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Abstract Movement is a complex process that evolves
through both space and time. Movement data generated by
moving objects is a kind of big data, which has been a
focus of research in science, technology, economics, and
social studies. Movement database is also at the forefront
of geographic information science research. Developing effi-
cient access methods for movement data stored in movement
databases is of critical importance. Tree-like indexing struc-
tures such as the R-tree, Quadtree, Octree are not suitable
for indexing multi-dimensional movement data because they
all have high space cost of their inner nodes. In addition,
it is difficult to use them for parallel access to multi-
dimensional movement data because they thereof, are in
hierarchical structures, which have severe overlapping prob-
lems in high dimensional space. In this paper, we propose a
novel access method, the Decomposition Tree (D-tree), for
indexing multi-dimensional movement data. The D-tree is a
virtual treewithout inner nodes, instead, through an encoding
method based on integer bit-shifting operation, and can effi-
ciently answer a wide range of queries. Experimental results
show that the space cost and query performance of D-tree are
superior to its best known competitors.
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1 Introduction

Movement is a complex, continuous process that evolves
through both space and time, and each object and event has
both time and space. Movement data represent this contin-
uous process of moving objects in the form of ‘sampled’
observations. Movement data generated by moving objects
is a kind of big data which has been a focus of research in
science, technology, economics, and social studies [1]. Mov-
ing objects, including humans, animals and vehicles, change
their spatial locations over time. A wide range of applica-
tions has been created for moving objects, especially for
mobile objects, including traffic surveillance, users of wire-
less devices, wildlife distribution, disease surveillance, etc.
Because of the diversity and low cost of the tools used to cap-
ture the movement data, such as GPS devices and geo-sensor
networks, these applications have generated a large amount
of movement data.

Given the increasing focus upon real-time data capture,
and massive data size, movement data are still hard to man-
age effectively and efficiently in a GIS [2]. The arrival of
Cloud Computing [3,4] and Big Data [5,6] era increases the
challenge of movement data. The traditional relational data-
base and spatial database have few capabilities for handling
movement data, and often only store the current status of
moving objects. Otherwise, they must deal with the continu-
ous updating workload that they cannot afford. In that case,
the movement database, which is responsible for the man-
agement of movement data, appeared.

Index is the key to fast data retrieval in a movement
database. In the last decade, a large number of spatio-
temporal index structures have been proposed to support
spatio-temporal queries for handling movement data. They
include the TPR-tree [7,8], TPR*-tree [9,10], Bx-tree [11],
LUGrid [12], RPPF-tree [13], Bdual-tree [14], By-tree [15],
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RTR-tree and TP2R-tree [16], Bs-tree [17], STCB+-tree
[18,19], etc. Most of them are derived from either B-trees
[20] orR-trees [21]. Those derived fromR-tree employ amin-
imum bounding rectangle (MBR) or a time-parameterized
minimum-bounding rectangle (TPMBR) to represent a mov-
ing object. The range of the bounding rectangle is always
larger than the range of the moving object itself. This is the
fundamental reason why they cannot resolve the overlapping
problem in high dimensions. Moreover, employing a MBR
or TPMBR to represent a moving point or a segment is not
an adequate way because the space cost of MBR or TPMBR
may be larger than a pure a moving point or segment. The
indexes derived from B+-trees, mostly employ space fill-
ing curve transformations (SFC) or divide a moving point
into multiple components. This class of indexes is suitable to
index low dimensional data but not high dimensional data.
Because the higher the dimension is, the more additional sub
trees are needed and the computation on those result sets will
increase dramatically.

Quadtrees and octrees are grid-like and tree-like. They are
used in a variety of fields including computational geometry,
image processing and some spatial accessmethods. However
there are few indexes of movement data based on them. In
contrast to the balanced B-trees and R-trees, they may be
unbalanced due to the non-uniform distributions of move-
ment data though they are still trees. Because the depth of
an unbalanced tree is not controlled by algorithms but by
the data distributions in the time and location space, the per-
formance of the tree may be significantly reduced. Being
a hierarchical structure, a tree contains many inner nodes
that do not contain real index items of moving objects. The
greater the depth of a tree is, the more inner nodes the tree
will have. The inner nodes will incur significant memory cost
and may have a severe influence on the performance of a
tree. This is the main reason why the quadtree, and octree
cannot be effectively used as the spatio-temporal access
methods.

To resolve these problems, we propose a novel spatio-
temporal indexing method, called Decomposition Tree (D-
tree). TheD-tree is a virtual tree without inner nodes, instead,
through an encoding method based on integer bit-shifting
operation. Since data is only stored in leaves, traversing the
tree nodes avoids disk access, and consequently the depth
of the tree does not affect the query performance. Instead
of employing various kinds of geometric representation (for
example, MBR or TPMBR), data transformation (for exam-
ple, SFC) or component division (just like STCB+-tree), the
actual time and spatial locations ofmoving objects are treated
directly. The D-tree can efficiently answer a wide range of
queries from the point query to the moving query. When the
D-tree is disk-resident, a cached buffer in memory is used
for temporarily caching some insertion and deletion results.
This updating policy is similar to LUGrid [12]. The empirical

performance of D-tree is demonstrated to be superior to the
STCB+-tree [18,19] which is in turn reported to outperform
the TPR-tree [7].

