens to that specific event will get noti-
fied by the underlying event delivery infrastructure. The
non-interrupting event subprocess is actually triggered by
a catching signal event for the rule’s antecedent completion

123

1508 Cluster Comput (2015) 18:1503–1526

Fig. 3 An example process
model

event. Once an event is caught, the process instance, case, id
stored within the incoming event is compared to the case id
of the catching instance. The comparison is made to avoid
catching an irrelevant event from another case. If they are dif-
ferent, then the sub-process exits without further action. On
the other hand, if they belong to the process instance, the sub-
process proceeds and awaits, via an event-based gateway, for
one of two events to occur, namely a signal event indicating
the completion of the consequent task or a timer event indi-
cating the expiry of the time span of the rule. The violation
detection depends also on the nature of the time span, i.e.,
the isWithin property of the rule. If it is set to true, then
a violation occurs if the time span expires and the comple-
tion event of the rule’s consequent is not observed. On the
other hand, if isWithin = f alse, a violation occurs if the
completion event is observed before the time span expires.

For the former case of isWithin = f alse, if the signal
indicating the completion of the consequent task is caught
first and it is originating from the same process instance,
then the event subprocess completes and no extra action is
needed. This is because the consequent task was completed
within the specified time window and the compliance rule
is satisfied. On the other hand, if the timer event expires
first; this means that the time span allowed for the conse-
quent task to complete its action has elapsed before observing
that the consequent task has completed. In this case, a
task with the logic to respond to the violation is invoked.
Note that the subprocess initiating the catch event is non-
interrupting. This means that the flow of the main process
can continue normally without interruption. The role of the
timer event is to make the subprocess idle until the rule’s
time span expires. As a result, the timer condition expres-
sion is GetCompletionTimeOfTask(Antecedent,
this) + Rule.t imeSpan. The first operand of that expres-
sion is an invocation of the runtimeAPI to get the completion
time of the antecedent task within this process instance,
cf. Sect. 2.2. The second operand is the rule’s timeSpan
property. The result is a point in time, usually a DateTime
value, until which the sub process will be waiting. The vio-
lation action task can also be replaced with a subprocess
that contains a more sophisticated logic to respond to the
violation. If the response to the violation might result in ter-
minating the current instance, a terminate end event can be
employed. For the latter case isWithin = true, what needs
to be changed is to move the violation action task from the

timer event branch to the catching signal event branch of the
consequent task.

To better illustrate how our approach works, consider the
process model in Fig. 3. Also, consider the following com-
pliance rules:

– R1 = Response(antecedent = C, consequent =
F, timeSpan = 5days, isWithin = true, alertT ime
Span = 4days),

– R2 = Response(antecedent = A, consequent =
C, timeSpan = 5days, isWithin = f alse)

Obviously, the process is compliantwith the ordering con-
straint of the different rules by design. For instance, with
respect to R1 whenever task C is executed, task F will be
executed afterwards within the same process instance. Sim-
ilarly for rule R2, when task A is executed, task C will be
executed in the same instance. This also applies for R2. To
make the process aware of possible time-based violations,
for R1 we need to: 1) insert a signal event right after task
C , 2) insert another throwing signal event right after task
F and 3) insert an event subprocess that will include the
logic to decide if there was a violation to the time window
constraint. The modified process is shown in Fig. 4. We also
added explicitly a data object Instance ID that carries the spe-
cific process instance ID. This data object is written at the
creation time of the process instance by the start event. The
value stored in this data object is obtained by invoking the
runtime API GetProcessInstanceID(), cf. Sect. 2.2.
Then this object is made as the input for the two throwing
signal events. Rules R1 has also its alertT imeSpan set.
To address this part of the rule, we need to add an extra sub-
process where the expression of the timer event is changed to
refer to the rule alert time span property. Also, the violation
action task needs to be replaced with the respective action
to be taken to alert for the possible violation upstream. In
that case, the actual violation can be avoided if the performer
of task F is informed to speedup the processing of the task
before the time span expires.

Figure 5 shows the changes made to the original model
from Fig. 3 to alert for violations of R2. For R2, isWithin =
f alse. That is the consequent is allowed to occur only after
the time span from the antecedent occurrence has elapsed,
cf. Definition 1. To monitor violations for such rules, the
violation action task is put on the signal event branch.

123

Cluster Comput (2015) 18:1503–1526 1509

Fig. 4 The process from Fig. 3
after making changes to alert for
violations of R1

Fig. 5 The process from Fig. 3
after making changes to alert for
violations of R2

As shown in Figs. 4 and 5, signal events are used within
more than one event subprocess for different purposes. For
instance, when the event C Completed is thrown right after
the task C completion, it is caught by two different catching
events. One is a start non-interrupting event used to initiate
the violation handling event subprocesses for rules R1. The
other one is an intermediate catching event in the subprocess
monitoring violations for rule R2. Also, in case that the rule’s
antecedent was part of a loop, the event sub-process will get
instantiated as many times as the antecedent task executes as
per the specification of BPMN 2.0 [48].

Timed Precedence Pattern

indicates that whenever the rule’s antecedent occurs, the
rule’s consequent must have occurred in the instance exe-
cution history either before or within the specified timespan.
Consider the following rules which are imposed against the
process model in Fig. 3.

– R3 = Precedence(antecedent = F, consequent =
D, t imeSpan = 1days, isWithin = true)

– R4 = Precedence(antecedent = F, consequent =
E, timeSpan = 1days, isWithin = f alse)

Theprocess is compliantwith ordering constraints imposed
by the precedence pattern. That is, whenever task F is exe-
cuted task D was executed before, R3, and also task E
was executed, R4. To enforce the monitoring for the tim-
ing part, we need to 1) insert a throwing signal event after
the rule’s antecedent task in the process 2) add an event
subprocess that is initiated by the corresponding catch sig-
nal event that includes the monitoring logic. By enforcing
the monitoring of R3 on the process in Fig. 3 the modified
process is shown in Fig. 6. The event subprocess is triggered
by the completion of the antecedent task, task F for R3.
Next, a check is made to be sure that the event was thrown
from the same process instance. In that case, runtime API
GetCompletionTimeofTask(Task, Instance),
cf. Sect. 2.2, is invoked for both the antecedent and the
consequent tasks of the rule, C and F for R3. Then a
check is made to see if the completion time of the conse-
quent obeys the constraint enforced by the rule. That is, we
check if the completion time of the consequent was within
the time window ending with the completion time of the

123

1510 Cluster Comput (2015) 18:1503–1526

Fig. 6 The process from Fig. 3
after making changes to alert for
violations of R3

Fig. 7 The process from Fig. 3
after making changes to alert for
violations of R4

antecedent and going backward with the amount specified in
the TimeSpan property of the rule. If this is not the case
and the rule’s isWithin was set to true, this means that
there is a violation and the rule’s violation action has to take
place. Otherwise, the event subprocess completes silently.

Figure 7 shows the changesmade to theprocess fromFig. 3
to enable themonitoring for violations of R4.Note that for R4
isWithin is set to f alse. That is, in order for the process to
be compliant, the consequent must have had occurred before
the timewindow ending with the antecedent completion time
and lasting backward for the rule’s TimeSpan. So, if it hap-
pens that the completion time of the consequent was within
the time window then there is a violation.

