
Cluster Comput (2015) 18:1229–1249
DOI 10.1007/s10586-015-0473-5

Competition-based failure-aware scheduling for High-Throughput
Computing systems on peer-to-peer networks

Carlos Pérez-Miguel1 · Alexander Mendiburu1 · Jose Miguel-Alonso1

Received: 4 February 2015 / Revised: 6 July 2015 / Accepted: 20 July 2015 / Published online: 28 July 2015
© Springer Science+Business Media New York 2015

Abstract In a High-Throughput Computing (HTC) sys-
tem, system failures and churning pose an important perfor-
mance limitation. The time used by tasks running in a node
that suddenly fails (or abandons the system) constitutes a
waste of resources. These aborted tasks are usually reinserted
into the system for automatic re-execution, causing addi-
tional overheads. This problem has been partially addressed
via fault tolerant techniques such as checkpointing and repli-
cation. However, these solutions cause additional overheads.
In this work, we present several failure-aware scheduling
policies that aim to reduce the waste of resources by means
of mechanisms to match the submitted tasks with the best
node to run it, taking into consideration the (predicted) dura-
tion of the task and the (expected) survival time of the nodes.
Experimentation through simulation, in the context of an
HTC system built on top of a peer-to-peer network, confirms
that our policies, compared to several state-of-the-art alter-
natives, result in a more effective distribution of workload
whose consequence is a higher task throughput.

Keywords High-Throughput Computing · Peer to peer
systems · Failure-aware scheduling

B Carlos Pérez-Miguel
carlos.perezm@ehu.es

Alexander Mendiburu
alexander.mendiburu@ehu.es

Jose Miguel-Alonso
j.miguel@ehu.es

1 Intelligent Systems Group, Department of Computer
Architecture and Technology, School of Computer Science,
University of the Basque Country UPV/EHU, Donostia-San
Sebastian, Spain

1 Introduction

High-Throughput Computing (HTC) systems are distributed
platforms designed to share large amounts of computational
resources among a vast number of users, which use the
system to execute very different types of applications. In
contrast with High-Performance Computing (HPC) systems,
where the objective is to minimize the running time of a
certain parallel task, HTC systems try to maximize the num-
ber of independent tasks executed per unit of time (that is,
the task throughput). Some examples of HTC systems are
HTCondor [1] or BOINC [2], designed to join together the
computing resources of thousands of idle desktop computers.

HTC systems are usually built around a central queue, in
which submitted tasks await until a central scheduler decides
to assign resources to them. Tasks are then executed by the
assigned worker node. These tasks are considered to be inde-
pendent and, thus, executable in any order—although some
sort of first-in-first-out order is commonly expected.

This queuing system, the entry point of the HTC system
for users and tasks, resides in a compute node in charge of
management duties. It can easily become a point of failure
and a limit for the scalability of the system. In [3] we defined
anHTC system distributed over Cassandra [4], a peer-to-peer
(P2P) storage system,with the intention of circumventing the
failure and scalability problems of centralized HTC systems.
In that HTC-P2P proposal, each node executes an instance of
Cassandra, using it to build a logically shared but physically
distributed queue for submitted tasks. Each node also imple-
ments its own scheduler, which accesses the queue to select
suitable tasks to run in the node. A (relaxed) first come first
served (FCFS) is the default scheduling policy, but others
can be implemented. The purpose of this paper is precisely
to present and evaluate additional, failure-aware scheduling
policies.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-015-0473-5&domain=pdf

1230 Cluster Comput (2015) 18:1229–1249

Taking advantage of the fault tolerance of Cassandra, the
HTC-P2P system is highly reliable: even if part of the data
stored in it is not accessible at a certain moment, nodes can
still use the system to insert and extract (and execute) tasks.

Our original HTC-P2P proposal did not address an issue
that also affects centralized HTC systems: the waste of
resources derived from worker nodes leaving the system,
due to failures or churning. Note that, for scheduling pur-
poses, there is no difference; simply, a node is not available.
We will use the terms “failed node” and “failure” to sim-
plify the discussion. The tasks being executed in the failed
node need to be resubmitted to the system for re-execution,
causing additional (scheduling) overheads, and affecting the
responsiveness of the system from the point of view of the
user. The extent to which overheads related to re-executions
are important depends very much on the stability of the com-
puting resources used to implement the HTC system. In a
well managed data-centre, these overheads may be negligi-
ble. However, in large-scale systemswith thousands of nodes
executing complex applications formed by a large number of
interrelated tasks, even a single failure affecting a task may
cause significant delays. Actual HTC systems, such as the
Big Data frameworks Hadoop [5] and Spark [6], use some
common approaches to address this problem: checkpointing
and task replication.

Checkpointing is a technique that permits a running task
to periodically store snapshots of its status somewhere in the
system. If the node in which it runs fails during the execution
of the task, another worker can resume the execution from
the last available check-point. Checkpointing does not elim-
inate the waste of resources entirely: the CPU cycles used
since the last snapshot are still thrown away. Additionally,
this technique requires space to store the snapshots.