The remainder of this paper is organized as follows:
in the following section we review the related work on
spatio-temporal indexes for movement data. In Sect. 3, we
describe the virtual structure of the D-tree. In Sect. 4, we
present the algorithms of the D-tree. Section 5 contains the
experimental results and analysis. Finally, Sect. 6 draws our
conclusions.

2 Related work

A lot of spatio-temporal access methods for movement data
have been proposed in the last decades. This kind of main
index methods are listed in Table 1. They can be classified
into four groups: methods for indexing the past data, the
present data, the future data or the data at all points in time,
according to the temporal queries which are supported [22].
Most of them are derived from B-trees [20] or R-trees [21].
According to the classification criteria of partitionways, they
can be divided into two categories: data partition and space
partition. R-tree [21] and R*-tree [23] were proposed only
for spatial data. In theory, they can also be used in spatio-
temporal data due to their general representation way for
spatial objects, which is that they employ a MBR to rep-
resent a spatial object. However they are not efficient for
indexing continuous moving object data because of their low
updating efficiency and the serious overlapping problem in
high dimension space.

The TPR-tree [7] is a famous variant of the R*-tree sup-
porting the queries for present and future positions ofmoving
objects. In a TPR-tree, moving objects are enclosed by con-
servative bounding rectangles which never shrink. It uses
a linear function of time to preserve the related position in
space and associated period in time. The function parameters
employed to describe every motion are the intercept position
at the current time and a time-parameterized velocity vector.
To achieve a better data classification, the TPR*-tree [24]
improves the TPR-tree by employing a new set of insertion
and deletion algorithms. It aims at minimizing the (conserv-
ative) bounding rectangle for reducing query cost. However
the choice of appropriate parameter values for this improve-
ment is sensitive; different queries need different appropriate
parameters. The limitation of both types of trees is that they
cannot handle historical queries because of their security
policies based on the current and future positions of mov-
ing objects.

This limitation was resolved in the RPPF-tree [13] which
indexes positions of moving objects at all points in time. The
past positions of an object between two consecutive samples
are linearly interpolated and the future positions are com-
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Table 1 Main spatio-temporal access methods for movement data

Type

Time Index for past data Index for present data Index for future data Index for the data at all
points in time

1990 RT-tree, MR-tree

1996 3D R-tree

1998 HR-tree PMR-Quadtree

1999 2 + 3 R-tree Duality transformation

2000 STR-tree TPR-tree

2001 HR+ -tree, MV3R-tree
Greedy-PPR-tree

Hashing SV-Model PSI

2002 RST-tree 2 − 3TR-tree LUR-tree MB-index

2003 SETI SEB-tree
FNR-tree

IMORS Bottom-up
approach Q + R-tree

FT-Quadtree TPR∗-tree

2004 Chebyshev Polynomial
Index

COVET STRIPES Bx-tree
STP-tree

2005 MTSB-tree MON-tree
PA-tree SEST-Index

LGU BBx-index PCFI+-index

2006 LUGrid RPPF-tree

2007 ANR-tree

2008 GStree CSE-tree By-tree ST2B-tree
Bdual-tree BdH-tree

UTR-tree PPFI

2009 Polar tree RTR-tree
TP2R-tree

RUM-tree MOVIES STCB+-tree

2010 Bs-tree

2011 MOVIES

2012 DR-tree STCB+-tree
2013 RUM+-tree

puted via a linear function using the most recent positions.
The RPPF-tree applies partial persistence to the TPR-tree
to capture the past positions. Leaf and non-leaf entries of
the RPPF-tree include a time interval recording the insertion
time and deletion time. When a node is split at time t, mov-
ing objects in this node alive at time t are copied to a new
node which time interval is from time t to the future. This
means that the deletion time of the new node is unidentified.
A time-parameterized bounding rectangle of a TPR-tree is
valid from the current time, while the time-parameterized
bounding rectangle of an RPPF-tree is valid from the inser-
tion time.

The RTR-tree and TP2R-tree [16] are R-tree based struc-
tures specially for indexing trajectories in symbolic indoor
space. They are not general spatio-temporal index for move-
ment data. TPR-tree, TPR*-tree, RPPF-tree, RTR-tree and
TP2R-tree are all R-tree-like indexes and can be classified
into the category of data partition.

