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Abstract Task scheduling is a necessary prerequisite for
performance optimization and resource management in
the cloud computing system. Focusing on accurate scaled
cloud computing environment and efficient task scheduling
under resource constraints problems, we introduce fine-
grained cloud computing systemmodel andoptimization task
scheduling scheme in this paper. The system model is com-
prised of clearly defined separate submodels including task
schedule submodel, task execute submodel and task trans-
mission submodel, so that they can be accurately analyzed
in the order of processing of user requests. Moreover the
submodels are scalable enough to capture the flexibility of
the cloud computing paradigm. By analyzing the submodels,
where results are repeated to obtain sufficient accuracy, we
design a novel task scheduling scheme based on reinforce-
ment learning andqueuing theory to optimize task scheduling
under the resource constraints, and the state aggregation tech-
nologies is employed to accelerate the learning progress. Our
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results, on the one hand, demonstrate the efficiency of the task
scheduling scheme and, on the other hand, reveal the rela-
tionship between the arrival rate, server rate, number of VMs
and the number of buffer size.
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1 Introduction

Cloud computing is an outcome of combining the conven-
tional computer with network technologies, i.e. distributed
internet computing, parallel computation, utility computing,
network storage technologies, virtualization, load balance,
high availability, and others [1]. Distinct from traditional net-
work server platforms, cloud computing offers an on-demand
service model, available, convenient, on-demand, accessing
a configurable computing resource pool, complete with net-
work, server, memory, application software, services, and
others. With little management or a slight interaction with
the service providers satisfied, all these resources can be
offered with great efficiency. Based on the service provision-
ing at different levels, three cloud service models have been
proposed [2,3], namely Infrastructure-as-a-Service (IaaS),
Platform-as-a Service (PaaS), and Software-as-a-Service
(SaaS).

Due to large-scale servers, heterogeneous and diverse
resources, extensive user groups, various types of applica-
tion jobs and varied QoS target constraints, cloud computing
systems are always dealing with massive jobs and data
[4]. Under such a background, how to allocate and man-
age resources rationally and how to schedule the jobs
efficiently in order that the massive jobs are able to be
dispatched with a low cost expenditure in a relatively
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shorter time. Meanwhile, it has become a growing con-
cern and one of the technical difficulties in the acad-
emic field to guarantee a high utilization of resources
in cloud computing system and balance the overall loads
[5].

Virtualization technology supports the physical resources
shared by the logical independent multi-applications located
in the same computer node. Therefore, virtualization pro-
vides a feasible solution to improve node utilization. How-
ever, the assemblage configuration scheme of most data
centers is computed according to the peak demands of vir-
tual machines (VMs), far more than ordinary demands. As a
result, it remains difficult to guarantee the resource utiliza-
tion by using virtualization technology [6–8], while most of
themwere hard to extend and can only be used in small-scale
groups.

In additionwhen evaluating the cloud computing platform
performance such as response time, a key requirement in an
Service-Level-Agreement (SLA) for cloud users, most exist-
ing works adopt queuing models or other stochastic models,
and use the expected response time such as themetric.Mean-
while, the major Cloud service providers (e.g. Amazon EC2
[9], Microsoft Azure [10], etc.) commonly gets a charge of
resource usage at an hourly rate. Therefore, no matter what
aspects are focused on by various cloud computing models,
it is a key issue to optimize the response time respectively
at certain occupancy rates. Although the methods in current
literature are mostly modeling the whole cloud computing
platform into singular queuing models, these monolithic
analytical models are restrictive in terms of extendibility,
simplicity and cost of solution.

Hence, an in-depth look at the scheduling strategies is not
only of theoretical value, but also of practical significance,
particularly in the commercial services based on cloud com-
puting model. In this paper, we conduct detailed research
on user task scheduling of cloud computing services. Main
contributions can be summarized in the following areas:
First, we design various functional submodels at different
servicing stages in a complex cloud computing center. Sec-
ondly, the performance analysis of response time is obtained
by queuing theory. Thirdly, user task optimization schedul-
ing is achieved by using reinforcement learning strategies.
Fourthly, resources adaptation adjustment to workload and
system dynamics are both taken into consideration.

The remainder of this paper is organized as follows: Sect. 2
reviews the related work; Sect. 3 explores the system mod-
els, including task schedule submodel (TSSM), task execute
submodel (TESM) and task transmission submodel (TTSM);
based on the proposed models, we optimize task scheduling
based on reinforcement learning and accelerate the learning
progress by using state aggregation technology in Sects. 4;
5 presents extensive performance evaluations; and finally, in

Sect. 6, we reach the conclusions and skeleton of our future
work.