3.3 Resource patterns

Employed resources involves mainly the task allocations,
access control and authorization constraints, and constitutes
one of the important structural facets of BP compliance.
As shown in Fig. 1, ‘Resource Patterns’ class is one of the
three sub-classes of the ‘Compliance Patterns’ super-class.
Resource patterns typically involve some basic business

process concepts, in particular: role, user (actor), and task
(or BP activity). We assume that tasks are assigned to
roles and users perform the tasks through the roles they
are assigned to. As shown in Fig. 1, we are considering
three typical resource patterns: ‘PerformedBy’, ‘Segrega-
tionOfDuties’ and ‘BindingOfDuties’, which is described as
follows:

– t PerformedBy R: This means that No other role than R
is allowed to perform activity t

– t1 SegregatedFrom t2: Activities t1 and t2 must be per-
formed by different roles and users

– t1 BoundedWith t2:Activities t1 and t2 must be performed
by the same user

To be able to verify resource allocation and authoriza-
tion constraints, it is necessary to formally represent some
important business process elements along with their rela-
tionships, i.e., Roles, Users (or Actors) and Activities (or
tasks). We are following the approach proposed in [62]
for this purpose. More precisely, we assume the existence
of three sets, i.e., Users, Roles and Activi t ies. The set

123

Cluster Comput (2015) 18:1503–1526 1511

Fig. 8 Re-structuring BPMN model to detect, prevent and alert for the ‘PerformedBy’ pattern violation

(Users × Roles × Activi ties) represents the allocation of
activities to particular users assuming specific roles. The
set Roles is a partial order set forming a role hierarchy.
This means that a role inherits the privileges assigned to its
related lower-level roles in the role hierarchy. Similarly, the
set (Roles×Users) represents theM:N relationship between
Roles and Users.

Compliance requirements on employed resources typi-
cally require run-time information to be verified. That is,
many of such requirements can only be partially verified for
compliance at design-time. We assume that the binding of
roles to specific tasks is known during design-time and has
been statically verified using approaches such as in [22,61].
Therefore, the main focus here is to augment the respective
BPMNmodels to detect and prevent employed resources vio-
lations on the Actors level. In the following, the automated
structural augmentation of BPMN models is discussed to
enable corresponding running instances to detect, alert and
prevent the violations of PerformedBy, SegregatedFrom and
BoundedWith resource patterns.

PerformedBy Pattern

Figure 8 shows the structural augmentation of a standard
BPMNmodel to enable the detection, prevention and alerting

of this constraint violation, pro-actively. The mapping of the
BPMN model takes advantage of the Call Activity construct
of BPMN v2.0 [48], and other BPMN v2.0 advanced event
types. A Call Activity is a reference to a globally defined
(Sub-)Process. The construct represents a ‘wrapper’ for the
call of the referenced process while executing the underlying
process, the control flow is handed over to the called process.
The call of a globally defined Process through Call Activity
resembles the execution semantics of a conventional (sub-)
process. The notation of a call activity is a rounded rectangle
like a conventional activity but with a thick outline. The call
activity may also be annotated with the subprocess marker
(‘+’ sign), e.g., ‘CheckAssignedUser’ call activity in Fig. 8.
The mapping also used two types of events in BPMN v2.0:

– Escalation event: escalating to a higher level of respon-
sibility. An escalation event is represented by a thick
upper arrow inside conventional start, intermediate or end
events.

– Signal event: signalling across different processes. A sig-
nal thrown can be caughtmultiple times. A signal event is
represented as a triangle inside conventional start, inter-
mediate or end events. A filled triangle is used with end
events, while a hollow triangle is usedwith start and inter-
mediate events.

123

1512 Cluster Comput (2015) 18:1503–1526

Given this background, assume that in Fig. 8 the rule R1 =
A Per f ormedBy R is imposed on a BPMN model (upper
part of Fig. 8). The goal during runtime is to ensure that the
User U assigned to activity A has the role R. The structural
mapping of the BPMN model involves the following steps:

1. Define a newglobal process called ‘CheckAssignedUser’
(lower part of Fig. 8). ‘CheckAssignedUser’ process
starts by calling the GetRolesOfUser (User) API
(described in Sect. 2.2), which returns a set UR =
{UR1,UR2, . . . ,URn} representing the roles assigned
to User U . Then an exclusive gateway checks whether
UR∩{R} = φ, which means that Role R is not assigned
to User U , and represents a violation. If this condition
evaluates to true then an end escalation signal is thrown
(to escalate the potential violation before its occurrence
to a higher role). If no potential violation is detected an
‘OK’ end signal is thrown

2. For every occurrence of Activity A, insert an activity
that calls GetPerformerOfTask(A, I_id) API
as described in Sect. 2.2, such that I_id represents the
instance ID and the API returns the assigned user to
Activity A.

3. Then insert a call activity ‘CheckAssignedUser’ just
beforeActivity A and after theGetPerformerOfTask
(A, I_id) API call.

4. Add Activity A in a sub-process, which starts with exclu-
sive event-based gateway to catch either the escalation
event (indicating that a violation is about to occur), or
an ‘OK’ signal thrown from the ‘CheckAssignedUser’
global process.

5. If an ‘OK’ signal is caught, activity A is executed and the
flow proceeds normally

6. If an escalation event is caught, a defined high-level role
makes an informed decision whether to override the Per-
formedBy rule. Based on this decision, either a defined
violation recovery action is performed, and the instance
terminates, or activity A is executed and the flow pro-
ceeds normally

SegregatedFrom Pattern

Segregartion of duties (SoD) is a well-recognized resource
allocation constraints in the regulatory domain to minimize
the possibilities of fruad [28]. Following the same rationale of
the mapping of the PerfomedBy resource Pattern discussed
above, we assume that the SoD constraint has been checked
on the Role level during design-time, which means that it has
been ensured that the two activities involved in the SoD rule
(e.g., A and B) are performed by different roles. Therefore,
the objective of our mapping is to ensure that: (i) Activities
A and B are performed by different Users, and then (ii) if
the assigned users to activities A and B are different, ensure

that they do not hold the same role. SoD is a binary operator
that does not impose an order constraint on its operands. For
simplicity, the mapping discussed here considers if activity
A occurs before activity B in the BPMN model, however,
our mapping and implementation discussed in Sect. 4.1 also
considers the case of B precedes A. If either (both) A or (and)
B is (are) absent, then no mapping is needed.

Figure 9 shows the augmentation of a standard BPMN
model to detect, prevent and self-alert for potential violation
before its occurrence. The mapping also takes advantage of
‘Call Activity’, ‘Signal’ and ‘Escalation’ events of BPMN
v2.0 as described in the PerformedBy pattern mapping
(Sect. 3.3)

Assume that inFig. 9 the rule R1 = A SegregatedFromB
is imposed on a BPMN model (upper part of Fig. 9). The
structural mapping of the BPMNmodel involves the follow-
ing steps:

1. Define a new global process called ‘CheckSegrega-
tionOfDuties’ (lower part of Fig. 9). ‘CheckSegrega-
tionOfDuties’ process starts by checking whether users
U1 and U2 sent from the call activity are differ-
ent. If this condition is evaluated to false, an esca-
lation signal is thrown and the ‘CheckSegregationOf-
Duties’ process terminates. If the condition is satis-
fied, two API calls are invoked concurrently to the
API GetRolesOfUser (User) API (described in
Sect. 2.2) to return the roles assigned to User U1 and
UserU2, respectively. That’sGetRolesOfUser (U1
returns a set UR1 = {UR11,UR12, . . . ,UR1n} repre-
senting the roles assigned toUserU1.AndGetRolesOf
User (U2 returns a set UR2 = {UR21,UR22, . . . ,
UR2n} representing the roles assigned to User U2.

2. Then an exclusive gateway checks whether UR1 ∩
UR2 = φ, whichmeans thatUserU1 andUserU2 donot
play the same role and that theSegregatedFromconstraint
is satisfied. If this condition is satisfied, an OK signal is
thrown and the ‘CheckSegregationOfDuties’ terminates.
If this condition evaluates to false then an end escalation
signal is thrown (to escalate the potential violation before
its occurrence to a higher role).

3. After every occurrence of Activity A, add an activity
that calls GetPerformerOfTask(A, I_id) API
as described in Sect. 2.2, such that I_id represents the
instance ID and the API returns the assigned user U1 to
Activity A.

4. Then, before activity B, add an activity that calls
GetPerformerOfTask(B, I_id)API as described
in Sect. 2.2, such that I_id represents the instance ID
and the API returns the assigned user U2 to Activity B.