Another category is of indexes relies upon spatial parti-
tioning methods. An important set of these are B+-tree based
indexes, such as Bdual-tree [14], By-tree [15], Bs-tree [17],
andSTCB+-tree [18,19]. TheBdual-tree is an extension of the

Bx-tree [11]which consists ofmultiple B+-trees indexing the
one-dimensional values transformed from moving objects
based on aSFC.Because this space filling curve does not con-
sider object velocities, query processing with a Bx-tree may
retrieve many false hits. Unlike the Bx-tree, the Bdual-tree
captures both d-dimensional locations and velocities in a dual
two-dimensional space. The dual space is partitioned along
all dimensions into cells. Then an SFC transforms the two-
dimensional values in the dual space into one-dimensional
values that are indexed in a B+-tree. Each cell in the partition
space can be regarded as a d-dimensional moving rectangle
that captures the locations and velocities of all objects inside
it similar to theTPMBR in theTPR-tree. The query algorithm
ofBdual-tree is similar to TPR-tree, but the insertion and dele-
tion algorithm of Bdual-tree is similar to those of the Bx-tree.
By-tree is also an extension of Bx-tree. It uses separate update
frequencies for each moving object so that it works well in
the environments with high variable update periods. Bs-tree
is a self-tuning indexwhich can balance the query and update
performances for optimal overall performance in movement
databases.
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The spatio-temporal compressed B+-tree or STCB+-tree
[18,19] uses multiple compressed B+-trees or CB+-trees
[25] to index trajectories of moving objects. One CB+-tree,
the TCB+-tree, indexes the temporal dimension and for each
spatial dimension, another CB+-tree, the SCB+-tree, indexes
the spatial coordinates of moving objects in that dimension.
The insertion and deletion in the CB+-trees are same as those
in B+-trees except for the data shifting. In the TCB+-tree,
each interval identified by two consecutive key values stores
a bucket including the identifiers of the moving objects in
that time interval. Because the generation of new temporal
data is totally ordered, the insertions into TCB+-tree append
new entries to the rightmost leaf node. Similar to the TCB+-
tree, the SCB+-tree in each dimension keeps a bucket for
each spatial interval identified by two consecutive key val-
ues in that dimension. This bucket stores the identifiers of the
moving objects in this spatial interval. To answer a spatio-
temporal query, the TCB+-tree and the SCB+-trees in each
spatial dimension are searched for the temporal and spatial
outputs. The final result is the intersection of those outputs.
It is reported that both analytical and empirical studies show
that the STCB+-tree [19] outperforms the TPR-tree. This is
one of the reasons whywe choose it for comparison to D-tree
proposed in this paper.

Except for the B+-tree based indexes, some grid based
indexes, such as LUGrid [12], GPR-tree [26] and Grid-
Quadtree [27], also rely on space partition. The LUGrid is a
spatio-temporal access method that answers the queries on
the current status of moving objects. It adapts to arbitrary
object distributions via the adaptive grid structure derived
from the grid file [28]. It applies lazy insertion and deletion
to handle frequent updates to the locations of continuously
moving objects. Lazy insertion can reduce the update I/Os
by adding an additional memory-resident layer over the
disk index. The incoming updates are stored in the mem-
ory and then are lazily flushed into disk in batch. Thus,
multiple updates are reduced to only a single disk update.
The lazy deletion can reduce updates by avoiding delet-
ing single absolute entry out of the index immediately. The
GPR-tree is a hybrid of grid partitioning and R-tree for
indexing moving objects on fixed networks. These work
by dividing the network space into grids of different size
and indexing trajectories in each grid. The Grid-Quadtree
is a cyclic-translation-based index that queries location
translations.

Like the grid based indexes, the quadtree, octree and
hex tree are also space partition access methods, which are
hybrids of grid and tree. As mentioned in Sect. 1, these trees
may be unbalanced due to the non-uniform distributions of
spatio-temporal data. In addition, most of the movement data
are updated continuously. The depth of the tree uncontrolled
by algorithm may seriously reduce the performance of the
tree. This means the quadtree, octree and hex tree cannot be

effectively used as spatio-temporal access methods. It is our
intention to propose the decomposition tree (D-tree) to inte-
grated binary tree, quad tree, octree, hex tree to resolve this
problem via a virtual structure.

3 Decomposition and index structure of D-tree

The D-tree is a space partitioning access method for move-
ment data. Movement data are most commonly represented
as a collection of spatial pointswith time stored as an attribute
[2]. Amore formal definition ofmovement data as adopted in
this paper is a collection {Mt} of t = 0,…,n ordered records,
each comprising the tuple 〈ID, T, S, A〉, where ID is a unique
object identifier, T is a non-duplicated sequential time stamp,
S are spatial coordinates, and A are the attributes of Mt. The
basic idea is to manage this kind of moving objects by a
virtual index structure that relies on a multiple binary space
partitionmethod and an encodingmethod. Given that a space
is d-dimensional; our region of interest is a d-dimensional
rectangle. Our main proposal is to recursively decompose
the basic rectangle into 2d smaller sub-rectangles. So accord-
ing to this, a d-dimensional decomposition tree (D-tree) will
divide the basic rectangle into 2d sub-rectangles in which
each sub-rectangle has the same volume. If we give a unique
integer to represent each sub-rectangle, then we need an inte-
ger which is composed of d binary bits at least. Assume
that the integer code of the basic rectangle is 1, and if d
is equal to 1, then the two sub-rectangles codes are two
binary integers 10 and 11, if d is equal to 2, the four sub-
rectangles codes are four binary integers 100, 101, 110, and
111, and if d is equal to 4, there will be 16 sub-rectangles,
and their codes are 16 binary integers from 10000 to 11111,
or from 0x10 to 0x1f in base 16. Each sub-rectangle can also
be divided by this criterion, for instance, the sub-rectangle
0x10 can be divided into 16 smaller sub-rectangles whose
integer codes are from 0x100 to 0x10f in base 16. If the
partition goes on, a tree will be constructed and each node
of the tree will have a unique integer code. Therefore we
employ a unique integer code on representing a node and
can easily calculate the range of the node via this integer
code.