Task replication consists of executing several simultane-
ous replicas of the same task in different nodes. If one of
them fails, the execution can hopefully succeed in one or
more of the remaining replicas. This mechanism improves
system responsiveness from the point of view of the users
submitting tasks, but the overhead to pay in terms of wasted
resources is severe.

These two techniques try to minimize the impact of a
failure in a node while it is executing a task. Note that the
volume of wasted resources increases for long-lasting tasks
and, therefore, the issue is not severe for short tasks. Failure-
aware scheduling tries to characterize tasks and nodes in
order to find appropriate task-to-node matches. If we know
that a node is very stable, it would be the preferred choice for
long-lasting tasks. Other nodes, more prone to fail, could be
used for short tasks. The scheduler canmake this kind of deci-
sions, although there is a price to pay in terms of scheduling
overheads: it takes longer to wait for the “right” node to run
a task, instead of using the first available one. However, the
number of aborted executions should be reduced. Note that

failure-aware scheduling techniques can be combined with
checkpointing and task replication, in order to build an HTC
system in which the effects of node failures are minimized.

The main contributions of this work are the proposal and
evaluation of two failure-aware scheduling techniques, based
on the idea of competition amongworker nodes using a node-
to-taskfitness score.Wehave implemented and tested them in
the context of our HTC-P2P system [3], obtaining important
benefits in terms of system utilization and delays experienced
by tasks. However, we want to remark that our proposals are
perfectly applicable to centralized HTC systems.

In summary what we propose is to build, for each node, a
failure model that characterizes its expected lifetime. When
selecting the tasks to run, the scheduler (remember that
each node has its own scheduler) will prioritize those whose
duration fit into the node’s predicted survival time. As sev-
eral nodes can contend for the execution of the same task,
a competition among nodes, based on a certain score, is
implemented to obtain the best task-to-nodematch.And opti-
mization of this process is to schedule simultaneously groups
of tasks. With these proposal, we have been able to achieve
a 20% increase in system utilization, taking as reference
the (failure-agnostic) FCFS scheduling policy, in scenarios
where there is enough diversity of nodes in terms of reli-
ability. Our proposals are also competitive when compared
against other failure-aware scheduling algorithms proposed
in the literature.

The remaining of this paper is structured as follows.
Section 2 presents the related work about scheduling in
the presence of failures. In Sect. 3, we detail the different
schedulingpolicies presented in thiswork. InSect. 4we intro-
duce the score functions used by these scheduling policies. In
Sect. 5 we describe two failure-aware algorithms taken from
the literature that will be used for comparison purposes. In
Sect. 6 we explain the environment used in our simulation-
based experiments. In Sect. 7 we show and discuss the results
of the experiments. We end with some conclusions and plans
for future work in Sect. 8.

2 Related work

In the literature we can find several works that study the
scheduling problem in HTC systems in the presence of fail-
ures, trying to maximize the fault tolerance of the system.
Authors of [7] propose several resource provisioning tech-
niques for cloud environments that use checkpointing to
minimize the effects of failures in applications running in
supervised clouds. In [8], Anglano et al. propose WQR-FT,
a fault tolerant variation of the WorkQueue with Replication
(WQR) scheduling algorithm forHTC systems [9] that, using
replication and checkpointing, aims to reduce the effects of
failures. Also, in [10] Bansal et al. propose a modification

123

Cluster Comput (2015) 18:1229–1249 1231

of WQR-FT where the number of replicas of each task is
selected depending on the ratio of tasks successfully executed
in the system: if most tasks are completed, less replicas are
launched per task.

Note that the proposals described in the previous para-
graph are designed to deal with the consequences of a failure,
and can be classified as fault tolerant scheduling techniques.
Our focus is in failure-aware techniques that try to minimize
the number of aborted tasks derived from inadequate schedul-
ing decisions. These approaches can complement each
other.

Supercomputers for HPC are large-scale systems, man-
aged by a central scheduler, in which worker nodes can fail.
Authors of [11] and [12] present and evaluate scheduling
proposals in which the system partition (collection of nodes)
in which a parallel task will run is selected by taking into
consideration the node’s resilience, computed from failure
models of nodes. A limitation of this work is that the exper-
iments are based on failure logs, and future information is
used to compute resilience. Additionally, they do not con-
sider scheduling in groups.

Several works describing HTC systems for grids, includ-
ing desktop grids, propose failure-aware schedulers, but they
differ in the way the reliability of nodes is modelled. In [13]
each node is assigned a failure rate computed by measuring
the number of tasks successfully completed. Authors of [14]
propose a modification of WQR-FT that builds a per-node
failure model using the past on-line times, together with a
predictionmethod described in [15]. The desktop grid system
described in [16] characterizes the cyclic behaviour of par-
ticipating nodes (availability) usingMarkov models. Finally,
several works [17–19] model nodes’ behaviour using his-
tograms. The information provided by these models is used
to avoid sending tasks to nodes that may not complete them,
but the possibility of scheduling in groups to find good task-
to-node matches is not part of these proposals.