2 Related works

Cloud computing is an area of research which has attracted
much attention, but only a few among those who do this
work use rigorous analytical approaches so far addressing
the performance issues. When evaluating the service delay
performance, a key requirement in SLA for Internet-Data-
Center (IDC) operations, most existing works adopt queuing
models or other stochastic models, and use the expected ser-
vice delay as the metric. According to the different focus
points, the research achievements using queuing theory in
literature can be classified as follow

2.1 Theoretical research

The simplest model of the cloud computing platform was
M/M/1 queuing system.Because of the dynamic internet traf-
fic and the dynamic virtual machine environment where the
system tended to run, this kind of cloud computing system
model ignored too many system details. However, it served
as the baseline and starting point of other cloud computing
queuing models. In [11], some key performance indicators,
such as mean server rate and distribution of response time,
could be obtained by considering fault recovery situations.
Assuming the inter-arrival and service times in the system
were both exponentially distributed with a fixed buffer size
m + r , a cloud could be modeled as an M /M /m/m + r queu-
ing system. But according to the authors’ own argument, the
components of response time such as waiting time, service
time, and execution time, independent and identically dis-
tributed (i.i.d) random, were unrealistic. An improved work
had been done by [12], the authors employed a Markov
request queue model to assess the performance indicators
such as waiting time and completion time obtained by con-
sidering the resources shared among VMs and various types
of failures. However, the buffer size of the subtask was not
considered, which was unrealistic in the cloud computing
platform.

The statistical results indicated that inter-arrival time
and/or service time did not commonly satisfy exponential
distribution. This domain had been explored in depth by
Khazaei et al. [13–15] in the context of queuing theory.In
[13], the author assumed that the service time is i.i.d random
variables, then the cloud computing centerwasmodeled as an
M /G/m/m+r queuingmodel. So the probability distribution
of the request response time and the relationship between the
server number and input buffer size were obtained by embed-
ded Markov chain. The extended related work can be seen in
[14,15].
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2.2 Energy management

In [16], the authors focused on the power management of
internet data center for minimizing the total electricity cost
under the multiple electricity markets environment. Modeled
as an M /M /n queues system, the data center considered the
total electricity cost, the workload constraint and client end-
to-end delay constraint respectively, and the total electricity
cost minimization was formulated as a constrained mixed-
integer programming issue, solved by employing Brenner’s
fast polynomial-time algorithm [17]. The extended related
work can be seen in [18,19].

In [20], the authors addressed making distributed routing
and server management decisions in large-scale, geographi-
cally distributed data centers. The data centerwasmodeled as
m parallel structure and interplay queuing system. Based on
the system model, the authors put forward a two-time-scale
control algorithm aiming at facilitating power cost reduction
and power consumption versus delay trade-off techniques,
extending the traditional Lyapunov approach to optimize it.

2.3 Resource allocation

In [21], the authors dealt with the combined issues of power
and performancemanagement in cloud data centers, and pro-
posed adynamic resourcemanagement schemeby leveraging
both of the techniques such as dynamic voltage/frequency
scaling and server consolidation, thus to achieve energy
efficiency and desired application-level performance. The
novelty of the proposed scheme was its integration with
timing analysis, queuing theory, integer programming, and
control theory techniques. In [22], despite the varying event
arrival rates, a queuing theory based approachwas pursued to
achieve specified response time target; by drawing the nec-
essary computing resources from a cloud, a distinct query
engine was modeled as an atomic unit to predict response
times. Several similar units hosted on a single node were
modeled as a multiple class M/G/1 queuing system and
the response times were deemed to meet specified targets
although being subject to varying event arrival rates over
time. Correlation work also extend to multimedia cloud and
large web server clusters [23,24].

There was also some research done regarding the use
of reinforcement learning for some special applications in
cloud computing platform. Reinforcement learning was first
introduced to the autonomic resource allocation in cloud
computing environment [25], and two novel ideas were pre-
sented: (1) a predetermined policy was used in the initial
learning period and (2) an approximation to the Q-function
servers as a neural network [26].