For example, if the range of the one-dimensional basic
rectangle is [0,256] and there are 7 one-dimensional points,
a, b, c, d, e, f, g distributing in the range [0,256] as shown
in Fig. 1, according to the above-mentioned decomposition
criterion, a binary tree will be formed, shown in Fig. 2. We
can store this tree as a table, shown in Table 2. Because the
range of each node can be calculated from the integer code
in real time, there is no necessity to store it in memory or
disk.

According to the decomposition criterion, it is easy to
extend the D-tree from one to four or higher dimensions.
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Fig. 1 An example of
one-dimensional decomposition
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Fig. 2 An example of one-dimensional D-tree

Table 2 An example of one-dimensional D-tree

Integer codes of leaves Range Moving points

Binary format Decimal format

10 2 [0,128] a, c

111 7 [192,256] e

1101 13 [160,192] f

11000 24 [128,144] b, d

11001 25 [144,160] g

When the dimensions is four, the D-tree is a virtual hex tree
with index records in its leaf nodes containing an integer code
and some pointers referring to moving objects and, hence
may be unbalanced like the virtual tree shown in Fig. 3. The
D-tree can be disk-resident or in-memory. If the D-tree is

disk-resident, each leaf node corresponds to a disk page; oth-
erwise it will correspond to an array of pointers referring to
moving objects in memory. Therefore the D-tree cannot be
only an in-memory tree, but also a disk-resident tree. The
structure is designed so that a spatio-temporal query only
requires visiting the unique integer code of each leaf. The
index is dynamic, and insertion and deletion can be inter-
mixed. Each leaf is in the form

(LEAF-CODE, ENTRY-ARRAY)
Where LEAF-CODE is an integer number representing

the leaf node, ENTRY-ARRAY is array of moving objects’
entries which are contained in the rectangle represented by
the LEAF-CODE. Each entry in the ENTRY-ARRAY repre-
sents a moving point, and it is in the form as following:

(TRJID, PNT-POINTER)
Where TRJID is an identifier of a trajectory which con-

tains the moving point, PNT-POINTER is a pointer referring
to the moving point or an address from which the mov-
ing point begins to be stored when D-tree is a disk-resident
tree. In order to find entry fast, the leaf nodes are contained
in a hash map whose key is the LEAF-CODE, a unique
integer.

An example of a four-dimensional tree is shown in Fig. 3,
the root node 0x1 are divided into 16 sub-rectangles identified
from 0x10 to 0x1f. If there are no data in those sub-rectangles
except 0x10, 0x11, 0x18, 0x1a and 0x1f, we just need to
mark these five sub-rectangles. Because there are too many
spatio-temporal objects contained in nodes 0x10 and 0x18,
these two nodes should be divided again so that the depth of
the tree increases and these two nodes become two virtual
nodes which should not be stored in the hash map. If there
are still too many spatio-temporal objects in 0x18b, it should
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Fig. 3 An example of
four-dimensional D-tree
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be divided, and do on until each leaf node contains a suit-
able number of spatio-temporal objects. The tree is virtual
and do not exist in memory. The hierarchical relationships of
the tree are implicated by the integer code of each leaf node.
The only existing is the hash map containing leaf nodes.
As we know that the node number of a full balanced hex
tree whose depth is 4 is equal to 4369. However the exam-
ple we present only has 9 nodes stored in the memory. That
is one of the reasons why the D-tree may be efficient. The
above description presents the basic data structure of the D-
tree. We will present some key algorithms of D-tree in next
section.

4 Algorithms of D-tree

Assume that the dimension of the basic rectangle is _dimen-
sions (because our test data set in this paper is four-
dimensional, the default value is 4), and the basic rectangle
is _basicrectangle. Themaximumnumber of spatio-temporal
objects contained by each leaf is _maxobjects. The current
depth of the tree _depth, and the hash map containing leaf
nodes is _hashmap. In addition, the current time of the D-tree
is _currenttime and the current entries of D-tree are _cur-
rententries. These two are for supporting predictive query.
They are the global variables of the following algorithms we
will discuss.

Because the D-tree is a virtual tree and its hierarchi-
cal relationships are implicated by the integer codes, below
we describe some initial algorithms for the integer code
and decomposition method. If the integer code of the cur-
rent node is _code, its parent node’s integer code should be
_code�_ dimensions (shift right _ dimensions bits). If _pre-
fix and _code are two integers codes, and _prefix is equal to
_code�x (shift right x bits, x is a multiple of _ dimensions),
then the integer code _prefix is one of the prefixes of _code.
This algorithm is for how to judge whether _prefix is one of
the prefixes of _codes.

