
Cluster Comput (2015) 18:1493–1501
DOI 10.1007/s10586-015-0477-1

A distributed frequent itemset mining algorithm using Spark
for Big Data analytics

Feng Zhang1,3 · Min Liu1 · Feng Gui1 · Weiming Shen2 · Abdallah Shami3 ·
Yunlong Ma1

Received: 1 June 2015 / Revised: 7 July 2015 / Accepted: 17 August 2015 / Published online: 28 October 2015
© Springer Science+Business Media New York 2015

Abstract Frequent itemsetmining is an essential step in the
process of association rule mining. Conventional approaches
for mining frequent itemsets in big data era encounter sig-
nificant challenges when computing power and memory
space are limited. This paper proposes an efficient distrib-
uted frequent itemset mining algorithm (DFIMA) which can
significantly reduce the amount of candidate itemsets by
applying a matrix-based pruning approach. The proposed
algorithm has been implemented using Spark to further
improve the efficiency of iterative computation. Numeric
experiment results using standard benchmark datasets by
comparing the proposed algorithm with the existing algo-
rithm, parallel FP-growth, show that DFIMA has better
efficiency and scalability. In addition, a case study has been
carried out to validate the feasibility of DFIMA.

B Yunlong Ma
evanma@tongji.edu.cn

Feng Zhang
zhangfeng0726@gmail.com

Min Liu
lmin@tongji.edu.cn

Feng Gui
guifengleaf@gmail.com

Weiming Shen
wshen@ieee.org

Abdallah Shami
ashami2@uwo.ca

1 School of Electronics and Information Engineering,
Tongji University, Shanghai 201804, China

2 The Key Laboratory of Embedded System and Service
Computing, Tongji University, Shanghai, China

3 Department of Electrical and Computer Engineering,
Western University, London, ON N6A 5B9, Canada

Keywords Distributed data mining algorithm · Frequent
itemset mining · Big data · Spark

1 Introduction

The past decade has witnessed the remarkable growth of
Internet communication technology especially mobile Inter-
net and sensor networks to perceive and obtain information.
Organizations from industry, government, and academia
possess and store large quantities of data which contain
tremendous value. The potential value of big data [1] cannot
be unearthed by simple collection or statistical analysis, cur-
rently referring to big data. Advanced big data analytics and
applications require special technologies to efficiently cope
with massive amounts of data. Data mining techniques [2]
are now drawing attention from the practitioners of all data-
related industries for this purpose. The aim of data mining
is to explore data in search and interpretation of unforeseen
trends or patterns between variables, and then to verify the
results with the detected patterns applied to new subsets.

Since data gathered from a variety of data sources are
often a series of isolated data, correlation analysis naturally
becomes an important foundation for data mining and big
data science [3]. Association rule mining [4,5] was pro-
posed to discover certain interesting correlation relationships
among the itemsets of the data. Furthermore, frequent itemset
mining [6] is an essential step in the process of associa-
tion rulemining. Somewell-known conventional algorithms,
including Apriori [7], FP-growth [8], and other matrix-based
algorithms [9] for frequent itemset mining working on sin-
gle computers, have shown good performance in dealingwith
small amount of data. Nevertheless, conventional approaches
come across significant challenges when computing power
and memory space are limited in big data era. Some prac-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-015-0477-1&domain=pdf

1494 Cluster Comput (2015) 18:1493–1501

tices and attempts have been made to mine frequent itemsets
from massive data by using parallel computing technologies
[10–12].

Parallel programming frameworks can be mainly clas-
sified into two categories: memory sharing and distributed
architectures (share nothing). Although it’s easier to make
algorithms implemented parallelism on memory sharing
framework, the scalability of them is not satisfactory enough
[13]. Message passing interface (MPI) [14,15], which is
a common framework for scientific distributed computing,
takes the advantage of memory locality. Some researches
thus apply MPI to mine frequent itemset [16,17]. In spite
of certain advantages in iterative computation, the disadvan-
tages of MPI are its high communication load due to data
exchanges between different computer nodes and the lacking
of fault tolerance. MapReduce [18], a framework embedded
in Apache Hadoop to process large amounts of distributed
data in parallel, was designed to support distributed com-
puting in a cloud computing paradigm, turning out to be
an efficient platform for parallel data mining of large scale
datasets [19]. However, the MapReduce framework is not
appropriate for iterative computation, because repeated read-
write operations to Hadoop distributed file system (HDFS)
would lead to high I/O load and time cost.

To overcome the above problem, the Spark platform [20],
a memory-based distributed framework, has been used as
solution architecture in this paper. We propose a distributed
Apriori-like algorithm, called DFIMA, which has signifi-
cantly improved performance for the frequent itemsetmining
algorithm. Apriori algorithm [21] is an iterative process,
including candidate itemsets generation and frequent item-
sets generation. DFIMA reduces the amount of candidate
itemsets by using a matrix-based pruning approach. More-
over, to further improve the efficiency of iterative computa-
tion, Spark is applied to adapt the algorithm to be distributed.
This paper presents extensive experiments comparing the
proposed method with the existing algorithm, parallel FP-
growth (PFP) [22] on the Spark 1.3 platform. The results
show that DFIMA is better in terms of speed and scalability.
Besides, a case study is conducted to validate the feasibil-
ity of the proposed algorithm, which is also compared with
PFP. In addition to accompanying cars recognition described
in this study, there are several other potential applications
of the proposed approach such as mining frequent events in
online social networks [23,24], understanding user pattern of
E-Business [25] and identifying correlated sensors in Wire-
less Ad Hoc Sensor Networks [26]. The main contributions
of this paper can be summarized as follows:One of the impor-
tant contributions is that a matrix-based pruning technique
is adopted into DFIMA, thus to greatly reduce the amount
of candidate itemsets and the frequency of database scans.
Furthermore, the proposed algorithm has been implemented
over Apache Spark 1.3, a fast and general engine for large-

scale data processing, which could provide a solution for big
data analytics.