5. Then add a call activity ‘CheckSegregationOfDuties’
just before Activity B and after the GetPerformerOf
Task(B, I_id) API call.

123

Cluster Comput (2015) 18:1503–1526 1513

F
ig
.
9

R
e-
st
ru
ct
ur
in
g
B
PM

N
m
od
el
to

de
te
ct
,p
re
ve
nt

an
d
al
er
tf
or

th
e
‘S
eg
re
ga
te
dF

ro
m
’
pa
tte
rn

vi
ol
at
io
n

123

1514 Cluster Comput (2015) 18:1503–1526

Fig. 10 Re-structuring BPMN model to detect, prevent and alert for the ‘BoundedWith’ pattern violation

6. Add Activity B in a sub-process, which starts with exclu-
sive event-based gateway to catch either the escalation
event (indicating that a violation is about to occur), or an
‘OK’ signal thrown from the ‘CheckSegregationOfDu-
ties’ global process.

7. If an ‘OK’ signal is caught, activity ‘B’ is executed and
the flow proceeds normally.

8. If an escalation event is caught, a high-level role makes
an informed decision whether to override the Segregat-
edFrom rule. Based on this decision, either a defined
violation recovery action is performed, and the instance
terminates, or Activity B is performed and then the flow
proceeds normally.

BoundedWith

BoundedWith compliance pattern only imposes constraint
on the users that are allowed to perform two binary activ-
ities, and therefore it can only be checked during runtime.
BoundedWith is a binary operator that does not impose any
order constraint on its operands. For simplicity, the mapping
discussed in this Section considers the case where activity A
occurs before activity B in the BPMN model, however, our
mapping and implementation, cf. Sect. 4.1 also considers the
case of B precedes A. If either (or both) A or B is absent, then
no mapping is needed. Figure 10 shows the augmentation of
a standard BPMN model to detect, prevent and self-alert for
potential violation before its occurrence. The mapping also
take advantage of ‘Call Activity’, ‘Signal’ and ‘Escalation’
events of BPMN v2.0 as described in the PerformedBy pat-
tern (Sect. 3.3). The structural mapping of the BPMNmodel
involves the following steps:

1. Define a new global Process called ‘CheckBoundedOf-
Duties’ (lower part of Fig. 10). ‘CheckBoundedOfDu-
ties’ process starts by checking whether usersU1 andU2
sent from the call activity are the same. If this condition
is false, an escalation signal is thrown and the ‘Check-
BoundedOfDuties’ process terminates. If the condition
is satisfied an ‘OK’ signal is thrown and the ‘Check-
BoundedOfDuties’ terminates.

2. After every occurrence of Activity A, add an activity
that calls GetPerformerOfTask(A, I_id) API
as described in Sect. 2.2, such that I_id represents the
instance ID and the API returns the assigned user U1 to
Activity A.

3. Then, before activity B, add an activity that calls
GetPerformerOfTask(B, I_id)API as described
in Sect. 2.2, such that I_id represents the instance ID
and the API returns the assigned user U2 to Activity B.

4. Then add a call activity ‘CheckBoundedOfDuties’ just
beforeActivity B and after theGetPerformerOfTask
(B, I_id) API call.

5. Add Activity B in a sub-process, which starts with exclu-
sive event-based gateway to catch either the escalation
event (indicating that a violation is about to occur), or an
‘OK’ signal thrown from the ‘CheckBoundedOfDuties’
global process.

6. If an ‘OK’ signal is caught, activity ‘B’ is executed and
the flow proceeds normally

7. If an escalation event is caught, a high-level role makes
an informed decision whether to override the Segregat-
edFrom rule. Based on this decision, either a defined
violation recovery action is performed, and the instance

123

Cluster Comput (2015) 18:1503–1526 1515

terminates or Activity B is performed and then the flow
proceeds normally.

3.4 Applicability to BPEL

In this section, we discuss the applicability of our approach
to BPEL 2.0 [46] as it is a standard execution language for
business processes. With the BPEL4People [47] and Human
Task [45] extensions, BPEL is able to invoke activities that
are accomplished by humans. Thus, resource-based patterns
need to be monitored over BPEL4People processes. Also are
timed ordering patterns. The presented approach in Sect. 3
depends on constructs that are found in BPMN 2.0 [48].
Namely it depends on:

– Signal events, throwing and catching,
– Escalation events, throwing and catching,
– Non-interrupting event subprocesses,
– Call activities

Looking at the family of BPEL standards [45–47], we can
notice that the signal and escalation events have no counter-
parts in BPEL at the standard specification level. However,
some commercial tools that support BPEL have made their
own extensions to support such constructs. Yet, BPEL 2.0
provides an Extension Activity which is a way to
provide user-defined types of activities. With this in hand,
two extensions to cover the missing signal and escalation
events can be defined. Event handlers of BPEL can be used
as the equivalent for the event subprocesses in BPMN. By
default, event handlers in BPEL are non-interrupting. So, if
the rule just requires sending out notifications nothing more
is needed. On the other hand, if the rule requires a suspension
or a termination of the instance, the event handler can have an
Exit activity invoked in its event handling logic. Call activ-
ities in BPMN can be defined as standalone BPEL processes
that are invoked as needed from within the BPEL process
to be monitored. This solution shall provide a self-contained
BPEL process that includes both the business logic and the
monitoring logic in the same way as was shown in Sect. 3 for
BPMN. However, BPEL has a limitation when it comes to
implementing the event-based exclusive gateway. The coun-
terpart construct in BPEL is thepick activity. The limitation
is that pick can handle either timer or message events only.
Currently, there is no support for other types of events not
even via an extension. So, a solution for this limitation is to
implement the signal extension activity in a way that triggers
a message to be sent to the same process instance. Thus, the
correlation is based on the process instance identifier.

For the sake of clarity, we introduce the example rule R1
above and its monitoring logic implemented in a snippet of a
BPELprocess. First, we useBPEL extensionActivity
to define a signal event as shown in Listing 1.

<bpel:extensionActivity>
<signal . . . />
</ bpel:extensionActivity>

Listing 1 A BPEL extension to define the signal activity

Listing 2 is a pseudo BPEL code to show how the signal
activity is used to implement the changes from Fig. 4.

<process>
<eventHandlers>
<onEvent name="Task C Completed">
<sequence>
<invoke name="Check same instance">
<if>
<condition>$Result = ‘Yes’ and $Orider .Amount >
5000 and $Risk . threshold < 2</condition>
<repeatUntil >
<pick>
<onMessage name="Task F Completed">
<scope>
<invoke name="Check same instance">
<if>
<condition>$SameInstanceAsAntecedentTask=‘Yes’
</ condition>
<assign>
<copy><from>‘No’</from>
<to>$MoreRound</to></copy>
</assign>
</ if>
</scope>
</onMessage>
<onAlarm>
<until>$getCompletionTimeOfTask(C)+$Rule . timeSpan
</until>
<scope>
<invoke name="Rule violation action"/>
<assign>
<copy><from>‘No’</from>
<to>$MoreRound</ to></copy>
</ assign>
</scope>
</onAlarm>
</pick>
<condition>$MoreRound=‘Yes’</condition>
</repeatUntil>
<else>
<empty/>
</else>
</ if>
</sequence>
</onEvent>
</eventHandlers>

123

1516 Cluster Comput (2015) 18:1503–1526

Fig. 11 Self-alerting BP
compliance approach
implementation architecture
represented as a UML diagram

<sequence>
<if>
<condition/>
<invoke name="A"/>
<else>
</else>
<invoke name="B">
</ if>
<invoke name="C">
<signal name"Task C Completed">
<flow>
<invoke name="D"/>
<invoke name="E"/>
</flow>
<invoke name="F">
<signal name"Task F Completed">
</sequence>
</process>

Listing 2 A BPEL process with monitoring logic for R1

4 Evaluation

In this section,wediscuss the implementationof theproposed
approach as well as evaluating the implemented approach
against a case study from the financial sector regarding anti
money laundering (AML).