Algorithm 1: judge whether _prefix is one of prefixes of _code
Input:  _prefix: Integer, _code: Integer
Output: _result: Boolean
{

if ( _prefix is not less than _code) return False;
while ( _code is not equal to zero)
{

shift _code right _ dimensions bits;
if ( _code is equal to _prefix )  return True;

}
return False;

}

The decomposition strategy is the basic idea of this vir-
tual structure. If the current rectangle is _rectangle, it may
be divided into 2_ dimensions sub-rectangles which index
is from 0 to 2_ dimensions-1. The decomposition strategy
makes sure that we can get anyone of the sub-rectangles of
the current rectangle according to an index valuewhose range
is between 0 and 2_dimensions-1.

Algorithm 2: decompose the rectangle _rectangle
Input:  _ rectangle: Rectangle, _index: Integer [0, 2_dimensions-1]
Output: _result: Rectangle
{

for ( i is an integer from 0 to _dimensions-1)
{

divide the range on the ith axis of _rectangle into two parts, _lowrange and 
_highrange;
if ( ith bit of _index is equal to 1)

the range of _result on the ith axis equals _highrange;
else     

the range of _result on the ith axis equals _lowrange;
}

}

The key of D-tree is that an integer code can represent a
rectangle or a node of the D-tree. Hence we need algorithms
for setting up the relationship between these two. Algorithm
3 shows how to calculate a rectangle according to an integer
code. And Algorithm 4 is the inverse operation of Algorithm
3, which calculates the integer code of a node to which a
rectangle or a point belongs at the given depth of the tree.
This algorithm can handle two types of input data, rectangles
and points.
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Algorithm 3: calculate rectangle according to an integer code
Input:  _code: Integer 
Output: _result: Rectangle
{

if ( _code is equal to 1)  _result equals the basic rectangle and return;
let _stack be a stack;
let _oldcode be _code;
while (_code is equal to zero)
{

push _code – (_code>>_dimensions)<< _dimensions  into _stack;
let _code be _code>>_dimensions;

}
restore _oldcode to _code;
pop the top number of the stack, let _index be the top number, use Algorithm 2 to 
decompose the basic rectangle recursively until the stack is empty;
let _result be the last sub-rectangle and return;

}

Algorithm 4: calculate the integer code of a node to which a rectangle or a point 
belongs at the maximum depth of the tree

Input:  _rect: Rectangle, _depth: Integer
Output: _code: Integer  
{

let _temprectangle be _basicrectangle;
let _code be 1;
let i be 1;
while (i is less than _depth)
{

for ( j is an index from 0 to 2_dimensions-1) 
{

call Algorithm 2 to decompose _temprectangle  and get the jth sub-rectangle, 
if the sub-rectangle encloses _rect, let _temprectangle be the sub-rectangle, 
shift _code left _dimensions bits and plus j;

}
i increase 1;

}
}

4.1 Insertion algorithm

Inserting a moving point into a D-tree is a procedure accord-
ing to Algorithm 5. We first descend the tree from the root
to the virtual leaf at maximum depth containing the mov-
ing point, and then retrieve the integer code of the virtual
leaf. This is done arithmetically by Algorithm 4 without disk
access. The leaf found is called ‘virtual’ because that branch
of the tree may have depth less than the maximum depth, or
it may not exist in the hash map. According to the decom-
position criteria, the moving point for insertion must belong
to one of the nodes whose integer code is in the collection
containing the integer code of the virtual leaf and all the pre-
fixes of the integer code. If the hash map contains anyone
of the integer codes in the collection, we find the leaf node
represented by this integer code and push the moving point
into the leaf. If not, we add a leaf node to the hash map. The
integer code of this leaf node is the prefix with longest digits
of the virtual leaf code. At last we push the moving point for
insertion into this leaf. The Algorithm 5 is the insertion algo-
rithm. In this algorithm, when the D-tree is a disk-resident
index, all the insertions needing no splitting will be handled
in memory via a cached buffer, and the insertions will store
to disk only when the cached buffer is overflowing or there
are one or more node splits.

Algorithm 5: insert
Input:  _object: Moving point; _trjid: The ID of a Trajectory
Output:  
{

let _mbr be the minimum bounding rectangle of _object;
call Algorithm 4, get the integer code of a node which _mbr belongs to at the 
maximum depth of the tree, and let _code and _old_code be the code;
while ( _code is not zero)
{

find the code _code in the hash map _hashmap;
if ( find a node which integer code is _code)
{ 

judge whether the number of spatio-temporal objects contained by this 
node is less than _maxobjects, if it true, push _object into this node, else 
push _object into this node and split this node;

}
else
shift _code right _dimensions bits;

}
let _code be _old_code;
calculate the depth of node represented by _code , let _tempdepth be the depth 
value;
add a leaf node which integer code is the prefix with longest digits of _code, and
push _object into this node;
if _currenttime is older than the time of this moving point, let _currenttime be the 
time of this moving point;
if the time of _object is newer than the time of the second last point of the trajectory 
_trjid , replace the last two entry pointers of the trajectory _trjid in _currententries;