In [27], the authors developed a general reinforcement
learning framework with models for classes of jobs (best-
effort availability and responsiveness), for objective func-

tions, and for the infrastructure. In [28], the author proposed
a Q-learning-based leasing policy for a scientific workload
in academic data centers, which extended the local resource
space to balance operating costs and service quality. In
[29], the authors proposed a reinforcement learning based
approach to autonomic configuration and reconfiguration of
multi-tierweb systems.Experiment results demonstrated that
this approach could auto-configure web system dynamically
not only to the change of workload, but also to that of virtual
machine resources.

Distinguished from prior works, a user task scheduling
model combined with queuing theories and reinforcement
learning based on cloud computing environment is proposed
in this paper. By introducing interacting analytical submodels
[30], the model includes the crucial features of cloud centers,
namely the batch arrival of user requests, the resource vir-
tualization, and the realistic servicing steps. As a result, the
important performance metrics, such as task blocking prob-
ability and total waiting time incurred on user requests, are
obtained.

3 System models

As mentioned in Sect. 2, due to high dynamics and com-
plexity of cloud computing platform, the proposed singular
queuing models are hard to analyze and extend. In this paper,
we use the model [30] for reference, redesign and introduce
interacting analytical submodels, as shown in Fig. 1, the com-
plexity of system is divided into submodels so that they can be
accurately analyzed in order of processing of users’ requests.
Moreover, the submodels are scalable enough to capture the
flexibility (on-demand services) of the cloud computing par-
adigm. The model proposed in this paper incorporates task
schedule submodel (TSSM), task execute submodel (TESM)
and task transmission submodel (TTSM). The submodles are
interactively functioning so that the output of one submodel
is the input of the others and vice versa. The construction and
function of each submodel will be discussed in detail below.

3.1 TSSM

TSSM is constructed by a finite-buffer-size users global task
queue and a task scheduler. In cloud computing environment,
users submit task requests and receive execution results by
computer network. Users global task queue accepts users
task requests and lines them up into a global finite queue
in the order of task request arrivals first in first out, FIFO.
Task dispatcher schedules users task requests to a designated
computing server (VM). The amount of cloud users is large,
but it is a low probability that each user submits task requests
at the same time, so the task requests arrival can be modeled
as a Poisson process [31,32] with mean arrival rate λtssm .
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Fig. 1 Queuing model of cloud computing platform

Assuming task dispatcherwith amean service rateμtssm , and
the global queue adopts total acceptance policy, we model
TSSM as an M/M/1 queuing system. In the TSSM, the mean

response time r t tssm = 1/μtssm

1−λtssm/μtssm can be obtained when

the condition λtssm < μtssm is satisfied so as to maintain a
stable queue.

In this paper, we proposed a novel task scheduling scheme
based on reinforcement learning (RL) to actualize users
requests optimization scheduling in cloud computing envi-
ronment. To the best of our knowledge, the scheme would be
the first one to combine queuing theory and RL principle to
users tasks scheduling in this environment. The details of the
task scheduling scheme will be described in detail in Sect. 4.

3.2 TESM

As shown in Fig. 1, the kernel of TESM is the parallel connec-
tion structurewith a set of computation servers, each ofwhich
is formed by a subtask buffer queue and a VM. The workflow
of each computing server can be described as: first, tasks dis-
patcher allots each users request to a designated buffer queue;
secondly, the VM takes out users requests from the corre-
sponding buffer queue and offers it to the computing server;
finally, VM transports the execution results to TTSM.

In this paper, we assume that all VMs are homogeneous
and each buffer size is m, so the TESM can be modeled as
a parallel connection structure with a series of M/M/1/m
queuing system. As the service processing of the multiple
computing queues is the same, the probability of a request
assigned to the i th computing queue for service is denoted
by pi . The conditions λtesmi = piλtssm and

∑N
i=1 pi = 1

are satisfied in order to keep a stable queue. Assuming VM
with a mean service rate is μtssm , the mean response time
to user requests in the i th computation queue is denoted

by r t tssmi = 1/μtssm

1−λtssmi /μtssm . On the possibility that a request

may be allocated to any one computing queue, the equilib-

rium response time is given by r t tesm = ∑n
i=1 pir t

tesm
i =

∑n
i=1 pi

1/μtssm

1−λtssmi /μtssm .