4.1 Implementation

The pattern-based process rewriting steps discussed in Sect. 3
have been implemented on top of the process model editor
Oryx [16]. Oryx is an open source extensible model editor
and repository. Originally, it supports BPMN 2.0 constructs.

We extended Oryx in two ways. First, we defined an editor
to visually compose compliance rules based on the patterns
presented in Sect. 2.1. The second extension was by means
of defining a plugin for the native BPMN 2.0 editor. Through
the plugin, the user can choose an arbitrary number of com-
pliance rules, previously defined via the rule editor. Then the
plugin applies the changes discussed earlier and the modified
model, that is now equipped with monitoring logic, is saved
to a new model and opened for review by the user.

Figure 11 illustrates the implementation architecture of the
self-alerting business process monitoring approach proposed
in this paper. The implementation architecture consists of the
following main components:

– Compliance repository: This is a central repository that
stores and maintains business process and compliance-
related specifics, where business and compliance con-
cepts are semantically aligned, as well as augmented
BP model for self-monitoring of timed and employed
resources constraints.

– Compliance rule editor: This editor provides a graphical
representation of the compliance patterns (as discussed
in Sect. 2). The visual editor component has been imple-
mented as a plugin on top of the Oryx editor.4 Figure 12
illustrates screenshots for our compliance editor environ-
ment.

– Statement manger: This module is responsible for auto-
matically compiling the visually modelled compliance
rule into textual patterns expressions (e.g., Eq. 1 andEq. 3
in Sect. 4.2 below)

– Business process editor: Provides the end users with a
user-friendlymodelling environment where the users can
model their business process using the standard BPMN

4 https://code.google.com/p/oryx-editor/.

123

https://code.google.com/p/oryx-editor/

Cluster Comput (2015) 18:1503–1526 1517

(a) Original Process Model

(b) Adopted Process Model with Embedded Compliance Logic

Fig. 12 System screenshots of the compliance modeling environment

2.0 language. We employ the open source BPM platform
Activiti5 as a realization of this component where the
user can model and enact business processes.

– BP augmentation manager: the augmentation manger
implements the BP augmentation logic for monitoring
timed and employed resources constraints as discussed in
Sect. 3. BPAugmentationManager augments the BPMN
model from the ‘Business Process Editor’ component to
prevent/alert against the applicable timed and employed
resources constraints from the ‘Statement Manager’.

– BP execution engine: Through another plugin, an aug-
mented BPMN process model with the self-monitoring
logic can be deployed to the Activiti engine which is run-
ning in cloud-based environment.6

– Monitoring dashboard: The dashboard is a user-friendly
interface that enables the end-user to monitor the com-
pliance status of the applicable set of compliance rules.
The dashborad also contains statistical and aggregated
information in tabular format and graphs that can help
the experts to get a profound insight into any subtle flaws
and assists in taking informed decisions that may yield
to the modification of the respective business process
model.The monitoring dashboard has been implemented

5 http://activiti.org/.
6 It should be noted that our approach is agnostic towards the underlying
business process execution engine and it can be adopted to any business
process execution environment or SaaS platform.

as a desktop application usingMicrosoft C# .Net technol-
ogy. Figure 13 illustrates a screenshot for our dashboard
environment.

4.2 Case study: money-laundering detection process

Anti-money laundering is a pressing concern to any orga-
nization operating in the financial industry, as it is tightly
adjunct to terrorism and proliferation financing. Despite the
fact that it is not possible to precisely quantify the amount of
money laundered every year, in [50], it has been shown that
billions of US dollars were laundered annually. As part of
a previous work [21], we have built an end-to-end business
process encoded in the BPMN v2.0 standard that captures
money laundering detection and reporting of the AML prac-
tices. TheBPMNmodel is established based on best practices
recommended by the Financial Action Task Force (FATF)
40 [24].

Figure 14 presents the money laundering detection and
reporting BPMN process encoded in BPMN v2.0. The
process proceeds as follows: it starts by a customer initiating
a money transfer. Once the order is received by the bank,
and if the order amount is greater than a given threshold
(interpreted as five thousands Euros in our BPMN model),
an automated check is carried out to detect if the transaction
is suspicious. If the automated module detects that the trans-
action is suspicious, an authorized personnel is required to
double check the transaction manually by reviewing clear-
ance records and all other available records, and, if necessary,
contacting the customer for further information.

If the transaction is proved to be suspicious, the transaction
is flagged as suspicious and then deferred, and a Suspicious
Activity Report (MSB) is sent to FinCEN (The Financial
Crimes Enforcement Network).7 The customer will be noti-
fied in both cases on the status of the transaction, while
retaining all supporting documents in case they are requested
by FinCEN during its investigation.

Table 1 presents a selection of the compliance require-
ments including risks, controls and sources applicable to
the suspicious transaction reporting scenario. The first and
second columns of the table allocate a unique reference
and an organization-specific interpretation of the require-
ment, respectively. The third column lists the risks associated
with these compliance constraints. Finally, the fourth column
refers to the associated compliance sources.

In the rest of this section, we show how our approach,
discussed in Sect. 3, is applied to the case study shown in
Fig. 14.

7 FinCEN: http://www.fincen.gov/.

123

http://activiti.org/
http://www.fincen.gov/

1518 Cluster Comput (2015) 18:1503–1526

Fig. 13 Screenshot of system
dashboard

Fig. 14 Money laundering detection and reporting BPMN process

Compliance Requirement R1 from Table 1 can be repre-
sented by a timed response pattern as shown in Formula 1.

R1 : Response(antecedent = Check f or f acts suspicious . . .,

consequent = Send L Arge Value Transaction Report,

condition = Order.Amount > 5000 AND Risk.

Threshold < 2, . . . , (1)

timeSpan = 2days, . . . ,

violation action = Noti f y f or delayed reporting)

Referring to the AML process in Fig. 14, we can notice
that the ordering constraint for R1 above is satisfied. That
is, task Check for facts suspicious of money laundering is
executed and the risk threshold is greater than two and as the

123

Cluster Comput (2015) 18:1503–1526 1519

Table 1 Excerpt of the Comp. Req. relevant to the AML scenario

ID Comp. Req. Risk Comp. source Pattern

R1 It is obligatory that the
financial institution
reports any suspicious
transaction that involves
or aggregates funds of at
least $5,000 no more than
2 days from the logging of
the transfer request

Fraud/misuse US Patriot Act. Timed response

-Financial loss 1022. 210

-Anti-money laundering 1022.320

-Terrorism financing

R2 It is obligatory that
documents support a
suspicious activity are
retained before the defer
notice to the client in no
more than 1 day.

-Loss of customers Internal policy Timed precedence

-Loss of reputation

R3 It is obligatory that a
designated compliance
officer to double check
each suspicious
transaction manually by
reviewing clearance
records and all other
available records

-Legal penalty due to
non-compliance with laws

US Patriot Act. Performed by role

-Fraud/misuse 1022.210 (d)(2)

-Financial loss

R4 It is obligatory that the
manual checking of
suspicious transactions
and contacting the
customer for additional
information are bounded
to the compliance officer

-Fraud/misuse US Patriot Act. Bind of duty

-Financial loss 1022.210 (d)(2)

amount of the transfer is greater than $5000 the transaction
will be reported to FinCEN, via the the respective intermedi-
ate message event. However, what needs to be monitored
is the timing part of the rule. Figure 15 shows a snippet
of the Bank’s business process after enforcing R1 as dis-
cussed in Sect. 3. In Fig. 15, we showed only the part that is
affected by the process. Two throwing signal events have
been inserted after the task Check for facts of suspicious
money laundering, R1 antecedent, and after the message
event Send Large Value Transaction Report, R1 consequent,
respectively. The event sub process catches the event of the
rule’s antecedent and compares the process instance identi-
fier and also the rule’s condition, Order.Amount > 5000
AND Risk.Threshold < 2, is checked. If the check
passes, the sub-process begins the actual monitoring logic
by waiting for the first of the two events to occur, either
the completion of Send Large Value Transaction Report or a
timer event based on the timestamp at which the antecedent
was completed and adding 2 days as specified in the time
span property of R1. Note that having an intermediate mes-
sage event instead of a task as the rule’s consequent does not
affect our approach as in both cases it is possible to obtain
the completion timestamp.