The rest of the paper is organized as follows: Sect. 2
describes the review of researches in parallel and distributed
frequent itemset mining. Section 3 gives a brief introduc-
tion of frequent itemset mining and Apache Spark. Section 4
illustrates the proposed algorithm in details. Section 5 shows
the experimental results. Finally, Sect. 6 provides some con-
clusions and discusses the future work.

2 Literature review

A number of research efforts have explored to address the
problemof frequent itemsetmining in parallel and distributed
environments. Solutions in the literature generally aimed at
improving PFP and adapting Apriori to be distributed.

PFP is a parallel form of the classical FP-Growth [27]. Li
et al. [28] introduced PFP for query recommendation, which
splits a large-scale mining task into independent and parallel
tasks. A load balancing FP-Tree algorithm was developed
by Yu et al. [29], the itemset for mining is divided by eval-
uating the tree’s width and depth, and a calculate function
for loading degree is given. In the work of [30], a single
prefix path compression technique was developed to iden-
tify frequent closed itemsets, and a partition-based projection
mechanism is established to make the mining efficient and
scalable for large databases. Chen et al. [31] proposed a par-
allel FP-growth algorithm running on computer cluster; a
projection method was used to find all the conditional pat-
tern bases of frequent items so as to avoid memory overflow.
In summary, the main principle of PFP is to group the items
and then distribute the conditional databases to the mappers,
which is not efficient in memory or speed.

Research efforts have already been made to improve
Apriori-like algorithms or Apriori-based algorithms and
convert them into distributed versions, mostly under the
MapReduce environment. Lin et al. [12] developed three
versions of Apriori algorithm (SPC, FPC, and DPC) on
MapReduce framework, SPC is a straight-forward algo-
rithm while FPC aims at reducing the number of scheduling
invocations, and DPC features in dynamically combining
candidates of various lengths. Farzanyar et al. [32] presented
a pruning technique to decrease the number of partial fre-
quent itemsets in Map phase based on MapReduce model.
The MrAdam algorithm [33] was proposed to obtain the
approximate collections of frequent itemsets, which com-
bines a Chernoff bound-based approach and the MapReduce
framework. Moens et al. [34] introduced two approaches for
frequent itemsetmining,Dist-Eclat focuses on speedwhereas
BigFIM is optimized to run on really large datasets. By stor-
ing metadata in the form of Transaction Identifiers, Yu et al.
[35] proposed a distributed parallel Apriori algorithm (DPA).

123

Cluster Comput (2015) 18:1493–1501 1495

Ozkural et al. [36] proposed a divide-and-conquer strategy to
parallelize the FIM (frequent itemset mining) task, they used
a top-down data partitioning scheme with selective replica-
tion. Aouad et al. [37] studied the performance of distributed
Apriori-like frequent itemsetmining, and found that the inter-
mediate communication steps and remote support counts
computation impose restrictions on global performance of
classic distributed schemes. In order to avoid generating
lots of candidate sets and scanning the transaction database
repeatedly, Chen et al. [38] proposed BE-Apriori algorithm
based on the classic Apriori algorithm, and applied pruned
optimization strategy to reduce the generation of frequent
itemsets, while used transaction reduction strategy to reduce
the scale of transaction database. In general, the performance
of these approaches might not be satisfactory due to the bot-
tleneck of iterative computation when confronting with large
scale datasets. Therefore, in this paper, a distributed algo-
rithm for frequent itemset mining (DFIMA) is proposed to
improve and speed-up the process of frequent itemset min-
ing.

3 Preliminaries

3.1 Frequent itemset mining

Suppose that I = {I1, I2, . . . , Im} is an itemset composed
of m items. A database D consists of a series of transac-
tions. Each transaction is a subset of I and has a unique label
denoted by TID. A set of items is referred to as an itemset. An
itemset that contains k items is a k-itemset. For instance, the
set {beer, diaper} is a 2-itemset. The occurrence frequency
of an itemset is the number of transactions that contain the
itemset. Given an itemset X , the support number of X is the
number of transactions in D that containX . If the support
number of X is greater than or equal to the specified min-
imum support threshold (abbreviated as MinSup), then the
itemset X is labeled as a frequent itemset. The purpose of
frequent itemset mining is to find all frequent itemset in a
given database.

3.2 Apache Spark

Conceptually, Apache Spark is an open-source in-memory
data analytics cluster computing framework, developed in
the AMPLab at UC Berkeley. As a MapReduce-like cluster
computing engine, Spark also possesses good characteris-
tics such as scalability, fault tolerance as MapReduce does.
Themain abstraction of Spark is resilient distributed datasets
(RDDs) [39], which make Spark be well qualified to process
iterative jobs, including PageRank algorithm [40], K-means
algorithm and etc. RDDs are unique to Spark and thus dif-
ferentiate Spark from conventional MapReduce engines.