}

Algorithm 6: split node
Input:  _node: Leaf node of D-tree
Output:  
{

let _mbr be the minimum bounding rectangle of _node;
let _code be the integer code of _node;
call Algorithm 2, decompose _mbr into 2_demensions sub-rectangles;
let i be an integer from 0 to 2_demensions-1;
traverse all the spatio-temporal objects in the nodes, if an object is enclosed by ith 
sub-rectangle, then push it into the node which integer code is equal to
_code<<(_demensions+i), and push this node into the hash map _hashmap;
if all of the objects are been pushed into a same sub-rectangle, call split algorithm 
recursively; 

}

In order to support the efficient predictive query for the
future data, we need to store some additional information in
the process of insertion. The first is the current time of the
D-tree, _currenttime. When _currenttime is older than the
time of the moving point for insertion, we let _currenttime
be the time of the moving point for insertion. The second
is the last two moving point of each trajectory. We use two
entry pointers referring to them. In the predictive query, we
use these two to calculate the current velocity and direction of
the last point in a trajectory. Following this, we can calculate
some future positions of this trajectory.

When the number of themoving points contained by a leaf
is larger than themaximumnumber permitted, we should call
the split algorithm to split this leaf.At first, we decompose the
rectangle of the node for splitting, test all the moving points
contained in the node which sub-rectangle covers them and
push them into each sub nodes. There is an exception that
all the moving points are pushed into a same sub node. In
this case, we need to recall the split algorithm recursively.
Algorithm 6 presents the splitting algorithm.
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These two algorithms build up the insertion operation. For
some other spatio-temporal indexes, such as TPR-tree and
STCB+-tree, the data inserted should be ordered by time.
While for the D-tree, the data inserted are not necessary to
be ordered.

4.2 Query algorithm

There are several query types for moving objects. In this
paper, they are classified into five types summarized from
the literature reviewed here [7,19,22].

Point query: Q = (t, p) specifies a spatial position p at a
particular time t. The query retrieves all the trajectories are
near to the spatial position p at the time t.

Timeslice query: Q = (t, r) specifies a multi-dimensional
spatial rectangle r at a particular time t. The query retrieves
all the trajectories that are overlapped by the spatial rectangle
r at the time t.

Spatialslice query:Q= (ts, te, p) specifies a spatial position
p during a particular time interval [ts, te]. The query retrieves
all the trajectories that are near to the spatial position p during
a particular time interval [ts, te].

Windowquery:Q= (ts, te, r) specifies amulti-dimensional
spatial rectangle r that is valid during a particular time inter-
val [ts, te]. The query retrieves all the trajectories that are
overlapped by the spatial rectangle r during a particular time
interval [ts, te].

Moving query: Q = (ts, rs, te, re) specifies the multi-
dimensional trapezoid obtained by connecting the multi-
dimensional spatial rectangle rs at time ts to the multi-
dimensional spatial rectangle re at the time te. The query
retrieves all the trajectories are overlapped by the trapezoid.

According to the time arguments provided, each of the above
queries can be classified into the queries for past, present,
and future data, or all data points. When the time argument
provided is newer than the current time of the D-tree, the
query is a predictive query.While the time argument inputted
is older than the current time of the D-tree, the query is a
historical query. So there are 10 types of queries in total. The
D-tree is designed for indexing the data at all points in time.

According to the classification mentioned above, from
Point Query to Moving Query, the constraints on the queries
become less than their previous types. The Window Query
generalizes the Point Query, Timeslice Query and Spatial-
slice Query, and is itself a special case of the Moving Query.
Because multi-dimensional trapezoid is not convenient for
overlapping computing, we let r = rs + re and apply a Win-
dow Query to approximately simulate the Moving Query in
this paper. So we only discuss the Window Query algorithm
of D-tree here.

The basic idea of the query algorithm is replacing rec-
tangle intersection computation with the integer shifting
computation on the integer codes of leaves because each
integer code is corresponding to each rectangle covered by a
virtual node or a leaf. If the input parameter is not a rectangle
but a point, they are similar due to the Algorithm 4. At first,
we call Algorithm 4 to calculate the integer code of a node to
which a rectangle belongs at the maximum depth of the tree.
Then we add three types of leaf nodes to a list. The first type
is composed of all the leaf nodes whose integer codes are the
prefixes of the integer code.The second is the leaf nodewhose
integer code is equal to the integer code. The last is composed
of all the leaf nodes in which the integer code is always a
prefix of their integer codes. Adding these three types of leaf
nodes to a list changes the tree structure to a linear structure
without relationships between every two elements of the list.
It is the reason why the query can be a parallel algorithm eas-
ily. At last, we parallel traverse all leave nodes in the list and
compare each leaf’s integer code to the integer code of the
node to which the query rectangle belongs, if the two integer
codes are equal or the former is a prefixof the latter, add all the
moving points of the leafwhich overlap the query rectangle to
the result, else we calculate the rectangle of the leaf node and
add each moving point of the leaf node which overlaps the
query rectangle to the result. The query algorithm is shown in
Algorithm 7.