R2 from Table 1 can be represented as an instantiation of
the timed precedence pattern. The formal representation of
R2 is shown in Formula 2

R2 : Precedence(antecedent = Send Def er Note,

consequent = Retain supporting documents, . . .

timeSpan = 1days, isWithin = f alse . . . ,

violation action = Noti f y f or quick de f er note)

(2)

R2 antecedent is the message event Send Defer Note
whereas the consequent is the task Retain supporting docu-
ments. It is obvious that theAMLprocess fromFig. 14 is com-
pliant with the ordering part of R2. That is, whenever a defer
note is sent, supporting documents are retained before. How-
ever, we still need tomake sure that the timing part of the rule
is monitored. As the rule requires that the send report action
to be taken after at least 1 day before sending the defer note,
isWithin = f alse, wemake changes to the process as in the
template shown in Fig. 7. Again, we show only parts of the
process fromFig. 14 that have been affected in Fig. 16.As can
be seen in Fig. 16, the check in the left most XOR split is only

123

1520 Cluster Comput (2015) 18:1503–1526

Fig. 15 Augmenting the AML
detection process to detect the
violation of R1

Fig. 16 Augmenting the AML
detection process to detect the
violation of R2

about checkinghaving the sameprocess instance for the event
sub-process and the signal event. That is because the rule has
no specific condition, i.e., the condition is equal to true.Next,
both the timestamps of taskRetain supporting documents and
message event Send Defer Note are obtained from execution
history and compared with respect to the the time span from
the rule. If it is found that the message was sent earlier than
specified, task Notify for quick defer note is invoked.

Compliance Requirement R3 in Table 1 can be repre-
sented by the performed by pattern as shown below. This
can be easily represented using the PerformedBy pattern as:

R3 : Per f ormed by role(antecedent = Review

Clearance role Record, . . . ,= Compliance

O f f icier) (3)

Figure 17 shows how the AMLBPMN shown in Fig. 14 is
automatically augmented following the above the approach
discussed in Sect. 3 to enable the BPMN engine during
runtime to detect, alert, prevent the violation of compli-
ance requirement R3. To avoid a cluttered diagram, we
only show in Fig. 17 the affected parts of the AML BPMN

model in Fig. 14 within the scope of the ‘Bank’ lane. As
shown in Fig. 17, Just before every occurrence of ‘Review-
ClearanceRecord’ activity (which occurred only once in the
AML BPMN model in Fig. 14), an activity that calls the
GetPerformerOfTask(A, I_id), where activity A
is the operand of the ‘PerformedBy’ pattern; ‘ReviewClear-
anceRecord’ activity. This API call returns the user assigned
to ‘ReviewClearanceRecord’ activity. This is followed by
inserting the ‘CheckAssignedUser’ call activity as described
in Sect. 3 is inserted just before the ‘ReviewClearanceRe-
cord’ and after the ‘GetPerformerOfTask’ API call.

Then ‘ReviewClearanceRecord’ is added in a sub-process,
which starts by an event-based gateway that catches either
an escalation or ‘OK’ signal from the global ‘CheckAs-
signedUser’ process, indicating the escalation of a potential
violation or the execution of the ‘ReviewClearanceRecord’
normally, respectively. If an escalation event is received a
defined higher-level role will decide whether to resume the
execution and override the ‘PerformedBy’ rule or to invoke
a defined violation Action and terminate.

Compliance requirement R4 inTable 1 of the of themoney
laundering detection process introduced in Sect. 4.2 is an

123

Cluster Comput (2015) 18:1503–1526 1521

Fig. 17 Augmenting the AML detection process to detect, alert and prevent the violation of R3

Fig. 18 Augmenting the AML detection process to detect, alert and prevent the violation of R4

example of BoundedWith compliance constraint. This can be
represented using the BoundedWith pattern as:

R4 : BindO f Duty(antecedent = Review Clearance

Record, consequent = Send Add In f Request, . . .)

(4)

Similarly, Fig. 18 shows how the AML BPMN shown
in Fig. 14 is automatically augmented following the pro-
posed approach to enable the BPMN engine during runtime
to detect, alert, prevent the violation of compliance require-
ment R4. Analogously, to avoid a cluttered diagram, we only
show in Fig. 18 the affected parts of the AML BPMNmodel
in Fig. 14 in the scope of the ‘Bank’ lane. As shown in
Fig. 18, Just after the occurrence of the first operand of the
BoundedWith pattern; ‘ReviewClearanceRecord’, an activ-
ity that calls the GetPerformerOfTask(A, I_id),
where activity A is the first operand of the ‘BoundedWith’

pattern; ‘ReviewClearanceRecord’. This API call returns the
user assigned to ‘ReviewClearanceRecord’ activity.

Then the execution flows until the second operand of the
‘BoundedWith’ pattern is reached; ‘SendAddInfRequest’.
Just before ‘SendAddInfRequest’, an activity that calls the
GetPerformerOfTask(B, I_id) is inserted, where
activity B is the second operand of the ‘BoundedWith’ pat-
tern; ‘SendAddInfRequest’. This API call returns the user
assigned to ‘SendAddInfRequest’ activity. Then the ‘Check-
BoundedOfDuties’ call activity as described in Sect. 3 is
inserted just before the occurrence of the second operand
of the ‘BoundedWith’ pattern, i.e., ‘SendAddInfRequest’.

Then the second operand of the ‘BoundedWith’ pattern,
i.e., ‘SendAddInfRequest’ is added in a sub-process, which
starts by an event-based gateway that catches either an
escalation event or an ‘OK’ signal from the global ‘Check-
BoundedOfDuties’ process, indicating the escalation of a
potential violation or the execution of the ‘SendAddInfRe-

123

1522 Cluster Comput (2015) 18:1503–1526

quest’ normally, respectively. To offer some flexibility, if
an escalation event is received a defined higher-level role
will decide whether to resume the execution and override the
‘BoundedWith’ rule or to invoke a defined violation Action
and terminate.

5 Related work

With the increase in attention paid to the role of compliance
in organizations given the high-cost associated with non-
compliance, including business failures, bankruptcy, signif-
icant fines and even criminal penalties, several work efforts
have been produced in the area of compliance management
attempting to address the current needs of organizations. The
main focus of this paper is on runtime compliance monitor-
ing, therefore, in the next discussion, prominent related-work
efforts is summarized and appraised against the work pro-
posed in this paper.

In the literature, runtime monitoring requires business
processmodels to be reduced to some abstract representation,
which are built up by collecting runtime information (e.g.
exchanged messages sequences, performed activities). On
the other hand, runtime monitoring also requires compliance
requirements to be structurally/formally represented using
a formal/structural language, e.g. LTL, CTL, ECA rules. In
addition, various querying languages could also be utilized,
such as BP-Mon [14] and XPath [59]. The actual compliance
checking between abstract traces and formal rules/queries
is performed by a runtime compliance checker (engine),
which is usually an external component that is incorpo-
rated into the execution environment, but could also be an
internal component. The checker can check the adherence to
the requirements either after the execution is completed, or
synchronous with the execution, following a more proac-
tive approach. In the following, we classify related work
into four categories; graph-based approaches, formal-based
approaches, XML querying approaches and complex-event
processing, which will be discussed in the following and
appraised against the work presented in this paper.