In addition, on the basis of RDDs, applications on Spark
can keep data inmemory across queries and reconstruct auto-
matically data lost during failures [41]. RDD is a read-only
data collection, which can be either a file stored in an external
storage system, such as HDFS, or a derived dataset gener-
ated by other RDDs. RDDs store much information, such
as its partitions, and a set of dependencies on parent RDDs
called lineage. With the help of the lineage, Spark recov-
ers the lost data quickly and effectively. Spark shows great
performance in processing iterative computation because it
can reuse intermediate results, keep data in memory across
multiple parallel operations.

4 Distributed frequent itemset mining algorithm
(DFIMA)

This sectionwill introduce a distributed frequent itemsetmin-
ing algorithm, which is an Apriori-like algorithm. DFIMA is
a breadth first search algorithm by use of a property called
apriori (see Property 1) which is referred as a support-based
technique firstly introduced byAgrawal, et al. [4]. In general,
Apriori algorithm can be viewed as a two-step process: in the
first step, scan the database, then count the number of each
item in the database, i.e. calculating the support number of
each item, and pick out all items whose support number are
not less than MinSup to form frequent 1-itemset. In the sec-
ond step, keep generating the entire candidate (k + 1)-itemset
based on thewhole frequent k-itemset, and scanning the data-
base repeatedly till there is no candidate (k + 1)-itemset.

Property 1 If X is a frequent itemset, then any subset of
X is a frequent itemset. In other words, if X is a frequent
(k + 1)-itemset, the number of frequent k-itemset is greater
than k + 1.

4.1 Matrix-based pruning algorithm

In this subsection, the main principles of matrix-based prun-
ing algorithm for frequent itemset mining are illustrated. The
key to this algorithm is to acquire the Boolean vector for each
item of a given database and calculate the 2-itemset matrix,
by which the amount of candidate itemset is reduced.

Assume that database D includes n transactions T =
{T1, T2, . . . , Tn}, m different items I = {I1, I2, …, Im} and
the value of MinSup is set to Min_ sup . The main steps are
listed as follows:

Step 1: Obtain the Boolean vectors for each item of fre-
quent 1-itemset.

Scan the database D to obtain n dimension Boolean vec-
tor, denoted asVi = (b1, b2, . . ., b j…, bn)T , where b j ={
1, Ii ∈ Tj

0, Ii /∈ Tj
, (j =1, 2, . . . n) for each item I ={I1, I2,…, Im}.

123

1496 Cluster Comput (2015) 18:1493–1501

0()I l

.

.

.

j()nI ()Iok-1i()Im

00M M 0i

. . .

M 0j. . .

. . .

M jj

0(M k-1)

M (k-1)(k-1)

M j(k-1)

.

.

.

.

.

.

in Ascending Order of Items’
Support Number

. . .

. . .

0()I l
.
.
.

i()Im

j()nI

()Iok-1

.

.

.

. . .

. . .

. . .

M ii M ij M i(k-1)

.

.

.

.

.

.

.

.

.

. . .

.

.

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
.

. . .

. . .

. . .

. . .

. . .
. .

. . .

. . .

. . .
. .

Fig. 1 The process to generate the 2-itemset matrix M

Thus the support number of Ii equals the number of nonzero
elements in Vi . Then record the items and corresponding
Boolean vectors whose support number are not less than
Min_ sup . After the whole frequent 1-itemset are obtained,
sort them in ascending order of support number.

Step 2: Calculate the 2-itemset matrix according to the
Boolean vectors of the entire frequent 1-itemset.

Figure 1 shows the process to generate the 2-itemsetmatrix
M , of which each element is respectively produced by items
of the entire frequent 1-itemset that has been sorted in ascend-
ing order. Specifically, if the number of the entire frequent
1-itemset is k, then M is a k× k matrix. Let the Boolean vec-
tor Vi and Vj be the i th and j th item of the sorted frequent
1-itemset respectively. The number of nonzero elements of
the vector that generated by a logicalAND operation between
Vi and Vj is recorded and defined as the value of Mi j (i �= j),
an element of matrix M . In particular, the value of Mj j , i.e.,
the diagonal elements of M , is equal to the frequency of
Mi j ≥ Min_ sup (i = 0, 1, . . . , j − 1) for column j of
M . We only need to calculate the value of Mi j (i ≤ j) since
matrix M is symmetric. Finally, the whole frequent 2-itemset
are acquired on the basis of the matrix M .

Step 3:Obtain frequent (k + 1)-itemset by use of frequent
k-itemset (k ≥ 2).

Let Lk be the whole frequent k-itemset. The primary thing
we should consider is the number of frequent k-itemset. If
the number is greater than k + 1, then the frequent (k + 1)-
itemsetmay exist according to Property 1. For each frequent
k-itemset denoted by F , which has been sorted in ascend-
ing order of support number, let the first and last item of F
be written as I f irst and Ilast respectively. Apparently, I f irst
has the minimum support number while Ilast has the max-
imum support number. Assume that the row number in M

which corresponds with I f irst is u(u = 0, 1, …, k − 1)
and the row number in M which corresponds with Ilast is
v (v = 0, 1, …, k − 1). Then search each column of the
row v in M in turn. For each column w(w < v) in M , if
meet the conditions that Mvw ≥ Min_ sup , Mvw ≥ k and
Muw ≥Min_ sup , then let the corresponding item of the col-
umnw be Inew, and accordingly a candidate (k + 1)-itemsetis
obtained by combining the frequent k-itemset, i.e., F , with
the item Inew. In the light of Definition 1, the support num-
ber of the candidate (k + 1)-itemset can be obtained. If the
support number is greater thanMin_ sup , then the candidate
(k + 1)-itemset is frequent.