Finding good task-to-nodematches requires using estima-
tions of the duration of tasks, which are normally provided by
the submitting users. The use of these estimations makes our
proposals fit into the group of knowledge-based techniques,
while others are knowledge-free. There is a substantial body
of literature analysing knowledge-based scheduling for HTC
with focus on fault tolerance, which includes some works
cited before: [7,11–13,16–19]. Knowledge-free algorithms
do not consider information about the task, and use replica-
tion in order to avoid failure-prone (or, simply, slow) nodes.
This results in severe waste of resources because, from all
the replicas executing a task, only the one finishing first is
actually useful, and the remaining ones will be cancelled.
This wasted time could have been effectively used with other
tasks, or the corresponding energy could have been saved by
switching off idle nodes. Examples of this kind of algorithms
are WQR [9] and its variations [8,10,14].

The weakest point of knowledge-based techniques is
precisely the need of user-provided estimations about the
resources required by submitted tasks, namely, the expected
duration (we will use the term “length”). These estimations
can be very imprecise in some contexts: a user can hardly
known a priory the length of a task whose behaviour depends
on the nature of the input files and parameters, not to mention
the characteristics of the particular node in which it will run.
In this work we will ignore the latter effect, assuming that all
nodes are homogeneous, or that it is possible to apply a sort
of per-node “adjustment factor” of the task length.

Authors of [20] argue that users do not provide usu-
ally accurate estimates of the length of their tasks, but
there is a strong correlation between user estimations and
actual lengths. Therefore, tasks with long estimated duration
should, as a general rule, be assigned to stable nodes of the
system in order to reduce the risk of being aborted before
completion. Similarly, short tasks may be sent to less table
nodes. We will discuss in Sect. 7 to what extent the accuracy
of user-provided estimations affects the performance of our
knowledge-based, failure-aware scheduling proposals.

From the failure-aware scheduling techniques analysed in
this section, we will use some knowledge-based ones and
some knowledge-free ones for comparative purposes. They
will be further explained in Sect. 5.

3 A proposal for failure-aware scheduling in an
HTC-P2P system

We have developed an HTC system over a P2P network
(see [3]) that implements the scheduling process in a com-
pletely distributedmanner. Nodes collaborate tomaintain the
structure of the P2P network and, thus, the data stored in the
system—including the queue where submitted tasks await.
This distributed but shared queue is implemented using Cas-
sandra. In this data-storage system, nodes can reach any point
of the system with a complexity of O(1) hops, so the time
required to access any item stored in this queue is constant,
regardless of the number of components (nodes) of the sys-
tem. Each node implements its own scheduler, that does not
take into consideration the properties of other nodes. How-
ever, different forms of coordination between nodes can be
implemented.

The HTC-P2P system can be modelled as a collection of
n identical nodes with independent schedulers. They share
a task queue Q, which is used by users to submit tasks, and
by nodes to choose the tasks to execute. In this work we also
consider that the task queue, and any other object stored in the
underlying P2P data storage, has a constant time access cost.
The task queue is the main mechanism used by the different
nodes to coordinate their actions. Each task j in Q has several
user-defined attributes, including the expected execution time

123

1232 Cluster Comput (2015) 18:1229–1249

(length), l j . As stated before, a per-node adjustment of this
length could be performed if nodes were not identical.

Although each scheduler is independent, they implement
a heartbeat mechanism to monitor the remaining nodes in
the system, in order to detect node failures and enable the
re-execution of aborted tasks. When a node detects a failed
partner, the task being executed by this failed node is can-
celled and reinserted into Q. Thismechanism is implemented
using the P2P storage system in which our HTC system is
based, so the cost of emitting a heartbeat is constant.

Over this shared queue, we can define several scheduling
policies, whose performance can be analysed using a collec-
tion of metrics. From the point of view of the system, the
most important metric in an HTC system is the task through-
put: the number of tasks per unit time that the system can
process. Given a fixed number of tasks, a related metric is
the make-span, or time required to process those tasks.

If we consider the individual behaviour of the nodes, the
most important metric is their effective utilization, that is, the
portion of the node’s on-line time that is effectively used to
execute tasks. When a node fails, the time used to process
aborted tasks (those initiated but not completed) is wasted
time. Note that the time used by a long task that had to be
aborted might have been useful time with a shorter task that
run until completion.

From the point of view of the tasks submitted to the sys-
tem, we are interested in measuring the waiting overheads:
the time spent in the queue (this is the waiting time), and
the time wasted in incomplete executions (this is the per-task
wasted time). Thewaiting time includes (1) a, typically short,
time used by the scheduler to run the resource management
algorithm and (2) a time that depends on the current utiliza-
tion of the system: time to execute tasks ahead in the queue,
time awaiting until free resources are available.