Graph-based approaches mainly target the design-time
phase of the business process lifecycle for (sub-)process
models querying, substitution,and compliance checking;
examples are: [29], [51], [17]. On the other hand, few stud-
ies [14,33] have addressed runtime compliance monitoring.
Business Process Monitoring (BP-Mon) is a graphical query
language proposed by Beeri et al. [14] to visually represent
monitoring requirements against BPEL models, abstracted
into event traces. Graph matching techniques (homomor-
phism) are then exploited to evaluate the compliance of
completed runningBPEL instances, focusing on control-flow

and timing constraints. Similarly, the study in [33] adopts a
graph-based compliance rule language to capture compli-
ance requirements, supporting sequence, data and real-time
constraints, where runtime compliance checking is done syn-
chronously with the execution.

Influential formal monitoring approaches are reported
in [12,13,25,27,36,37,40] by founding compliance require-
ments on a formal/mathematical language. The study in [37]
uses Event Calculus (EC) as the formal basis of monitored
constraints against BPEL models. EC is an expressive lan-
guage; however it is excessively difficult to use.Monitoring is
implemented using an integrity-checking technique on com-
pleted executions. EC is also used in [40], however to cope
with the complexity of EC,Declare language [49] is utilized
as a graphical intermediate representation. Logic program-
ming reasoning is then used to dynamically reason about
partial, evolving execution traces. These approaches [9,40]
focus on control-flow and timing constraints.

Model-checking formal approaches is adopted in [9,27,
35]. LTL-FO+ is proposed in [27] as an extension to LTL
that includes full first order quantification over data, focusing
on control-flow and data requirements. In [35], Declare [49]
is used, which is mapped into LTL, only supporting control-
flow constraints, where monitoring is done synchronously
with the execution. The same approach is applied in [36]
using Declare and LTL to capture compliance requirements,
while declarative process models are considered instead,
mainly to detect conflicting compliance requirements.

Metric first-order temporal logic is used in [13], support-
ing past and bounded future operators. This approach [13]
provides an optimized monitoring technique addressing
control-flow and timing constraints, however the complexity
of the adopted logic is not tackled. An extension is made in
[12] to support data-constraints. The REALM model is pro-
posed in [25] which constitutes (among others) a conceptual
model andmetadata. The conceptual model captures the con-
cepts and relationships related to a certain domain (domain
ontology), which are used to build compliance rules. To
ensure the rigor of the framework, compliance rules are first
represented formally using Past LTL, then mapped to pro-
prietary notations. Compliance checking is also performed
by a proprietary component (active correlation technology
(ACT)) that correlate events to detect runtime violations. The
approach supports control-flow and real-time constraints.

Prominent XML querying approaches are [26], [58], [52].
In [26] and [58], requirements in LTL are translated into
equivalent XQuery expressions, and an XQuery engine is
used to evaluate the compliance, focusing on sequence
and data constraints. BPath [52] is proposed as an XPath
extension with LTL modalities. BPath expressions are then
mapped into XPath, and a native XML query engine is uti-
lized, supporting sequence and timing constraints.

123

Cluster Comput (2015) 18:1503–1526 1523

Influential rule-based proposals [9,11,15,43,44]. In [11]
proposed that desired properties and constraints on BPEL
systems be specified in Web service constraint language
(WS-CoL), a special-purpose assertion specification lan-
guage that borrows its roots from JML (Java Modeling
Language) and extends it with constructs to gather data from
external sources. WSCoL are interweaved into BPEL spec-
ification, and a dedicated monitoring manager evaluates the
compliance by focusing on data constraints. In [15], com-
pliance requirements are represented in Prolog and verified
against a workflow language, supporting sequence and tim-
ing constraints using a rule engine.

In [43] a generic runtime compliance management frame-
work is proposed,which is based on a set ofDwyer’s property
specification patterns [18], and provides a high-level con-
ceptual model for compliance requirements refinements and
the definition of recovery actions, as response to detected
violations. The framework is realized by implementing
it using BPMN models and event-condition-action (ECA)
rules. This approach is closely related to the work pre-
sented in this paper, however, our work relies on a wider
set of novel compliance patterns; moreover, our approach
addresses the four structural facets of the BP lifecycle;
and we define a novel evaluation approach based on anti-
patterns.

Complex event processing (CEP) technology is utilized
in [41,53,54,60]. Prominent efforts in this direction use
event pattern languages (EPLs) to capture relevant require-
ments and constraints. In [41], a model-driven engineering
approach is adopted, such that a high-level DSL language
is introduced for the abstract specification of compliance
constraints, with support for sequence and resource con-
straints.

The work in [60] only considers sequential requirements,
where an approach is also introduced to filter and aggregate
query results to provide compact feedback on deviations.
Business processes aremodelled in [53] as event flowswhere
compliance requirements are structurally represented in a
conceptual graphical rule model the authors also proposed;
and then a CEP engine (SARI) [42] is utilized to check
the compliance, with support for sequence and timing con-
straints.Major approaches in this category check compliance
synchronously with the execution.

Several monitoring tools [1] have been developed for
the cloud environments. However, these tools have mainly
focused on monitoring the low level aspects of the com-
puting infrastructure (e.g., memory, disk, CPU). To the best
of our knowledge, this is the first approach that considers
the monitoring and compliance of the high level and logical
aspects of the business processes in the cloud environments
without relying on any external compliancemonitoring com-
ponent.

6 Conclusion

This paper presented a pattern-based process rewriting
approach to embed compliance monitoring logic within
process definition. An advantage of this approach is to
have a self-contained process definition that includes both
the business and the compliance monitoring logic. Another
advantage is to simplify the information system infrastructure
required to enable compliancemonitoring of running process
instances. This is particularly useful in cloud computing envi-
ronments where external monitoring is not applicable. The
approach monitors runtime-related aspects such as timing
and resource assignment constraints which would be practi-
cally impossible to assure their satisfaction at process design
time.Anassumption is that the process is compliant bydesign
with the ordering or existence constraints within a compli-
ance rule. If this is not the case for some rules, our approach
is still able to find violations. For instance, for response and
precedence rules if the consequent is missing in the process
definition, monitoring logic is still able to alert for violations.
However, it is recommended to run static compliance check-
ing on the process definition before putting it into production
as has been covered by a large body of research as shown in
Sect. 5.

As a proof-of-concept, we have developed an integrated
open-source tool suite as an instantiation artefact of the
proposed self-alerting approach by considering BPMN (cf.
Sect. 4.1). However, the approach is generic and can be
applied to other business processmodelling languages,where
the development of some APIs that returns required runtime
information, for example the ‘Roles’ assigned to a specific
‘User’, may be needed to realize our approach with other
business process languages. Embedding compliance moni-
toring logic within process definition will help, in addition to
monitoring for violations, simplify the infrastructure land-
scape required for process execution. This is achieved by
eliminating the need for an external monitoring component.
Especially for a cloud setting, this is of great value as host
configuration options might be limited in some cases. More-
over, the message exchange and event streams will be much
reduced thus making less footprint and thus less load on the
hosting environment.

A limitation of our approach is that it is designed to
be effective in managed process execution environments
which requires process-aware information system and a cen-
tralalized process orchestration engine. This is a high-level
maturity that organizations are working to reach. However,
when this is in place, the required infrastructure will be much
simpler as there will be no need to have external monitoring
components and a lot of event streams between the execu-
tion component and the monitoring component will not be
needed any more.

123

1524 Cluster Comput (2015) 18:1503–1526

Acknowledgments Thisworkwas supported byKingAbdulaziz City
for Science and Technology (KACST) project 11-INF1991-03.