3.3 TTSM

TTSM receives execution results from TESM, and transmits
them back to the requesting clients. TTSM is constructed by
a global results queue and a task transmitter. Results queue
receives the execution results from VMs and lines up all
results in the global finite queue in the order of executed
results arrivals (FIFO). Task transmitter takes out the exe-
cuted results from results queue and transports them back to
requesting users. The mean arrival rate λt tsm at the results
queue is equal to λtssm in that no requests are dropped in
TTSM. Assuming task transmitter with a mean service rate
is denoted byμt tsm , and λtssm < μtssm is satisfied, similar to
TSSM, the TTSM can also be modeled as anM/M/1 queuing
system, where the mean response time can be formulated as

r t ttsm = 1/μt tsm

1−λtssm/μtssm .
Thus the total mean response time in cloud computing

environment can be given as r t tot = r t tssm +r t tesm +r t ttsm .

4 Task scheduling based on RL

Tasks dispatcher is a controller of tasks execution sequence
and resource allocation. A suitable tasks dispatcher is not
only to reduce system response time but also to improve
resource utility and throughput. Therefore, it is a core issue
to employ appropriate tasks scheduling scheme in the cloud
computing platform. One example is the famous Google
cloud computing platform—the research areas of Hadoop
task scheduling algorithm are mainly classified as follows:
the data localization, the infer mechanism, the shuffle, the
heterogeneous environment and others.

In this section, we will elaborate the proposed task
scheduling scheme by employing RL to users request
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scheduling in cloud computing environment. The contents
are organized as follows: Sect. 4.1 presents an overview of
Reinforcement Learning; Sect. 4.2 describes the proposed
task scheduling scheme in detail;And in Sect. 4.3, themethod
to accelerate learning progress is illustrated.

4.1 RL

Reinforcement learning (RL) is a general class of algorithms
in the field of machine learning that aims at allowing an
agent to learn how to behave in an environment, where
the only feedback consists of a scalar reward signal. The
concept of RL is seen as a learning paradigm, in which
an agent is supposed to determine the appropriate action
at a set of states and several actions for each state. When
the processing enhanced with repeated steps, the problem
is known as a Markov decision process (MDP), which is
denoted by a state transition probability function Pa(s, s′) =
Pr (st+1 = s′|st = s, at = a,) and a reward function
Ra(s, s′) = E(rt+1|st = s, at = a, st+1 = s′).

When transiting between states, the learning agent apper-
ceives its current states st ∈ S and the available action set
at ∈ A(st ), then transits to next state st+1 by taking action
at ∈ A(st ) and receives an immediate reward rt from the
environment. The action selection decision is determined not
only by the immediate reward, but also by the future rewards
the following states would yield [33,34]. In this paper, we
use Q-learning to actualize the user request schedule. The
Q-value function of taking action a in state s can be defined
as:

Q (s, a) = E

{ ∞∑

k=0

γ krt+k+1|st = s, at = a

}

(1)

where 0 < γ < 1 is a discount factor helping value function
convergence. We can get the unique optimal value function
Q∗(s, a) and define it as the solution to the below equation:

Q∗(s, a) =
∑

st+1∈S
Pa (st , st+1)

(

Ra (st , st+1) + γ max
at+1

Q∗ (st+1, at+1)

)

(2)

where st+1and at+1 are the next state and action respectively.
The agent aims to set up a policy π : S → A to maximize

the collected cumulative rewards in the long term through the
repetition of trial-and-error interactions. Thus the optimal
policy π∗ can be defined as below, maximizing expected
reward from any initial state.

π∗(s) = argmax
a

⎛

⎝Ra (st , st+1) + γ
∑

st+1∈S
Pa (s, st+1)Q

∗ (st+1, at+1)

⎞

⎠ (3)

4.2 Task schedule scheme

As mention in Sect. 3, TSSM can be modeled as an M/M/1
queuing system. Tasks dispatcher actualizes user requests
scheduling from global queue to subtask queue. At the deci-
sion time Ti (the moment of i th request arrival at TESM),
assuming the number of deployed VMs is N , and the buffer
size of eachVM isM , the remainder buffermemories of each
VM are denoted by si , so the allocation remainder capacity
of task dispatcher is 0 ≤ ∑N

i=0 si ≤ M∗N . The workflow
of task dispatcher at the decision time Ti can be described
as follow: First, task dispatcher makes a scheduling policy
according to the parameters such as the allocation remainder
capacity si of each VM, pre-tasks execute situation in VMs,
predict execute time of current task, etc; secondly, i th user
request is placed to designated subtask buffer queue; finally,
tasks dispatcher update the allocation remainder capacity and
wait the next user request arrival.