Definition 1 Suppose that Vr is the Boolean vector of item
Ir , then the support number of the itemset Q = {Io, Ip,…, Iq}
is equal to the number of nonzero elements in the vector gen-
erated by the logical AND operation between all the Boolean
vectors of the items in itemset Q.

4.2 Implementation over Spark

In this subsection, the implementation of the above algorithm
for single machine based on Spark is stated in detail. In order
to reduce thememory usage,HashMap is used in our program
to save the Boolean vector for each frequent 1-itemset and all
the frequent 2-itemset, instead of saving the 2-itemsetmatrix
M .

Step 1: Obtain the Boolean vectors for all frequent 1-
itemset, then produce all the frequent 2-itemsetbased on these
Boolean vectors.

As illustrated in Fig. 2, read the input dataset from HDFS
to create the HadoopRDD first. Next, the HadoopRDD will
call the flatMap function to produce a FlatMappedRDD
which contains all items of the input data. Apply the map
function to the FlatMappedRDD so as to transform each item
to a Tuple-(item, 1), thus aMappedRDD is obtained. Besides,
count the support number of each item of MappedRDD by
use of the reduceByKey function, further to pick out the items
whose support number are not less thanMin_ sup . Then, sort
all the frequent 1-itemset in ascending order of their support
number, and save them in an array arr. For each frequent 1-
itemset in arr, get the relevant Boolean vector, and save them
as a <item, vector> key/value pair in a HashMap. Finally,
the entire frequent matrix can be obtained by using the array
arr and these Boolean vectors. Thematrix will be saved into a
HashMap, whose key is a frequent 1-itemset. For an instance,
let G be a key, then the value is a HashMap, whose key is an
another frequent 1-itemset that can construct a frequent 2-
itemset together with G, and the value of such a HashMap is
the support number of current 2-itemset.

Step 2: Get all frequent (k + 1)-itemset by using frequent
k-itemset(k ≥ 2).

123

Cluster Comput (2015) 18:1493–1501 1497

Input data

Items

flatMap()

(item,1)

map(item => (item,1))

(item,count)

reduceByKey(_ + _)

All frequent
1-itemset

filter(_ >Minsup)

Boolean vectors

Frequent
2-itemset

map(_.generateBooleanVector())

Fig. 2 The process of step 1 on Spark

candidate
(k+1)-itemset

All frequent
(k+1)-itemset()

map(_.getCandidateItemset())

filter(_.isFrequentItemset())

k| | k+1≥L

YExit
program

N

All frequent
k-itemset()

kL

k+1L

Fig. 3 The process of step 2 on Spark

As shown in Fig. 3, the procedure of this step is similar
to that of Step 3 stated in Sect. 4.1. To begin with, the RDDs
that contain frequent k-itemset will call the map function
to produce all candidate (k + 1)-itemset. Secondly, use the
broadcast variable of Spark to save the Boolean vectors of
all frequent 1-itemset. Moreover, we employ the Definition
1 to determine if a candidate (k + 1)-itemset is frequent.
Consequently, all the frequent (k + 1)-itemset are obtained.

It’s worth noting that some RDDs are used repeatedly
throughout the job, for example, the HadoopRDD saved with
the input data is reused to get the Boolean vectors of all
frequent 1-itemset, and the RDDs saved with the frequent
k-itemset are reused to obtain all frequent (k + 1)-itemset.
Therefore, the cache function is applied to store these RDDs
in distributedworkers of the cluster, and further to achieve in-
memory computation. In this way, the input data only needs
to be loaded once, which improves the performance of entire
job.

In addition, some variables, stored in thememory of Spark
cluster, should be shared when dealing with multiple parallel
operations. For example, the variables that save the Boolean
vectors of the frequent 1-itemset. In view of efficiency, we
apply the broadcast function, it allows programmers to send
shared variables to allworkers of the cluster only once instead
of delivering a copy of shared variables for every task.

5 Experimental results

In this section, comparisons of DFIMA and PFP are made
to evaluate their performance of speed and scalability. Both
the two algorithms have been implemented over the Spark
version 1.3. After the performance evaluation, a case study
is given to discuss the practicality of the two algorithms.

5.1 Performance evaluation

In this subsection, the datasets T10I4D100K and T40l10D
100K are used for experiments. These two real datasets were
presented at thefirst IEEE ICDMworkshoponFrequent Item-
set Mining (FIMI’ 03) [42]. Table 1 shows the detail of the
two datasets.

The experiments were conducted on a cluster that con-
sists of 3 computer nodes with Centos 7.0 installed. Every
computer node was deployed with the same physical envi-
ronment, i.e., Intel Core i5-4440M CPU 3.1GHz, 16GB
memory and 1TB disk.