In the following sections we describe the scheduling algo-
rithms proposed for this HTC-P2P system, starting with the
baseline: the distributed version of FCFS that we used in [3],
which is a failure-agnostic and knowledge-free policy. Then
we discuss two failure-aware proposals that allow nodes to
compete for a given task, taking into account the estimated
task length and the expected survival time of the nodes. We
insist in that these algorithms are implemented by all nodes:
there is no central scheduler.

3.1 Distributed first come first served scheduling

When a node is free and willing to execute a task, it accesses
Q and gets the task at the head of the queue, executing it.
After completing the task, the node stores any resulting file
into the storage system and signals the completion to the
task’s owner. If Q is empty, the node sleeps for τs seconds
before retrying. This process is detailed in Algorithm 1.

Algorithm 1: FCFS scheduling

while true do
if size(Q) > 0 then

w := pop(Q);
execute(w);
store_results(w);

else
sleep(τs);

The main advantage of this policy is that the execution
order follows the insertion order. However, as it is failure-
agnostic, it allows a very unstable (failure-prone) node to
choose an inadequate task (a long one). Therefore, we expect
manyexecution attempts per task, until it is finally completed.

3.2 Competition scheduling

The re-executions of aborted tasks translate into wasted
resources (that could have been used in a more effective
manner) and also into longer response times (that generate
a negative perception of the system from the user’s view-
point). We propose a failure-aware scheduling policy that
tries to reduce re-executions. It is implemented by means
of a per-task competition between nodes, in which a score
function determines the winner node: the one that will run
the task. This score function is a per-node and per-task fitness
value that indicates the ability of a node to finish a certain
task. The score, thus, depends on the estimation of the length
of the task, which is provided by the user and is considered
exact, and the expected lifetime of the node. The algorithm is
sketched in Algorithm 2. A ready node selects the task at the
head of Q and computes its score for that task. This score is
used to enrol the node into a list of candidate workers for the
task. After τc seconds, each node interested in the task checks
the candidate list. The node with the best score removes the
task from the queue and runs it, while the remaining can-
didates abandon the competition. Note that, when the set of
candidates contains just one node, it will run the task, inde-

Algorithm 2: Competition scheduling

while true do
if size(Q) > 0 then

w := first(Q);
score := calculate_score(w);
inscribe_as_worker(w, score, nodeid);
sleep(τc);
if nodeid = best_scored_node(w) then

remove_from_queue(Q, w);
execute(w);
store_results(w);

else
sleep(τs);

123

Cluster Comput (2015) 18:1229–1249 1233

pendently of its score. Thus, a bad node-to-task assignment
is still possible. The algorithm is distributed as every node
runs it independently. The data storage is physically distrib-
uted too, although accessible to all nodes. Queue Q and the
list of possible workers for a task are required to enable the
synchronization among nodes.

An important property of this scheduling policy is that,
like FCFS, it respects the arrival order of tasks. However,
less re-executions are expected as tasks will preferably go to
the best nodes (how “good” a node is depends on the choice
of score, discussed in Sect. 4). This should translate into
increased system throughput and higher node utilization.

3.3 Competition scheduling in groups of tasks

Instead of considering for scheduling purposes just the task
at the head of Q, this proposal analyses the group with the
first G tasks in Q, for G > 1, looking for the task in the
group that better matches the characteristics of the available
nodes; see Algorithm 3.

A node ready to run a task selects a maximum of G tasks
from the head of the queue and calculates its score for all of
them. Then, the node competes only for the task for which
it has the best score. The previous algorithm is a particular
case of this procedure, for G = 1. The use of larger values
of G increases the opportunity of finding a good match for
the node, by considering several waiting tasks. This way,
the probability of successfully completing the selected task
should increase.

The main drawback of this method is that the arrival order
of tasks is not respected. Additionally, some tasks may suffer
from severe extra delays when, even after reaching the head

Algorithm 3: Competition scheduling in groups

while true do
if size(Q) > 0 then

works := select_group(Q, G);
best_score := 0;
best_work := nil;
for w in works do

score := calculate_score(w);
if score > best_score then

best_score := score;
best_work := w;

w := best_work;
score := best_score;
inscribe_as_worker(w, score, nodeid);
sleep(τc);
if nodeid = best_scored_node(w) then

remove_from_queue(Q, w);
execute(w);
store_results(w);

else
sleep(τs);

of the queue, they are not chosen because no node finds them
“adequate”. In order to prevent this problem, which could
lead to starvation, we have included in the implementation a
limit in the number of times a task at the head of the queue
can be skipped by a node. When a task is part of a scheduling
group but it is not selected for competition, a counter (with
initial value 0) is incremented. If the task is not selected for
several rounds, this counter will reach a pre-configured limit.
At this point, the node will compete for the task, indepen-
dently of its score. In our experiments, we have set this limit
to twice the group size G.