When in the entire operation process of the cloud com-
puting system, the computer server will execute the user’s
requests continuously until the buffer queue is empty, so the
remaining capacity of each computing server buffer queue in
resource pool is changing in real time. Therefore, the opti-
mal objective of the task dispatcher is to schedule the tasks
efficiently in association with multiple computing servers,
thus to reduce the response time and facilitate the quality of
service for the user.

The solution can be mathematically formulated as

Minimize{

0≤
N∑

i=0
si≤M∗N

} r t
tot

subject to
0 < λtssm < μtssm

0 < λtssm
/
μtssm < 1,∀i = 1, . . . , N

n∑

i=1
piλtesmi < μtesm,∀i = 1, . . . , N

0 <
n∑

i=1
piλtesmi

/
μtesm < 1,∀i = 1, . . . , N

0 < λt tsm < μt tsm

0 < λt tsm
/
μt tsm < 1(

r t tssm + r t tesm + r t ttsm
) ≤ SL A

n∑

i=1
piλtesmi ≤ λtssm,∀i = 1, . . . , N

(4)

The task scheduling problem can be cast as a MDP, where
state space is denoted by S, action set A, and immediate
reward function r(s, a).

State Space. As for the task scheduling problem, a state
can be defined as the remainder of configuration capacity of
i th VM, denoted by si . For the cloud computing platform,
the state space can be represented by a vector in the form as:
si = (s1, s2, . . . , sn).
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Action Set. For the i th user request, we define it as action
space (0/1) ji which means the i th user request is assented to
j th VM. For example, the action space can be represented
by a vector in the form of ai = (0, 1, 0, . . . , 0)2i , which
indicates current user’s request (i th user request) is assigned
to 2th VM.

Immediate Reward. The immediate reward is used to
reflect the correct running state and the efficiency of task
scheduling. The two situations of queuing theory are consid-
ered by designing a reward function. (1) If the buffer size is
M , the user request tasks will be executed immediately with-
out waiting and has the minimized response time; (2) even
though the subtask queue has many buffer sizes, if the cur-
rent user task running in VM has a long execution time, the
tasks in this queue will have a longwaiting time and response
time. The agent receives the reward rat decision time t,given
as

r =
⎧
⎨

⎩

1 i f wt < wt & si = max(si )
0 i f wt < wt
−1 otherwise

(5)

where wt is the mean waiting time of recent user requests.
For a given users task, task dispatcher will receive a positive
reward 1 if the current task is scheduled to the VM which
has the remainder maximum buffer memories and the wait-
ing time less than the mean of recent n user tasks; if only
the condition of waiting time is less than the mean waiting
time, the reward is 0; otherwise task dispatcher will receive
a demerit of −1.

We employ the Q-learning method as our optimization
scheduling algorithm. By continuous interactions with the
environment and tryouts, Q-learning evaluates the feedback
from the environment to optimize future decision-making.
Characterized by on-line learning, modeling-free, with the
greatest long-term cumulative reward instead of immediate
one, it has become one of the most important methods in
reinforcement learning, especially for the learners who know
little about the surroundings, and self-adapt to learning in a
dynamic, complex environment. In light of the continuously
cumulative formats, after each immediate reward r is col-
lected, the mean Q-value of an action a on state s, denoted
by Q(s, a), can be refined at once:

Q (st , at ) = Q (st , at ) + α ∗
[
rt+1 + γ ∗ Q (st+1, at+1) − Q (st , at )

]
(6)

where α is a learning rate parameter that facilitates con-
vergence to the true Q-values in the presence of noisy or
stochastic rewards and state transitions [35], and the discount
rate is denoted by γ to guarantee the updated reward conver-
gence in continuing task. The pseudo code of the Q-value
learning algorithm is illustrated in Algorithm 1.

Algorithm 1 Q-value Learning Algorithm
1: Initialize Q table
2: Initialize state ts
3: error = 0
4: repeat
5: for each state s do
6: _ ( )tta get action s= using greedyε − policy

7: for (step=1; step<LIMIT; step++) do
8: Take action ta observe r and 1tS +

9: 1*( * )t t t tQ Q r Q Qα γ += + + −
10: ( | )t previous terror MAX error Q Q −= −

11: 1 1 1, _ ( ),t t t t t ts s a get action s a a+ + += = =
12: end for
13: end for
14: until error θ<

4.3 State aggregation

However, for the coordinate optimization problem in a mul-
tiple VMs system, the state space will grow exponentially or
geometrically as the number of stations and the capacity of
buffer increase. As a result, the learning process will suffer
from the issue of dimensionality, which may have a negative
influence on convergence speed and optimized value. For a
remedy, we employ state aggregation technologies to accel-
erate the learning progress.