The aim of first comparison is to estimate the speed per-
formance by analyzing the running time of DFIMA and
PFP (Spark 1.3). In this case, we assume that the support
degree varies while the number of computer nodes remains
to be 3. Table 2 shows the specific running time (in sec-
onds) of DFIMA and PFP for datasets T10l4D100K and

Table 1 The properties of datasets used in experiment

Dataset Size Transactions Items Average length

T10I4D100K 3.84MB 100,000 870 10

T40l10D100K 14.8MB 100,000 1000 40

123

1498 Cluster Comput (2015) 18:1493–1501

Table 2 The running time comparison on T10l4D100K and
T40l10D100K

Dataset Support degree PFP (Spark 1.3) DFIMA

T10I4D100K 0.01 64s 25s

0.03 35s 17s

0.05 37s 14s

T40l10D100K 0.01 321s 180s

0.03 316s 81s

0.05 250s 67s

Fig. 4 The running time on T10l4D100K

T40l10D100K. The support degree is set to 0.01, 0.03 and
0.05 respectively. We can see from Table 2 that the two algo-
rithms tend to be more efficient when support degree is set
to a higher level. Note that the running time of DFIMA is
apparently less than that of PFP, for both datasets. For exam-
ple, for dataset T40l10D100K, when support degree is 0.05,
the running time of PFP is 250s, nearly 3 times bigger than
the time of DFIMA, i.e., 67s.

The running time with different support degree for dataset
T10l4D100K and T40l10D100K is shown in Figs. 4 and 5
separately. The x-axis denotes the support degree and y-axis
represents the running time. As the support degree grows
from 0.1 to 0.5%,we notice in Fig. 4 that the value of running
time for PFP is consistently higher than the same value for
DFIMA. Figure 5 shows that the superiority of DFIMA in
terms of the remaining time metric is clearer when using
bigger data sets. It can be seen that the difference between
the two algorithms is bigger compared to the one noticed in
Fig. 4.

Besides, another comparison of speed performance betw-
een DFIMA and PFP (running on Spark 1.3) was conducted
on “T40l10D100K” datasets. These “large” versions of the
original datasets are manually generated to increase the scale
of datasets. It can be seen from Table 3 that DFIMA signif-
icantly outperforms PFP for all settings of support degree.
When support number is small, the time cost of two algo-
rithms seem to increase more quickly.

Fig. 5 The running time on T40l10D100K

Table 3 The running time comparison on “T40l10D100K” databases

Dataset Support
degree

PFP
(Spark 1.3)

DFIMA

T40l10D100K*5 (73.8MB) 0.5 46s 11s

0.3 110s 15s

0.1 262s 44s

0.05 534s 126s

T40l10D100K*10 (147.6MB) 0.5 51s 16s

0.3 58s 15s

0.1 301s 105s

0.05 749s 281s

T40l10D100K*20 (295.2MB) 0.5 54s 24s

0.3 58s 25s

0.1 620s 284s

0.05 1498s 598s

T40l10D100K*40 (590.4MB) 0.5 72s 28s

0.3 83s 26s

0.1 1372s 578s

0.05 2671s 611s

T40l10D100K*80 (1.2GB) 0.5 103s 54s

0.3 124s 51s

0.1 2898s 365s

0.05 5892s 583s

The following experiment evaluates the scalability of
DFIMA, which is also measured by the running time (Spark
1.3). The dataset T10I4D100K is used here. The experiment
is performed on condition that the number of cluster com-
puter nodes ranges from 2 to 8 while the support degree
remains to be 0.5%. In Fig. 6, x-axis denotes the number of
computer nodes of Spark cluster and y-axis represents the
running time of DFIMA algorithm. Figure 6 illustrates the
running time with various numbers of computer nodes. With
more computer nodes, DFIMA needs less execution time,
and the curve of DFIMA has a nearly linear decline. DFIMA
shows a characteristic of near-linear scalability.

123

Cluster Comput (2015) 18:1493–1501 1499

Fig. 6 The running time with different computer nodes

Table 4 The results of PFP-Growth and DFIMA on Car dataset

Dataset Support number PFP (Spark 1.3) DFIMA

Car dataset 100 521s 201s

150 435s 189s

200 337s 158s

5.2 Case study

In this subsection, a case study is provided to evaluate the
practicality and effectiveness of DFIMA, which is also com-
pared with PFP-Growth (Spark 1.3).

An automatic license plate recognition database was gen-
erated to obtain a dataset called Car dataset, so as to simulate
the application of the accompanying cars recognition, which
is used to identify suspect criminal gang. It is common that
cars move in a queue in dynamic traffic flows. But in some
cases, when the condition of accompanying occurs with a
high frequency, these cars are regarded as accompanying cars
and suspected of gang crime.

We simulate a database that contains more than 40 intel-
ligent monitoring and recording systems of vehicles on
highways. Information collected in the database includes the
license plate, passing time, speed and etc. of each passed
vehicle. For each intelligent monitoring and recording sys-
tem, data is gathered and saved as one record every five
minutes. Based on the data recording of nearly 6 months, we
get a Car dataset (2.1GB) that consists of 29204016 records.
Considering that cars’ moving in queue is a normal phenom-
enon in rush hours, this simulation measures accompanying
cars by defining a certain “accompanying times”, namely the
support number.