Algorithm 7: window query 
Input:  _queryrectangle: Rectangle
Output:  _result: Moving points sorted by their TRJID and times.
{

call Algorithm 4 to calculate the integer code of a node which _queryrectangle 
belongs to at the maximum depth of the tree, and let _code be this integer code;
add all leaf nodes in the _hashmap whose integer codes are prefixes of _code to a 
list _list;
if the leaf node whose integer code is _code exists in _hashmap , add it to _list;
add all leaf nodes in the _hashmap whose integer codes have a prefix which is equal 
to _code to the _list;
parallel traverse all leaves in _list, assume the current leaf node is _node;
{

let _nodecode be the integer code of _node;
if (_nodecode is equal to _code or is a prefix of _code)
{

traverse all moving points in this node, each moving point which overlaps 
_queryrectangle should be added to _result;
sort the _result by TRJID and time;
return;

}
if (_code is a prefix of _nodecode)
{

call Algorithm 3, let _rect be the rectangle of _node;
if (_queryrectangle encloses _rect) 
{

add all the objects of this leaf node to _result;
}
else if ( _queryrectangle overlaps _rect )
{

traverse all the objects in this node, if the rectangle of an object overlaps 
_queryrectangle, push this object into _result;

}
}

}
sort the _result by TRJID and time;

}
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Algorithm 7 is designed for querying the past data and
the present data. When time arguments is newer than the
current time of the D-tree, the entries of the last two
points of all the trajectories are found in _currententries,
and then judge whether the future points will appear in
the specific future time interval and be overlapped by the
rectangle argument input. Because the number of trajec-
tories is always much less than the number of points on
the trajectories, we employ a small buffer, _currententries,
to store all the pointers of those entries of all the last
two points can improve the performance of predicative
queries.

4.3 Deletion algorithm

AD-tree is a dynamic index structure, so it supports deleting
anyone of moving objects in the D-tree. At first, we calcu-
late the integer code of a node to which the moving object
for deletion belongs at the maximum depth of the tree. An
integer code collection is made up of this integer code and
all of its prefixes. The integer code of the leaf node contain-
ing the moving object for deletion must be in the collection.
Algorithm 8 is for the deletion.

Algorithm 8: delete
Input:  _object: Moving Object for Deletion
Output:  
{

let _mbr be the minimum bounding rectangle of _object.
call Algorithm 4, get the integer code of a node to which _mbr belongs at the 
maximum depth of the tree, and let _code be the code;
find _code in the hash map _hashmap;
while ( _code does not exist in _hashmap) 
{

shift _code right _dimensions bits;
find _code in the hash map _hashmap;

}
get the node which integer code is _code, and remove _object in this node;
if the node is empty, remove it from _hashmap;
if _object is in _currententries, remove it from _currententries;

}

4.4 Extend algorithm

The insertion algorithm mentioned in 3.1 has a hypothesis
that all the moving objects for insertion are contained in
the basic rectangle. As time moves on, it is possible that
the moving object for insertion may be out of the range
of the basic rectangle. In this case, we should extend the
basic rectangle of the virtual tree. Because there are not
real rectangles storing in the virtual tree, the only thing
we need to do is to change the integer code of each leaf
node. Algorithm 9 shows the process of the extending
operation.

Algorithm 9: extend 
Input:  _object: Moving Object for Insertion
Output:  
{

calculate the minimum parent rectangle of the virtual root node, in which the 
minimum bounding rectangle of _object is contained;
let the _basicrectangle be the minimum parent rectangle;
calculate the new integer code of the old virtual root node in the new virtual tree;
change the first digital ‘1’ of the integer code of all the leaves into the new integer 
code of the old virtual root node;

}

5 Experimental evaluation

In order to evaluate the D-tree, the four-dimensional moving
point data are extracted for studies, and the spatio-temporal
index structures STCB+-tree [19], which is superior to the
TPR-tree [7] in both space cost and query performance, is
chosen for comparison studies.

5.1 Space cost evaluation

The following parameters are used in our space cost evalua-
tion.

M: memory size;
S: the total number of the moving objects;
N: the number of the non-leaf nodes in a tree index;
L: the number of the leaf nodes in a tree index;
C: the maximum capacity of each node;
D: the depth of the tree;
d: the size of a double float number;
p: the size of a pointer;
i: the size of an integer;
K: the dimension of movement data

To preserve the four-dimensional moving point data, the
STCB+-tree requires four CB+-trees, one TCB+-tree and
three SCB+-trees. Every entry preserved in the nodes of a
CB+-tree includes a pointer referring to a sub-tree and a key
whose type is double float. Except that, each leaf in a CB+-
tree needs two links to its previous andnext sibling leaf nodes.
Thus, the total space cost can be calculated by the following
formula:

M = N ∗ (d + p) ∗ C + L ∗ (d + 3 ∗ p) ∗ C

+ 4 ∗ S ∗ (d + p) (1)

Different to the STCB+-tree, the D-tree proposed in this
paper has no inner node and all the nodes in the tree are
leaf nodes. Therefore the parameter N is equal to zero. Each
entry of a leaf node stores a pointer referring to a moving
point and an integer identifying a trajectory. Each leaf node
is composed of an integer code and some entry pointers for
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which the maximum number is C. Because the bounding rec-
tangle of each leaf can be calculated by the integer code, it
is not necessary for the leaf node. Thus, the total space cost
can be calculated by the following formula:

M = L ∗ (i + p ∗ C) + S ∗ (p + i) (2)

In the C/C++ language, the size of an integer is often equal
to the size of a pointer, so the formula (2) can be written as
following:

M = L ∗ p ∗ (C + 1) + 2 ∗ S ∗ p (3)

If the moving objects are not moving point data or trajec-
tories but complex spatio-temporal objects, such as moving
regions or moving solids, the D-tree will employ a bounding
rectangle to represent the objects. In that case, we call the D-
tree for the Complex D-tree (CD-tree). The total space cost
can be calculated by the following formula:

M = L ∗ p ∗ (C + 1) + S ∗ (p + 8 ∗ d) (4)

If we let the minimum object number in a node be M/2,
because each CB+-tree of the STCB+-tree is a balanced tree
and there are K CB+-trees, L is at least

⌊
S∗K
C

⌋
and we can

approximately evaluate the parameters D and N via the fol-

lowing formulae:

⌈
logM/2 S

⌉ − 1 ≥ D ≥ ⌊
logM S

⌋ − 1 (5)

N ≈
D∑
j=0

C j (6)

To evaluate the space utilization of STCB+-tree andD-tree in
the experiment, we count the node number in each index and
then use these formulae to calculate the space cost of each
index. A test environment was established using a computer
with the configuration of a 2.53 GHZ Intel(R) Core(TM)
Duo CPU, 2 GB RAM. The test data is a simulated four-
dimensional dataset. The simulated three-dimensional spatial
range is from [0, 0, 0] to [10000, 10000, 10000], and the
velocity range is from 0 to 1 m/s in each axis. We randomly
generated from 100,000 to 1,000,000 objects and tested the
space utilization and query performance of these three index
methods.

In order to keep the performance comparisonmanageable,
the maximum number of the objects permitted in one node
(the parameter C), is 128, and the minimum is 64. The space
cost comparison results amongD-tree, CD-tree, and STCB+-
tree are shown in Fig. 4. Because the D-tree is a virtual tree
without inner nodes, it means that the space cost of the D-
tree is not related to the parameter N and the parameter D.
Contrary to a virtual D-tree, the larger the number of the

moving objects is, the greater the depth of a real tree is.
According to formula (6), the number of the inner nodes of
a real tree, the parameter N, will increase dramatically with
the growth of the parameter D, the depth of the tree. That is
why the D-tree economizes on space utilization comparing
to STCB+-tree.

5.2 Query performance evaluation

Because the window query can stimulate the point query,
time slice query, spatial slice query, and the moving query
as mentioned in Sect. 4.2, we mainly study and the window
query. The experimental data is the test dataset mentioned in
Sect. 5.1.

The whole range of the test data is a four-dimensional
rectangle, which we called it the basic rectangle BR. The
query rectangle QR is the input parameter of awindow query.
The Fig. 5 shows the relationship between query time cost
and the size of query rectangle. The axisX represents the ratio
of each side length of QR and BR in each dimension. The

Fig. 4 Space cost comparison

Fig. 5 Query performance comparison over query range
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Fig. 6 Query performance comparison over data size

ratio, noted as QR/BR, is from 0 to 10% and its step is 0.2%.
At each point on the axis X, there are 100 query rectangles
(QRs) which distribute randomly in the basic rectangle (BR).
Each point on the axis Y represents the total query time cost
of the 100 queries based on the related 100 query rectangles.
The results in Fig. 5 show that thewindowquery performance
of the D-tree exceeds the query performance of the STCB+-
tree. Generally, the query time cost will increase while the
range of query rectangle becomes larger. This trend on the
STCB+-tree is very obvious, however this trend on D-tree
is not obvious. It implicates that D-tree adapts to not only
the small range queries but also the large range queries. The
Fig. 6 shows the relationship between the average query time
cost and the data size. The axisX represents the number of the
moving points and the axis Y represents the average query
time cost. It is obvious that average query performance of
D-tree is superior to STCB+-tree’s while the data size or the
number of moving objects becomes larger and larger.

The Figs. 5 and 6 show that the D-tree is not much sensi-
tive to the increment of the data size and the range of query
rectangle comparing to the STCB+-tree. All the test results
demonstrate that the D-tree is superior to the STCB+-tree
not only in the space cost but also in the query performance.

6 Conclusion

Although computer memory capacity continues to grow and
become cheaper, the actual main memory of a computer
for managing increasingly large movement data sets is still
limited. Indexing strategies for reducing and/or optimiz-
ing memory utilization for spatio-temporal data are there-
fore highly relevant. We presented a new access approach,
named the Decomposition Tree (D-tree), for handling multi-
dimensional movement data. Comparing with STCB+-tree,

the smaller memory utilization and more efficient query per-
formance of the D-tree are the major contributions of our
study. Because D-tree is a discreet linear structure, it is easy
to be implemented in parallel. Therefore, it is suitable for
using in cluster computing for movement big data access.
Further research will include optimizing the D-tree for com-
plex moving objects, called Complex Decomposition Tree
(CD-tree), as well as the integration of the D-tree for trajec-
tory and the CD-tree.
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