Definition abstract function φ : S → Ei , ∀si ∈ S,
φ(si ) ∈ Ei is an abstract state aggregation. The inverse
function of abstract function {φ−1(ei )|ei ∈ Ei } divide origi-
nal state space Si into sub category Ei , that is abstract state
space. The definition of abstract function is

E =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Sv i f si = 0
Sl i f si ∈ (

1, M
3

)

Sm i f si ∈= (M
3 + 1, 2M

3

)

Sh i f si ∈= ( 2M
3 + 1, M − 1

)

S f i f si = M

(7)

subscript v, l, m, h, f indicate the state of remainder buffer
memories is full, less, middling, more, vain, respectively.

After state aggregation, abstract state space is Ei =
{Sv, Sl , Sm, Sh, S f }. For i th users request, the action that the
tasks dispatcher will take is only related to state aggregation.
Obviously, there are two abstract states in which the action
the tasks dispatcher will take is special.

1. queuingvacant state Sv . Tasks dispatcher rejects to sched-
ule the users request tasks to the VMwhose abstract state
is Sv , so the action is ai (Sv) = 0.
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2. queuing full state S f . Tasks dispatcher prior scheduling
user request task to the VMwhich abstract state is S f , so
the action is ai (S f ) = 1.

The task requests will be assigned in priority to the
dispatchers with full remaining buffer queue. For i th user
task, the optimization policy of tasks dispatcher is denoted
as vi (a(sv), a(sl), a(sm), a(sh), a(s f )), and the state trans-
mit denoted as (ei (ti ), ai (ei (ti )), ei (ti+1)). For a respective
sample observation < si (Tn), ai (ei (ti )), si (Tn+1),wi (Tn),
μi (Tn) >, is the interval between two consecutive decisions,
and the reward is r(ei (ti ), ai (ei (ti )), ei (ti+1)).

The pseudo code of our state aggregation Q -value learn-
ing algorithm is presented in Algorithm 2.

Algorithm 2 The state aggregation Q-value learning algorithm
1: Initialize State aggregation : i iS Eφ →

2: Initialize Q table
3: error = 0
4: repeat

5: for each abstract state iE do

6: Update Q-value table using Algorithm 1
7: end for
8: until error θ<

5 Performance evaluation

To evaluate the efficiency of our approach, implementations
have been performed on the simulation and real cloud com-
puting environment, respectively.

5.1 Simulation cloud computing environment
experiment results

Using MATLAB R2012a by MathWorks Inc. [36], we have
developed a discrete event simulator of the cloud server farm
to validate the efficiency of task scheduling solution and have
compared the performance information among the below
alternative schemes in our simulations: (1) the proposed task
scheduling scheme, denoted by Q-sch, in which the users
request tasks are optimally scheduled to the VMs by rein-
forcement learning; (2) random scheduling scheme, denoted
by Ran-sch, in which the users request tasks are scheduled to
the VMs by random; (3) equal scheduling scheme, denoted
by Equ-sch, in which the users request tasks are scheduled to
the VMs in order; (4) mix-scheduling, denoted by Mix-sch,
inwhich the current users request task is first scheduled to the
VM random, if the remaining buffer memorizes of the VM
is 0, then rescheduling the task to the VMs by maximizing
the remaining buffer memory.

The above scheduling schemes can be classified into
two types: the static scheduling scheme and the dynamic
scheduling scheme, according to the relationship between
user requests ID andVMs ID.Equ-sch is a static task schedul-
ing scheme because once the user request ID is ascertained, it
will be executed on which VM is also ascertained. The other
scheduling schemes are dynamic schemes in contrast.

5.1.1 Comparison of response time when various arrival
rate

Acomparison of response timeswith the arrival rates ranging
from 10 requests/s to 20 requests/s is demonstrated in Fig. 2,
from which we can generalize the following conclusions:
(1) the response time of every scheduling scheme increases
with the increase of arrival rates; (2) the response time of
every scheduling scheme trickles up convergence, and (3)
compared to the other schemes under the same server rate
constraint, the proposed scheduling scheme obtains a much
shorter response time.