Table 4 shows the execution timeof the twoalgorithms, the
support number is set to 100, 150 and 200 separately. In fact,
we observe that both DFIMA and PFP performwell on Spark
in this simulation. However, the time cost of PFP is more

than twice the value of DFIMA in all cases. Therefore, the
case study also testifies that the running time of the proposed
approach is significantly less than that of PFP (running on
Spark 1.3).

The above experimental results indicate that DFIMA is
able to efficiently reduce the amount of candidate itemsets
and is capable of using as a reliable approach for frequent
itemset mining with a considerable performance.

6 Conclusion and future work

The performance bottleneck due to repeated database scan-
ning of Apriori algorithm and iterative computation on
MapReduce framework hinders frequent itemset mining
from massive data. This paper presents a novel distributed
algorithm, called DFIMA, in which a matrix-based pruning
approach is introduced and used as a means of reducing the
amount of candidate itemset. Moreover, to further promote
the efficiency of iterative computation, we have integrated
our approach into the Spark platform. The experimental
results indicated that the proposed algorithm shows better
efficiency and scalability compared to PFP (running on Spark
1.3).We also notice in experiments that our method performs
especially well in occasions with a relatively high support
degree. Further optimization will be considered to improve
DFIMA and make it suitable for more mining cases.

Acknowledgments The research work presented in this paper is par-
tially supported by the Scientific Research Projects of the NSFC (Grant
No. 61173015) and the Fundamental Research Funds for the Central
Universities.

References

1. Sandhu, R., Sood, S.K.: Scheduling of big data applications on
distributed cloud based on QoS parameters. Clust. Comput. 18,
1–12 (2014). doi:10.1007/s10586-014-0416-6

2. Han, L., Ong, H.Y.: Parallel data intensive applications using
MapReduce: a data mining case study in biomedical sci-
ences. Clust. Comput. 18(1), 403–418 (2015). doi:10.1007/
s10586-014-0405-9

3. Chen, Y., Li, F., Fan, J.: Mining association rules in big
data with NGEP. Clust. Comput. 18, 1–9 (2015). doi:10.1007/
s10586-014-0419-3

4. Agrawal, R., Srikant, R.: Fast algorithms for mining association
rules. In: Proceedings of the 20th International Conference on Very
Large Data Bases, VLDB, vol. 1215, pp. 487–499 (1994)

5. Agrawal,R., Shafer, J.C.: Parallelminingof association rules. IEEE
Trans. Knowl. Data Eng. 8(6), 962–969 (1996). doi:10.1109/69.
553164

6. Grahne, G., Zhu, J.: Fast algorithms for frequent itemset mining
using fp-trees. IEEE Trans. Knowl. Data Eng. 17(10), 1347–1362
(2005). doi:10.1109/TKDE.2005.166

7. Mohamed, M.H., Darwieesh, M.M.: Efficient mining frequent
itemsets algorithms. Int. J. Mach. Learn. Cybern. 5(6), 823–833
(2014). doi:10.1007/s13042-013-0172-6

123

http://dx.doi.org/10.1007/s10586-014-0416-6
http://dx.doi.org/10.1007/s10586-014-0405-9
http://dx.doi.org/10.1007/s10586-014-0405-9
http://dx.doi.org/10.1007/s10586-014-0419-3
http://dx.doi.org/10.1007/s10586-014-0419-3
http://dx.doi.org/10.1109/69.553164
http://dx.doi.org/10.1109/69.553164
http://dx.doi.org/10.1109/TKDE.2005.166
http://dx.doi.org/10.1007/s13042-013-0172-6

1500 Cluster Comput (2015) 18:1493–1501

8. Totad, S.G., Geeta, R.B., Reddy, P.P.: Batch incremental processing
for FP-tree construction using FP-Growth algorithm. Knowl. Inf.
Syst. 33(2), 475–490 (2012). doi:10.1007/s10115-012-0514-9

9. Zhen-yu, L., Wei-xiang, X., Xumin, L.: Efficiently using matrix
in mining maximum frequent itemset. In: WKDD’10. Third Inter-
national Conference on Knowledge Discovery and Data Mining,
2010, pp. 50–54. IEEE (2010)

10. Ye, Y., Chiang, C. C.: A parallel apriori algorithm for frequent
itemsets mining. In: Fourth International Conference on, Software
Engineering Research, Management and Applications, 2006, pp.
87–94. IEEE (2006)

11. Upadhyaya, S.: Parallel approaches to machine learning—a com-
prehensive survey. J. Parallel Distrib. Comput. 73(3), 284–292
(2013). doi:10.1016/j.jpdc.2012.11.001

12. Lin, M.Y., Lee, P.Y., Hsueh, S.C.: Apriori-based frequent itemset
mining algorithms onMapReduce. In: Proceedings of the 6th Inter-
national Conference on Ubiquitous Information Management and
Communication, ACM 76 (2012). doi:10.1145/2184751.2184842

13. Moens, S., Aksehirli, E., Goethals, B.: Frequent itemset mining
for big data. In: IEEE International Conference on Big Data, pp.
111–118, IEEE (2013)

14. Pacheco, P.S.: Parallel ProgrammingwithMPI.MorganKaufmann
Publishers Inc, San Francisco (1997)

15. Li, S., Hoefler, T., Hu, C., et al.: ImprovedMPI collectives for MPI
processes in shared address spaces. Clust. Comput. 17(4), 1139–
1155 (2014). doi:10.1007/s10586-014-0361-4