Note that these algorithms have been described for an
HTC-P2P environment, but could be easily implemented in
a centralized set-up. The manager node needs to keep avail-
ability models of all nodes, using this information together
with the centralized task queue to carry out the selection of
the best node-to-task assignments.

4 Score functions

The competition-based scheduling algorithms defined in the
previous section require some companion score functions. In
this section we propose two different, although related, score
functions to be applied to a 〈task, node〉 pair. The first one is
based on the probability of a node surviving long enough to
complete the task under consideration. The second relates the
expected survival time of the node with the estimated task’s
length, with the aim of obtaining a good node-to-task fit.

4.1 Computing the expected survival time of a node

The first score functionwe propose, f1, is based on the proba-
bility of the node surviving enough time to complete the task.
If we consider that Xi is a random variable that describes the
lifetime of a given node i , the score for node i and task j (of
length l j) is computed as:

f1(i, j) = P(Xi > t + l j |Xi > t) (1)

where t is the time since node i went on-line.
In order to model the survival time of nodes, two main

probability distributions are proposed in the literature: expo-
nential and Weibull. Although the exponential distribution
is commonly used [21–24], several works [25,26] state that
in actual systems the time between failures is not exponen-
tially distributed and exhibits autocorrelation and long-range
dependence. They state that the Weibull distribution is a bet-
ter way of modelling the expected survival time. However,
in [27], authors argue that theWeibull distribution is a gener-
alization of the exponential distribution that allows the failure
rate parameter to increase over time to reflect the aging of
hardware. In a large population, the mixture of nodes of dif-

123

1234 Cluster Comput (2015) 18:1229–1249

Fig. 1 Values of score f1 based
on the expected survival time of
nodes, for different node failure
rates

0.00

0.25

0.50

0.75

1.00

005100010050
Length of Tasks (s)

S
co

re

λ (fails/s)

0.01

0.005

0.002

0.001

ferent ages tends to be stable, and the average failure rate in
the system tends to be constant. When the failure rate is sta-
ble, the Weibull distribution provides the same quality of fit
as the exponential. Based on this last work, we will assume
that each node i fails and recovers following exponential dis-
tributions with parameters λi and μi respectively. However,
note that the proposed f1 score function could be calculated
using any other distribution.

One of the most important properties of the exponential
distribution is that it is memoryless, which means that the
probability that a certain node lives for at least t + l j seconds
given that it has survived t seconds is the same as the initial
probability that it lives for at least l j seconds. Therefore, Eq. 1
can be written as:

f1(i, j) = P(Xi > l j) = 1 − P(Xi ≤ l j) (2)

Therefore, the score function for node i and task j can be
expressed as 1 minus the cumulative distribution function of
the exponential:

f1(i, j) = 1 − (1 − e−λi l j) = e−λi l j (3)

In order to compute Eq. 3, the value of λi must be known.
In a real system, it can be estimated from a log of past fail-
ures.Given an independent and identically distributed sample
(x1i , . . . , x

m
i) of past alive times for node i , the maximum

likelihood estimate for parameter λi is:

̂λi = 1

xi
(4)

where xi is the mean of all the samples (alive times) for that
node.

In Fig. 1 we can see the values provided by this score for
different failure rates and task lengths. As can be seen, the

node with the lowest λi has always the highest score, so the
system prioritizes the execution of tasks in this kind of nodes
(themost stable ones). In contrast, failure-prone nodes (those
with the highest values of λi) will execute tasks only when
better nodes are busy.

This score function has been designed with the aim of
reducing the number of re-executions, because tasks will be
executed more likely by the most stable nodes, so that the
probability of completing a task at the first attempt should be
high. However this score alone does not guarantee a per-
fect distribution of tasks among the most suitable nodes,
because the behaviour of the system depends on its composi-
tion (number and reliability of the nodes), the characteristics
of the tasks being submitted (mainly short tasks vs. mainly
long tasks, or a balanced mixture) and even the order in
which tasks are submitted. For example, in an extremely good
scenario of very stable nodes running short tasks, no improve-
ment can be expected from competition-based scheduling
algorithms, regardless of the selected score.

4.2 Measuring the fitness of the duration of a task to the
expected survival time of a node

Although the previous score function apparently fulfils our
requirement of reducing re-executions, it is not good enough.
It leads to a task assignment criterion based only on the sta-
bility of the nodes, independently of the lengths of the tasks.
Now we present a new score function that not only deter-
mines if a node is suitable to complete a given task, but also
if the task length suits the expected survival time of the node.
What we want is to favour the execution of long tasks in sta-
ble nodes, using the unstable ones for short tasks, as a way
to increase node utilization and system throughput.