Guided by the observation, we find that the proposed
scheduling scheme efficiently reduces the response time and
facilitate the quality of server (as shown in Fig. 2, such as
when the arrival rate is 10 requests, the response reduces by
20%). The results also reveal when response time of cloud
computing platform is close to the baseline of SLA, most of
the scheduling schemes cannot guarantee the system perfor-
mance.

Figure3 gives a close look into the response time in the
four schemes when λ reaches 40 requests and server rate μ

reaches 200 requests. From the simulation comparison results
under the same arrival rate and server rate constraint, we gain
further insights into the reasons behind Fig. 2. The random
scheduling scheme dispenses user task request to running
VM,which fails to consider the balancedworkload of various
VMs, thus taking the longest response time. Meanwhile, the
equal scheduling scheme only guarantees the balancedwork-
loads of various VMs. However, when the interval of tasks
arrival is short and remaining buffer size of each VM is full,
the workload balance of various VMs cannot be solved yet.
The mix-scheduling scheme optimizes the random schedul-
ing scheme, while giving performance similar to Ran-buffer
scheme under these system parameters. The proposed task
scheduling scheme reckons the remaining buffermemory and
execution time of the current tasks in VMs, so it can find the
dynamic optimal solution so to minimize the response time.
At this moment, the response time of Ran-sch, Mix-sch, Q-
sch and Equ-sch is 1903, 1915, 1868, 1947ms respectively.

Conclusion, although Ran-sch, Mix-sch and Equ-sch
belong to different kinds of scheduling scheme, the execu-
tion results of these schemes, as shown in Fig. 4, can allocate
running time and workflow among VMs, while they cannot
adjust the utilization rate and workflow balance dynamically,
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Fig. 2 Simulation comparison
results of response time when
the arrival rate λ varies from 10
to 20 requests/s under the same
server rate constraint
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Fig. 3 Simulation comparison results under the same arrival rate and
server rate constraint: a comparison of VM resources utilization rate
response timewhen arrival rateλ = 20 requests and server rateμ = 200

requests. b Comparison of VM workload balance when with the same
arrival rate and server rate in Fig. 4a

resulting in a higher response time. In contrast, Q-sch accord-
ing to the remaining buffer sizes and execution time of the
current tasks in VMs, avoids the situation of shorter queue
with longer wait time, thus reducing the response time.

5.1.2 Comparison of response time when server rates vary

Figure4 illustrates a comparison of response time when the
server rates range from 1 request to 5 requests. We can
obtain two conclusions from the observation: (1) the response
times of various scheduling scheme lines reduce with the
increasing server rates; (2) despite of the various server rates,
the response time discrepancy of each scheduling is nearly

invariant. Compared with the other scheduling scheme, the
response time of the proposed scheme reduces nearly 800ms
under the same arrival rate constraint. The reason has been
discussed in detail in Sect. 5.1.

5.1.3 Comparison of response time with various buffer
memory sizes

Observed from Fig. 5, the response time rises rather evenly
with buffer size with the number of VMs constraint. Khazaei
et al. [14] demonstrates that when the number of servers is
large, the buffer size exerts a virtually undetectable impact.
The resulting evidenceof the experiment in this paper demon-
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Fig. 4 Simulation comparison
results of response time when
server rate μ varies from 1
request to 5 requests and the
same arrival rate constraint
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Fig. 5 Comparisons of
response times with buffer size
varying from 10 to 100 by 10
steps
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strates that even though the number of VMs is small, the
response time is insensitive to buffer size.

5.1.4 Comparison of response time when various arrival
rate and server rate

From Fig. 6, we can obtain the relationship between response
times with different arrival rates and server rates. The
response time rises exponentially as arrival rate increases
and serve rate decreases. With the aid of the experiments,
since the user request arrival rate is observable and pre-
dictable in real cloud computing environment, the system
parameters can be dynamically adaptive-adjusted in the fol-
lowing two aspects to improve the quality of the server.
First, we can dynamically optimize the allocation of cloud
computing resources based on the changes of user arrival
rates to adjust the service rate adaptively, thus guaranteeing
the response time and SLA; secondly, under the determined
resource allocation, user requests are dynamically scheduled
with optimizing efficiency, so to decrease the response time
and facilitate service quality improvement.

5.2 Real cloud computing environment experiments
results

We employ CloudSim [37] as our real cloud computing
experiments environment, and compare its performance with
that of other similar task scheduling algorithms based on two
entirely different task submit methods as following:

(i) Type 1: User requests are arriving continuously. The
scheduling manner under the cloud computing platform
requires the dispatch is able to respond to tasks in time,
which demands a higher ability of real-time response
and lower time complexity. We called this episode as
online task scheduling.