References

1. Alhamazani, K., Ranjan, R., Mitra, K., Rabhi, F.A., Jayaraman,
P.P., Khan, S.U., Guabtni, A., Bhatnagar, V.: An overview of the
commercial cloud monitoring tools: research dimensions, design
issues, and state-of-the-art. Computing 97(4), 357–377 (2015)

2. Awad, A., Barnawi, A., Elgammal, A., El Shawi, R., Almalaise,
A., Sakr, S.: Runtime detection of business process compliance
violations: an approach based on anti patterns. In: Wainwright,
R.L., Corchado, J.M., Bechini, A., Hong, J. (eds.) Proceedings of
the 30th Annual ACM Symposium on Applied Computing, Sala-
manca, Spain, April 13–17, 2015, pp. 1203–1210. ACM (2015)

3. Awad, A., Pascalau, E., Weske, M.: Towards instant monitoring of
business process compliance. In: EMISA Forum, vol. 30 (2010)

4. Awad, A., Weidlich, M., Weske, M.: Specification. Verification
and explanation of violation for data aware compliance rules, In:
ICSOC/ServiceWave (2009)

5. Awad, A., Weske, M.: Visualization of compliance violation in
business process models. In: BPM Workshops (2009)

6. Awad, A., Decker, G., Weske, M.: Efficient compliance checking
using BPMN-Q and temporal logic. In: BPM (2008)

7. Baldwin,R., Cave,M., Lodge,M.:UnderstandingRegulation: The-
ory, Strategy, and Practice. Oxford University Press (2011)

8. Banescu, S., Petkovi, M.: Measuring privacy compliance using fit-
ness metrics. In: BPM (2012)

9. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-time mon-
itoring of instances and classes of web service compositions. In:
ICWS (2006)

10. Baresi, L., Guinea, S., Pasquale, L.: Self-healing BPEL processes
with dynamo and the JBoss rule engine. In: ESSPE (2007)

11. Baresi, L., Guinea, S.: Towards dynamic monitoring of ws-bpel
processes. In: Benatallah, B., Casati, F., Traverso, P. (eds.) Service-
Oriented Computing—ICSOC 2005. Lecture Notes in Computer
Science, vol. 3826, pp. 269–282. Springer, Berlin (2005)

12. Basin, D., Harvan, M., Klaedtke, F., Zalinescu, E.: Monpoly:
monitoring usage control policies. In: Proceedings of the 2nd
International Conference on Runtime Verification (RV 2011), pp.
360–364 (2012)

13. Basin, D., Klaedtke, F., Müller, S., Pfitzmann, B.: Runtime mon-
itoring of metric first-order temporal properties. In: Hariharan,
R., Mukund, M., Vinay, V. (eds.) IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer
Science, Leibniz International Proceedings in Informatics (LIPIcs),
vol. 2, pp. 49–60. Dagstuhl, Germany (2008). Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik

14. Beeri, C., Eyal, A., Milo, T., Pilberg, A.: Monitoring business
processes with queries. In: VLDB (2007)

15. Chesani, F., Mello, P., Montali, M., Riguzzi, F., Sebastianis, M.,
Storari, S.: Checking compliance of execution traces to business
rules. In: Ardagna, D., Mecella, M., Yang, J. (eds.) Business
ProcessManagementWorkshops. Lecture Notes in Business Infor-
mation Processing, vol. 17, pp. 134–145. Springer, Berlin (2009)

16. Decker, G., Overdick, H., Weske, M.: Oryx-sharing conceptual
models on the Web. In: Conceptual Modeling—ER (2008)

17. Delfmann, P., Herwig, S., Lis, L., Stein, A., Tent, K., Becker, J.:
Pattern specification andmatching in conceptual models - a generic
approach based on set operations. Enter. Model. Inf. Syst. Archit.
5(3), 24–43 (2010)

18. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property
specifications for finite-state verification. In: ICSE (1999)

19. El Kharbili, M., de Medeiros, A.K.A., Stein, S., Van Der Aalst,
W.M.P.: Business process compliance checking: current state and
future challenges. In: MobIS (2008)

20. El Kharbili,M.,Ma, Q., Kelsen, P., Pulvermueller, E.: Policy-based
and model-driven regulatory compliance management. In: EDOC,
CoReL (2011)

21. Elgammal, A., Butler, T.: Towards a framework for semantically-
enabled compliance management in financial services. In: 1st
International Workshop on Knowledge Aware Service Oriented
Applications (KASA?15), co-located with ICSOC. Lecture Notes
in Computer Science. Springer, Berlin (2014)

22. Elgammal, A., Turetken, O., Jan van den Heuvel, W., Papazoglou,
M.: Formalizing and appling compliance patterns for business
process compliance. In: Software and SystemsModeling, pp. 1–28
(2014)

23. Elgammal, A., Turetken, O., Jan van den Heuvel, W., Papazoglou,
M.: Root-cause analysis of design-time compliance violations
on the basis of property patterns. In: ICSOC, LNCS, vol. 6470.
Springer (2010)

24. FATF-GAFI. Fatf 40 recommendations standard. Technical report
(2003)

25. Giblin, C., Mueller, S., Pfitzmann, B.: Towards model-driven com-
pliance automation, From regulatory policies to event monitoring
rules (2006)

26. Hallé, S., Villemaire, R.: XML methods for validation of temporal
properties on message traces with data. In: OTM (2008)

27. Hallé, S. Villemaire, R.: Runtime monitoring of message-based
workflows with data. In: EDOC (2008)

28. Hartman, T.: The Cost of Being Public in the Era of Sarbanes-
Oxley. Foley and Lardner LLP (2006)

29. Kühne, S., Kern, H., Gruhn, V., Laue, R.: Business process mod-
eling with continuous validation. J. Softw. Evol. Process 22(7),
547–566 (2010)

30. Luckham, D.: The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems. Addison-
Wesley (2002)

31. Ly, L.T.,Maggi, F.M.,Montali,M., Rinderle-Ma, S.,VanDerAalst,
W.M.P.:A framework for the systematic comparison and evaluation
of compliance monitoring approaches. In: EDOC (2013)

32. Ly, L.T., Rinderle-Ma, S., Dadam, P.: Design and verification of
instantiable compliance rule graphs in process-aware information
systems. In: CAiSE (2010)

33. Ly, L.T., Rinderle-Ma, S., Knuplesch, D., Dadam, P.: Monitor-
ing business process compliance using compliance rule graphs.
In: OTM (2011)

34. Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.:
Predictive monitoring of business processes. In: CAiSE (2014)

35. Maggi, F.M.,Montali,M.,Westergaard,M.,VanDerAalst,W.M.P.:
An approach based on colored automata. In: BPM, Monitoring
Business Constraints with Linear Temporal Logic (2011)

36. Maggi, F.M.,Westergaard,M.,Montali, M., van der Aalst,W.M.P.:
Runtime verification of ltl-based declarative process models. In:
Khurshid, S., Sen, K. (eds.) Runtime Verification. Lecture Notes in
Computer Science, vol. 7186, pp. 131–146. Springer, Berlin (2012)

37. Mahbub, K., Spanoudakis, G.: A framework for requirementsmon-
itoring of service based systems. In: ICSOC (2004)

38. Mell, P., Grance, T.: Definition of cloud computing. Technical
report. National Institute of Standard and Technology (NIST)
(2009)

39. Mendling, J., Ploesser, K., Strembeck, M.: Specifying separation
of duty constraints in BPEL4 people processes. In: BIS (2008)

40. Montali, M., Maggi, F.M., Chesani, F., Mello, P., van der Aalst,
W.M.P.: Monitoring business constraints with the event calculus
(2013)

123

Cluster Comput (2015) 18:1503–1526 1525

41. Mulo, E., Zdun, U., Dustdar, S.: Domain-specific language for
event-based compliance monitoring in process-driven SOAs. Serv.
Orient. Comput. Appl. 7(1) (2013)

42. Mulo, E., Zdun,U.,Dustdar, S.:Monitoringweb service event trails
for business compliance. In: SOCA, pp. 1–8. IEEE (2009)

43. Namiri, K., Stojanovic, N.: Pattern-based design and validation of
business process compliance. In: Proceedings of the 2007 OTM
Confederated International Conference on On the Move to Mean-
ingful Internet Systems: CoopIS, DOA, ODBASE, GADA, and
IS—Volume Part I, OTM’07, pp. 59–76. Springer, Berlin (2007)

44. Narendra, N.C., Varshney, V.K., Nagar, S., Vasa, M., Bhamidipaty,
A.: Optimal control point selection for continuous business process
compliance monitoring. In: IEEE/SOLI 2008. IEEE International
Conference on Service Operations and Logistics, and Informatics,
2008, vol. 2, pp. 2536–2541, Oct (2008)