16. Otey, M.E., Wang, C., Parthasarathy, S., et al.: Mining frequent
itemsets in distributed anddynamic databases. In: Third IEEE Inter-
national Conference on Data Mining, ICDM 2003, pp. 617–620.
IEEE (2003)

17. Kaosar, M.G., Xu, Z., Yi, X.: Distributed Association rule mining
with minimum communication overhead. In: Proceedings of the
Eighth Australasian Data Mining Conference, vol. 101, pp. 17–23.
Australian Computer Society Inc (2009)

18. Dean, J., Ghemawat, S.: MapReduce: simplified data processing
on large clusters. Commun. ACM 51(1), 107–113 (2008). doi:10.
1145/1327452.1327492

19. Zaharia, M., Chowdhury, M., Franklin, M.J., et al.: Spark: cluster
computing with working sets. In: Proceedings of the 2nd USENIX
Conference on Hot Topics in Cloud Computing, pp. 10–10 (2010)

20. Jiang, H., Chen, Y., Qiao, Z., et al.: Scaling up MapReduce-based
big data processing on Multi-GPU systems. Clust. Comput. 18(1),
369–383 (2015). doi:10.1007/s10586-014-0400-1

21. Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm
for mining frequent substructures from graph data. Lect. Notes
Comput. Sci. 1910, 13–23 (2000)

22. Pramudiono, I., Kitsuregawa,M.: Parallel FP-growth on PC cluster.
In: Advances in Knowledge Discovery and Data Mining, pp. 467–
473. Springer, Berlin (2003)

23. Gu, H., Hang, H., Lv, Q., et al.: Fusing text and frienships for loca-
tion inference in online social networks. In: 2012 IEEE/WIC/ACM
International Conferences on Web Intelligence and Intelligent
Agent Technology (WI-IAT), vol. 1, pp. 158–165. IEEE (2012)

24. Gu, H., Xie, X., Lv, Q., et al.: Etree: effective and efficient event
modeling for real-time online social media networks. In: 2011
IEEE/WIC/ACM International Conference on Web Intelligence
and Intelligent Agent Technology (WI-IAT), vol. 1, pp. 300–307.
IEEE (2011)

25. Priyadarsini, S., Viswanathan, R.: Web usage mining for bet-
ter understanding of user pattern to improve productivity of
E-business. Int. J. Appl. Eng. Res. 9(11), 1753–1763 (2014)

26. Boukerche, A., Samarah, S.: A novel algorithm for mining associa-
tion rules in wireless ad hoc sensor networks. IEEE Trans. Parallel
Distrib. Syst. 19(7), 865–877 (2008)

27. Zhou, L.,Wang, X.: Research of the FP-growth algorithm based on
cloud environments. J. Softw. 9(3), 676–683 (2014). doi:10.4304/
jsw.9.3.676-683

28. Li, H.,Wang, Y., Zhang, D., et al.: Pfp: parallel fp-growth for query
recommendation. In: Proceedings of the 2008 ACM Conference
on Recommender Systems, ACM 107–114 (2008). doi:10.1145/
1454008.1454027

29. Yu, K.M., Zhou, J., Hsiao, W.C.: Load balancing approach paral-
lel algorithm for frequent pattern mining. In: Parallel Computing
Technologies, pp. 623–631. Springer, Berlin (2007)

30. Pei, J., Han, J., Mao, R.: CLOSET: an efficient algorithm for min-
ing frequent closed itemsets. In: ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery, vol.
4(2), pp. 21–30 (2000)

31. Chen, M., Gao, X., Li, H.: An efficient parallel FP-Growth algo-
rithm. In: CyberC’09. International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery, 2009, pp. 283–
286. IEEE (2009)

32. Farzanyar, Z., Cercone, N.: Efficient mining of frequent itemsets in
social network data based onMapReduce framework. In: Proceed-
ings of the 2013 IEEE/ACMInternational Conference onAdvances
in Social NetworksAnalysis andMining, ACM1183–1188 (2013).
doi:10.1145/2492517.2500301

33. Fumarola, F., Malerba, D.: A parallel algorithm for approximate
frequent itemset mining using MapReduce. In: 2014 Interna-
tional Conference on High Performance Computing & Simulation
(HPCS), pp. 335–342. IEEE (2014)

34. Moens, S., Aksehirli, E., Goethals, B.: Frequent itemset mining for
big data. In: 2013 IEEE International Conference on Big Data, pp.
111–118. IEEE (2013)

35. Yu,K., Zhou, J., Zhou, J., et al.:A load-balanced distributed parallel
mining algorithm. Expert Syst. Appl. 37(3), 2459–2464 (2010).
doi:10.1016/j.eswa.2009.07.074

36. Ozkural, E., Ucar, B.,Aykanat, C.: Parallel frequent item setmining
with selective item replication. IEEE Trans. Parallel Distrib. Syst.
23(10), 1632–1640 (2011). doi:10.1109/TPDS.2011.32

37. Aouad, L.M., Le-Khac, N.A., Kechadi, T.M.: Performance study
of distributed Apriori-like frequent itemsets mining. Knowl. Inf.
Syst. 23(1), 55–72 (2010). doi:10.1007/s10115-009-0205-3