Besides the probability of a node i being alive enough time
to complete task j , we also take into account the (normalized)

123

Cluster Comput (2015) 18:1229–1249 1235

Fig. 2 Values of score f2
measuring node-to-task fitness,
for different node failure rates

0

1

2

3

4

5

005100010050

Length of Tasks (s)

S
co

re

λ (fails/s)

0.01

0.005

0.002

0.001

gap between l j (the length of task j) and the expected lifetime
of the node:

D(i, j) =
∣

∣l j − E[Xi]
∣

∣

E[Xi] (5)

where E[Xi] is the expected lifetime of node i . The smaller
D, the better the fit of the task into the survival time of the
node.

The second scorewepropose, f2, combines f1 with D: it is
directly proportional to the node’s probability of completing
the task and inversely proportional to the normalized gap.
From Eqs. 1 and 5 we can express this score as:

f2(i, j) = P(Xi > l j + t |Xi > t)

D(i, j)
(6)

If the lifetime of a node is modelled using the exponential
distribution, the expected lifetime of node i is:

E[Xi] = 1

λi
(7)

Therefore, the normalized gap D can be expressed as:

D(i, j) = ∣

∣λi × l j − 1
∣

∣ (8)

Finally, from Eq. 6:

f2(i, j) =
⎧

⎨

⎩

MAX_SCORE ifE[Xi] = l j ,
e−λi l j

|λi∗l j−1| otherwise.
(9)

where MAX_SCORE is a certain value considered as maxi-
mum possible score. In our implementation we have set this

value to the largest finite floating-point number in IEEE sin-
gle precision, 3.40282347 × 1038.

In Fig. 2 we can see the values provided by f2 for differ-
ent failure rates and task lengths. As can be seen, the highest
score is obtained when the length of a task matches perfectly
the expected lifetime of a node. A competition scheduling
using score f1 favours the use of the most stable nodes
(from the set of available ones). Score f2 helps selecting the
most suitable node-task pair, assigning short tasks to unstable
nodes while leaving stable nodes available for longer tasks.
Note that this score is also asymmetric: given the expected
lifetime of a node, tasks shorter than that are preferred to
longer ones, because the probability of successfully complet-
ing them is higher. The expected result of using this score is
an improved utilization of the system, although tasks sent to
unstable nodesmay require a higher number of re-executions.

5 Other failure-aware scheduling algorithms

In order to assess the quality of our proposals, in the evalu-
ation section we are going to use as baseline the distributed
FCFS scheduling algorithm, butwewill also take into consid-
eration other failure-aware algorithms from the literature, as
discussed above. In particular, a failure-aware modification
of WorkQueue with Replication Fault Tolerant [14], and the
algorithm discussed in [13]. This puts our proposals at dis-
advantage, because these two algorithms are implemented
in a centralized way, which means that they suffer lower
overheads in terms of scheduling delays and coordination
efforts. In particular, the time required to perform the com-
petition τs is not required. We have considered the option
of re-implementing the competitor algorithms in a distrib-
uted fashion, but we estimate that our evaluation approach

123

1236 Cluster Comput (2015) 18:1229–1249

is fair and shows the potential of distributed, failure-aware
scheduling algorithms.

5.1 Failure-aware WorkQueue with
replication/fault-tolerant scheduling

WorkQueue with Replication (WQR) [9] is a centralized
scheduling algorithm for bags-of-tasks that uses replication
to avoid the effects of differences in performance among sys-
tem nodes. In WQR, the scheduler sends tasks to randomly
selected idle nodes, until the queue is empty. Then, if idle
nodes are available, some tasks are replicated in those nodes.
The system sets a maximum number of replicas per task.
When one of the replicas finishes, the remaining ones are
cancelled. This algorithm is depicted in Algorithm 4. Q is
the waiting queue, while R is a list with the running tasks; I
is a list of idle nodes, and MAX_REPL IC AS is the maxi-
mum number of per-task replicas. In our tests, we have used
values 2 and 4 for this parameter.

WQR Fault-Tolerant [8] (WQR-FT onwards) adds fault
tolerance toWQRusing checkpointing and automatic restart.
In [14], Anglano et al. introduced a failure-aware version of
WQR-FT, WQR-FA onwards, in which the node to execute
the task is not selected randomly. Instead, the scheduler com-
putes a score for each idle node and then the best idle node
(that with the best score) is selected; note the similarity with
our competition-based proposal, but in a centralized environ-
ment. The score function used in WQR-FA is based on the
predicting binomial method described in [15] that estimates
the lifetime of each node. For each node i , the algorithm con-
siders x (i), an ordered list storing the past n on-line times of
the node, a level of confidence C and Xq (the q th quantile
of the distribution of the lifetime of the node). Using these
parameters, the binomial method calculates the largest k for
which the following equation holds:

Algorithm 4: WorkQueue with Replication (WQR)

while true do
if size(Q) > 0 then

w := pop(Q);
n := get_random_node(I);
w.num_replicas = 1;
push(R, w);
execute_in_node(w, n);

else
while size(Q) = 0 and size(R) > 0 and size(I) > 0 do

w := pop(R);
n := get_random_node(I);
w.num_replicas++;
if w.num_replicas < MAX_REPLICAS then

push(R, w);
execute_in_node(w, n);

k
∑

j=0

(

n

j

)

(1 − q)n− j q j ≤ 1 − C (10)

With the computed value of k wecan obtain x (i)
k and a level

C lower bound for Xq , which is the score used by WQR-FA
to select the best idle node among the available ones. The
rest of the WQR-FA algorithm is similar to WQR-FT. This
algorithm requires as parameters the confidence level,C , and
quantile, q. In their paper, Anglano et al. use C = 0.98 and
q = 0.05, so these are the values that we will use in our tests.
With respect to the maximum number of per-task replicas,
we have used again 2 and 4.

Although WQR-FA, like WQR-FT, uses checkpointing,
we have not included this feature in the comparison tests
carried out in this paper, in order to make a fair comparison.
Therefore, in all cases, an aborted task restarts from thebegin-
ning. Note that checkpointing could be easily integrated into
our distributed competition-based scheduling mechanisms.

5.2 A fault tolerant scheduling system for
computational grids (FR)

In the failure-aware scheduling algorithm proposed by
Amoon in [13] (FR onwards), a centralized scheduler uses
a score to select the most suitable node to run a task. The
per-node score is based on the failure rate of the node
(this explains the short name given to the algorithm). It is
computed by considering the number of times a node has
successfully completed the assigned tasks, as well as the
total number of executions (both successful and aborted)
performed by the node. Given all the per-node scores, the
scheduler selects the task at the head of the queue and assigns
it to the best node. This is like our distributed competition-
based algorithm, with a different score. We see it sketched
in Algorithm 5. Ni

f is the number of times a task has been

Algorithm 5: FR scheduling

while true do
if size(Q) > 0 then

w := pop(Q);
best_score := ∞;
best_node := 0;
for i in I do

f r :=
Ni

f

N i
s+Ni

f
;

Texe:=
lw
Ri
;

score:=Texe ∗ (1 + f r);
if score ≤ best_score then

best_score := score;
best_node := i;

execute_in_node(w, best_node);
else

sleep(τs);

123

Cluster Comput (2015) 18:1229–1249 1237

aborted in node i , Ni
s is the number of completed executions,

lw is the length of current task w, and Ri the speed of node
i .

Note that FR uses the user-provided estimation of the task
length, lw, and adapts this to a heterogeneous system by per-
forming a correction basedon Ri , aswe suggested previously.
In our tests we consider homogeneous nodes in terms of
performance (but not in terms of stability), therefore using
Ri = 1. Also, note that the score used by FR is very similar
to f1: the most stable node from the free set (the one with the
best availability history) will win. Unstable nodes will lose
the competition, unless they are the only options.

6 Experimental environment

In order to assess our scheduling policies and metrics,
a custom-made event driven simulator of the scheduling
process has been developed. It is based on the event-driven
engine used in [28], which implements a variation of the
calendar queue presented in [29].

Simulated nodes access a single scheduling queue used to
store and retrieve the tasks to be executed. While a node is
alive, it executes tasks. If a node fails during the execution
of a task, the task is reinserted at the head of the queue for a
retry. The experiment finishes when all the tasks in the queue
have been executed.

Each experiment is repeated 20 times with different seeds
for the random number generator (used to generate the work-
loads and to cause failure and recovery events in nodes). The
results shown in figures and tables are the average values of
those 20 repetitions.

6.1 Scenarios under test

These are the main characteristics of our simulations and the
parameters set in the experimentation:

– With respect to nodes:

– WesimulateHTC-P2P systemswithn = 1000nodes.
– We consider two types of nodes, called stable and
unstable. Stable nodes fail rarely and recover quickly:
the failure rate is several orders of magnitude smaller
than the recovery rate [27]. Unstable nodes fail fre-
quently, with a recovery rate similar to the failure
rate. In the simulation, the behaviour of each node is
managed by two exponential distributions with para-
meters λi (failure rate) and μi (recovery rate). In
particular:

• Stable nodes: λi = 10−6 fails/s and μi = 10−4

recoveries/s.

• Unstable nodes: λi = 10−4 fails/s and μi =
10−3 recoveries/s.

– We simulate three different system types, with differ-
ent proportions of stable and unstable nodes:

• Stable system (majority of stable nodes): a sys-
tem composed of 90% of stable nodes and 10%
of unstable nodes.

• Mixed system: a system composed of 50% of
stable nodes and 50% of unstable nodes.

• Unstable system (majority of unstable nodes): a
system composed of 10% of stable nodes and
90% of unstable nodes.

– Each node stores a log of its on-line periods used to
continuously update the estimate of the ̂λi of the node.
̂λi is bootstrapped at the beginning of the simulation
to a very low failure rate, 10−8 failures/s, for all the
nodes in the system. Once the first failure happens,
the value of ̂λi is recalculated with the information
gathered in the log.