45. OASIS. Web services - human task (ws-humantask) version 1.1.
Technical report (2010)

46. OASIS. Web services business process execution language version
2.0. Technical report (2007)

47. OASIS. Ws-bpel extension for people (bpel4people) specification
version 1.1. Technical report (2010)

48. Object Management Group. Business process model and notation
specification 2.0.2. Technical report (2013)

49. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: DECLARE:
full support for loosely-structured processes. In: 11th IEEE Inter-
national Enterprise Distributed Object Computing Conference
(EDOC 2007), 15–19 October 2007, Annapolis, Maryland, USA,
pp. 287–300. IEEE Computer Society (2007)

50. Reuter, P., Truman, E.M.: Chasing dirty money: the fight against
money laundering. Institute for International Economics (2005)

51. Sakr, S.,Awad,A.:A framework for querying graph-based business
process models. In: Proceedings of the 19th International Confer-
ence onWorldWideWeb, WWW ’10, pp. 1297–1300. ACM, New
York, NY, USA (2010)

52. Sebahi, S., Hacid, M.S. Business process monitoring with bpath—
(short paper). In: OTM Conferences (1) (2010)

53. Thullner, R., Rozsnyai, S., Schiefer, J., Obweger, H., Suntinger,
M.: Proactive business process compliance monitoring with event-
based systems. In: EDOC Workshops (2011)

54. Thullner, R., Rozsnyai, S., Schiefer, J., Obweger, H., Suntinger,
M.: Proactive business process compliance monitoring with event-
based systems. In: Enterprise Distributed Object Computing Con-
ference Workshops (EDOCW), 2011 15th IEEE International, pp.
429–437, Aug (2011)

55. Van Der Aalst, W.M.P., De Medeiros, A.K.A.: Process mining and
security: detecting anomalous process executions. In:WISP (2004)

56. van der Aalst, W., van Hee, K., van der Werf, J.M., Kumar, A.,
Verdonk,M.: Conceptualmodel for online auditing. Decis. Support
Syst. 50(3) (2011)

57. Van Der Werf, J.M., Verbeek, E., Van Der Aalst, W.M.P.: Context-
aware compliance checking. In: BPM (2012)

58. Venzke, M.: Specifications using xquery expressions on traces.
Electron. Notes Theory Comput. Sci. 105, 109–118 (2004)

59. W3C. Xml path language (xpath) 2.0 (second edition) (2011)
60. Weidlich, M., Ziekow, H., Mendling, J.: Event-based monitoring

of process execution violations. In: BPM (2011)
61. Wolter, C., Miseldine, P., Meinel, C.: Verification of business

process entailment constraints using spin. In:Massacci, F., Jr., Red-
wine, S.T., Zannone, N. (eds.) Engineering Secure Software and
Systems. Lecture Notes in Computer Science, vol. 5429, pp. 1–15.
Springer, Berlin (2009)

62. Xiangpeng, Z., Cerone, A., Krishnan, P.: Verifying bpel workflows
under authorisation constraints. In: Dustdar, S., Fiadeiro, J., Sheth,
A.P. (eds.) Business Process Management. Lecture Notes in Com-
puter Science, vol. 4102, pp. 439–444. Springer, Berlin (2006)

AhmedBarnawi is an Associate
Professor at the Faculty of Com-
puting and Information Tech-
nology, King Abdulaziz Univer-
sity (KAU), Saudi Arabia. He
received his PhD in Commu-
nications Engineering from the
University of Bradford, UK in
2006. He is currently the man-
aging director of Cloud Comput-
ing Research group at KAU. He
is a holder of multiple patents
in wireless communications. His
research interests include Busi-
ness Process Management, Big

Data systems and cloud computing.

Ahmed Awad is an Assistant
Professor of information sys-
tems at the Faculty of Comput-
ers and Information, Cairo Uni-
versity, Egypt. He received his
Ph.D. from Hasso-Plattner Insti-
tute, University of Potsdam, Ger-
many in 2010. He received his
B.Sc. andM.Sc. degrees in Infor-
mation Systems from the Fac-
ulty of Computers and Informa-
tion, Cairo University, Egypt, in
2000 and 2003 respectively. The
research interests of Awad are
business process management in

general and study of compliance management of business processes in
specific. He has published more than 10 journal, conference and journal
papers in the topic of business process compliance.

Amal Elgammal is an Assistant
Professor at Faculty of Com-
puters and Information, Cairo
University. She has obtained
her Ph.D. in Information Sys-
tems from Tilburg University,
the Netherlands in 2012. She
received distinguished Bache-
lor and Masters degrees in
Information Systems from Fac-
ulty of Computers and Informa-
tion, Cairo University (2001 and
2007, respectively). She has been
appointed with Trinity College
Dublin, Future Cities research

group (2014–2015), and Governance, Risk and Compliance Man-
agement Technology Centre (GRCTC) at University College Cork
(2013–2014). Her research interests revolve around: Business process
management; Ontology engineering; Process mining; Business Analyt-
ics and Intelligence; Governance, Risk Management and Compliance
(GRC), Internet-of-Things; Smart Manufacturing; Smart Healthcare.

123

1526 Cluster Comput (2015) 18:1503–1526

Radwa El Shawi is an Assis-
tant Professor in college of Com-
puter Science and Information
Technology at Princess Nora
Bint Abdul Rahman Univer-
sity, Riyadh, Saudi Arabia. She
received her PhD degree from
School of Information Technolo-
gies, University of Sydney, Aus-
tralia in 2013. She obtained her
B.Sc. andM.Sc. degrees in Com-
puter Engineering from, Arab
Academy for Science and Tech-
nology and Maritime Transport,
Egypt in 2005 and 2008 respec-

tively. Her research interests lie in the areas of graph theory, algorithms
and data structures and geometric networks.

Abdullah Almalaise is Asso-
ciate Professor in Faculty of
Computing and InformationTech-
nology at King Abdulaziz Uni-
versity, SaudiArabia.He received
his Ph.D. in Computer Science
from George Washington Uni-
versity, (2003) and M.SC in
Management Information Sys-
tems from University of Illi-
nois at Springfield (2001). He
received B.Sc in Computer Sci-
ence fromUniversity of Southern
Mississippi (1990). His research
interests include information sys-

tems, business process management and software engineering.

Sherif Sakr is an Associate
Professor in the department of
Health Informatics at King Saud
bin Abdulaziz University for
Health Sciences, Saudi Arabia.
He is also an Associate Pro-
fessor of Computer Science at
University of New South Wales,
Australia and a visiting Senior
Researcher at National ICT Aus-
tralia (NICTA). Previously, He
had appointments with Mac-
quarie University (Australia),
MicrosoftResearch (USA),Alca-
tel Lucent Bell Labs and Cairo

University (Egypt). He received his PhD degree in Computer and
Information Science from Konstanz University, Germany in 2007. He
received his B.Sc. andM.Sc. degrees inComputer Science from the Fac-
ulty of Computers and Information in Cairo University, Egypt, in 2000
and 2003 respectively. His research interest include the areas of graph
data management, big data storage and processing in cloud computing
environments. He is an IEEE Senior Member.

123

	Runtime self-monitoring approach of business process compliance in cloud environments
	Abstract
	1 Introduction
	2 Background
	2.1 Compliance patterns
	2.2 Process runtime APIs

	3 Rewriting processes to alert for violations
	3.1 Overview
	3.2 Timed order patterns
	Timed Response Pattern
	Timed Precedence Pattern

	3.3 Resource patterns
	PerformedBy Pattern
	SegregatedFrom Pattern
	BoundedWith

	3.4 Applicability to BPEL

	4 Evaluation
	4.1 Implementation
	4.2 Case study: money-laundering detection process

	5 Related work
	6 Conclusion
	Acknowledgments
	References