38. Chen, Z., Cai, S., Song, Q., et al.: An improved Apriori algorithm
based on pruning optimization and transaction reduction. In: 2011
2nd International Conference on Artificial Intelligence, Manage-
ment Science andElectronicCommerce (AIMSEC), pp. 908–1911.
IEEE (2011)

39. Zaharia, M., Chowdhury, M., Das, T., et al.: Resilient distrib-
uted datasets: A fault-tolerant abstraction for in-memory cluster
computing. In: Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation, USENIX Asso-
ciation 2-2 (2012)

40. Haveliwala, T.H.: Topic-sensitive pagerank: a context-sensitive
ranking algorithm for web search. IEEE Trans. Knowl. Data Eng.
15(4), 784–796 (2003). doi:10.1109/TKDE.2003.1208999

41. Xin, R.S., Rosen, J., Zaharia, M., et al.: Shark: SQL and rich
analytics at scale. In: Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data, ACM 13–24
(2013). doi:10.1145/2463676.2465288

42. Goethals, B., Zaki, M.J.: FIMI’03: Workshop on frequent itemset
mining implementations. In: Third IEEE International Conference
on DataMiningWorkshop on Frequent Itemset Mining Implemen-
tations, pp.1–13. IEEE (2003)

123

http://dx.doi.org/10.1007/s10115-012-0514-9
http://dx.doi.org/10.1016/j.jpdc.2012.11.001
http://dx.doi.org/10.1145/2184751.2184842
http://dx.doi.org/10.1007/s10586-014-0361-4
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1007/s10586-014-0400-1
http://dx.doi.org/10.4304/jsw.9.3.676-683
http://dx.doi.org/10.4304/jsw.9.3.676-683
http://dx.doi.org/10.1145/1454008.1454027
http://dx.doi.org/10.1145/1454008.1454027
http://dx.doi.org/10.1145/2492517.2500301
http://dx.doi.org/10.1016/j.eswa.2009.07.074
http://dx.doi.org/10.1109/TPDS.2011.32
http://dx.doi.org/10.1007/s10115-009-0205-3
http://dx.doi.org/10.1109/TKDE.2003.1208999
http://dx.doi.org/10.1145/2463676.2465288

Cluster Comput (2015) 18:1493–1501 1501

Feng Zhang is a Ph.D. can-
didate in School of Electron-
ics and Information Engineering
at Tongji University, Shanghai,
China. He received his Bachelor
degree (2011) fromAnhuiArchi-
tecture University, Anhui, China.
His research interests focus on
intelligent algorithms and data
mining with big data in domain
of WSN.

Min Liu is a full professor in
School of Electronics and Infor-
mation Engineering at Tongji
University, Shanghai, China. He
received his Bachelor degree
(1993) from China University of
Geosciences (Wuhan), and his
Master (1996) and Ph.D. (1999)
degrees from Zhejiang Univer-
sity, China. He worked as a post-
doctoral fellow in the computer
science and engineering depart-
ment of Shanghai JiaoTong Uni-
versity from July 1999 to April
2001. As product architecture

engineer, he developed an enterprise resources management system in
Asia-bridge Software Co. Ltd., from May 2001 to Oct. 2004. He has
been working on system engineering and service computing to collab-
orative MRO and intelligent manufacturing for about 12 years. He has
published over 60 papers in scientific journals and international confer-
ences in the related areas.

Feng Gui is a master student in
School of Electronics and Infor-
mation Engineering at Tongji
University, Shanghai, China. He
received his Bachelor degree
(2012) from Anhui University,
Anhui, China.

Weiming Shen is a Senior
ResearchScientist at theNational
Research Council Canada and
an Adjunct Professor in software
engineering at the University of
Western Ontario. He received his
Bachelor (1983) and Master’s
(1986) degrees from Northern
(Beijing) Jiaotong University,
China and his PhD degree (1996)
from the University of Tech-
nology of Compiegne, France.
He has been working on intelli-
gent software agents and appli-
cations to collaborative engineer-

ing design and intelligent manufacturing for about 19 years. Dr. Shen is
a Co-Chair of the Technical Committee on Computer Supported Coop-
erative Work in Design (CSCWD) with the IEEE SMC Society.

Abdallah Shami is a full pro-
fessor in Department of Elec-
trical and Computer Engineer-
ing,WesternUniversity, London,
Ontario, Canada. He received
his Bachelor degree (1997) from
Lebanese University, and his
Master (2001) and Ph.D. (2003)
degrees from City University of
New York. His research inter-
ests focus on Network Virtual-
ization, Network Function Virtu-
alization (NFV), Cloud Comput-
ing, Agile Computing, Energy
Limited Communication, etc.

Yunlong Ma is a lecture in
School of Electronics and Infor-
mation Engineering at Tongji
University, Shanghai, China. He
received his Bachelor (1999),
Master (2002) and Ph.D. (2005)
degrees from Tongji University,
China.

123

	A distributed frequent itemset mining algorithm using Spark for Big Data analytics
	Abstract
	1 Introduction
	2 Literature review
	3 Preliminaries
	3.1 Frequent itemset mining
	3.2 Apache Spark

	4 Distributed frequent itemset mining algorithm (DFIMA)
	4.1 Matrix-based pruning algorithm
	4.2 Implementation over Spark

	5 Experimental results
	5.1 Performance evaluation
	5.2 Case study

	6 Conclusion and future work
	Acknowledgments
	References