(ii) Type 2: User requests are arriving in batches. This man-
ner requires the scheduler is able to optimize the tasks
arrangement according to the task resources require-
ments, user’s requests and the running state of system
platform. Corresponding, we called this episode as
offline task scheduling.
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Fig. 6 Response time with
different arrival rate and server
rate settings

Table 1 Parameter settings type 1

Parameter Values

Length of job 10,000–20,000 million
instructions

Total number of jobs 100–1000

Total number of VMs 5

VM frequency 1,000–3,000 million
instructions per second

VM memory (RAM) 512–2048 mega byte

VM bandwidth 500–1,000 mega byte per
second

Number of VM buffer 10–50

Number of PEs
requirements

5

Number of datacenters 1

Number of hosts 1

5.2.1 Online task scheduling

For the online task scheduling, user requests arrive at the
task dispatch continuously, whose manner is similar to that
of web requests or database querying. Under this situation,
the real-time scheduling requirement is the most impor-
tant performance index of online task scheduling scheme.
In this experiment, we compared the proposed Q-sch with
the famous real time task scheduling algorithm, such as
FIFO [38], fair scheduling [39], greedy scheduling [40]
and rand scheduling in terms of throughput and the aver-
age wait time. Table1 shows the parameter settings for
the type 1.

Figure7 show the average response time of the various
task scheduling schemes compared under the same cloud
computing resources environment, from which we can gen-
eralize the conclusions as follows: (1) the average response
time of every scheduling scheme increases with the number
of tasks arrivals in one time slot; (2) the response time of

Fig. 7 Comparisons of average
response times under various
task numbers
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Table 2 Parameter settings type 2

Parameter Values

Length of job 10,000–100,000 Million
Instructions

Total number of jobs 10–30

Total number of VMs 10

VM frequency 100–500 Million Instructions per
second

VM memory(RAM) 512–2048 Mega Byte

VM bandwidth 500–1,000 Mega Byte per second

Number of VM buffer 10–50

Number of PEs
requirements

1–2

Number of datacenters 2

Number of hosts 2

every scheduling scheme trickles up convergence, and (3)
compared to the other scheduling schemes, the proposed
scheduling scheme obtains the lowest performance index in
average response time.

5.2.2 Offline task scheduling

For the offline task scheduling, user requests arrive at the task
dispatch in batches, whose manner is similar to that of sci-
entific calculation or business statistics. Under this situation,
the real-time scheduling requirement is the most important
performance index of offline task scheduling scheme. In
this experiment, we compared the proposed Q-sch with the
famous heuristic task scheduling algorithms, such as genetic
algorithms (GA) and modified GA (MGA) [41] in terms of
average makespans. Table2 shows the parameter settings for
the type 2.

Figure8 show the average makespan of the various task
scheduling schemes compared under same cloud comput-
ing resources environment, and the experiment results also
demonstrate the superiority of the proposed task scheduling
scheme.

6 Conclusions and future work

In this paper, we provide the insightful view about the task
scheduling optimization problem for cloud computing plat-
form. A queuing model, comprised of three concatenated
submodels, namely TSSM, TESM and TTSM, is proposed
to characterize the service process in cloud environment.
In light of the proposed queuing model, we theoretically
analyze the response time of each submodel and design a
novel task scheduling scheme using reinforcement learning
to formulate a cloud computation model and optimize the
response time minimization issue under given cloud com-
puting resources. We evaluate the proposed task scheduling
optimization schemes in extensive simulations, Guided by
the empirical observation, we find that the proposed task
scheduling schemes can not only optimally utilize cloud
resources and load balancing to obtain the minimal response
time with resource constraint, but also reveal the relationship
between response time and arrival rate, server rate, number
of VMs, and number of buffer size, etc.

In the future, we plan to extend our schemes for dynamic
task scheduling and resource allocation to get the mini-
mal response time, providing highly satisfactory services
and/or avoidance of SLA violations. Looking into the cloud
entities and considering the details of cloud computing
platform, such as VMs failures, VMs migrate, costs of
communication, and burst arrivals of requests, VMs clus-
ter for different kinds of requests will be other dimensions of
extension.

Fig. 8 Comparisons of average
makespan under various task
numbers
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