– Each node has a parameter, τs , to control the time
between consecutive scheduling attempts. This para-
meter has been set to τs = 10 s.

– For the policies involving competition, nodes wait
for τc seconds from the beginning to the end of the
competition. This parameter has been set to τc = 10
s.

– With respect to tasks:

– In each experiment, the simulator generates an
ordered collection of tasks, constituting a workload.
All the tasks in the workload are inserted into the
queue at the beginning of the experiment in order to
test each scheduler in a situation of load saturation.
Tasks are independent.

– Tasks are characterized by an execution time or
length. This length is sampled from different uniform
distributions, yielding three types of tasks:

• Small (S): U (1 s, 1500 s).
• Medium (M): U (1500 s, 6000 s).
• Large (L): U (6000 s, 25000 s).

– We have designed three different workload types,
depending on the mixture of tasks constituting the
workload:

• Small workload: formed by 80%of tasks of type
S, 10% M and 10% L.

• Medium workload: composed by 80% of tasks
of type M, 10% S and 10% L.

• Large workload: 80% of tasks of type L, 10%
S and 10% M.

– All workloads have been designed to have the same
total duration (the sum of the lengths of all constitut-
ing tasks),W = 109 s. Therefore, each workload has
a different number of tasks Num_tasks. For exam-

123

1238 Cluster Comput (2015) 18:1229–1249

ple, a small workload has many more tasks than a
large one.

– When a task is aborted due to a node failure, it is
reinserted for execution at the head of the queue. A
maximum number of trials (100) has been set in order
to avoid situations in which theHTC system is unable
to process the workload (yielding never-ending sim-
ulations).

We have chosen this parameter set in order to generate a
variety of scenarios in terms of types of tasks (that is, task
lengths) and nodes (that is, node availability behaviour) in
such a way that we could test if our proposals are capable
of assigning tasks to nodes in different environments, from
very stable ones (e.g., enterprise clusters) to very unstable
ones (e.g. volunteer computing networks in which churning
is a frequent event). We use the term scenario to refer to a
particular combination of a system type (unstable,mixed, sta-
ble) with a workload type (small, medium, large). Therefore,
we evaluate nine different scenarios.

Note that when modelling the behaviour of nodes we are
assuming exponentially distributed failure and on-line times,
and the metrics we propose in Sect. 4 are also based on this
distribution. However, this does not mean that the proposed
metrics are valid only for exponentially distributed failures.
They can be used independently of the behaviour of the
nodes, although if that behaviour is known to follow a par-
ticular distribution, the score can be tailored to better reflect
the expected nodes’ lifetime. In order to check the general
validity of scores f1 and f2 as defined above (using the prop-
erties of the exponential distribution), we have carried out
an additional set of experiments in which node failures fol-
low Weibull distributions. The corresponding results can be
found as additional material at site1, and they do not change
the analysis and conclusions included in this paper.

6.2 Scheduling algorithms under test

In our experiments, we have tested the following scheduling
policies, as described in the previous sections:

– FCFS: First Come First Served, as described in Sect. 3.1.
– WQR: WorkQueue with Replication, as described in
Sect. 5.1, with a maximum of 2 and 4 replicas per task.

– WQR-FA: the failure-aware version of WQR, as descri-
bed in Sect. 5.1, with a maximum of 2 and 4 replicas per
task, C = 0.98 and q = 0.05.

– FR: the fault tolerant scheduling based on the failure rate
of each node, as described in Sect. 5.2.

1 http://www.sc.ehu.es/ccwbayes/members/cperezmig/fas/fasw

– EC: Competition scheduling (see Sect. 3.2) with score
f1 based on the expected survival time of nodes (see
Sect. 4.1).

– BFC: Competition scheduling (see Sect. 3.2) with score
f2 based on the best node-to-task fit (see Sect. 4.2).

– EGC: Competition scheduling in groups (see Sect. 3.3)
with score f1 based on the expected survival time of
nodes (see Sect. 4.1) and group size G = 10.

– BFGC: Competition scheduling in groups (see Sect. 3.3)
with score f2 based on the best node-to-task fit (see
Sect. 4.2) and group size G = 10.

Note that FCFS, EC, BFC, EGC and BGFC are tested
in a P2P setting (each node has its own scheduler), while
WQR,WQR-FA and FR are implemented as defined by their
authors, using a central scheduler. The reason to choose G =
10 in EGC and BFGC is explained in Sect. 6.4.

6.3 Gathered metrics

During the experiments we gather the following metrics:

– System metrics. Make-span: the time, in seconds,
required to execute the complete set of tasks inserted into
the queue. The minimum make-span considering zero
overheads would be W

n . Throughput: the number of tasks
completed per second. It can be computed as Num_tasks

Make−span .
– Per-nodemetrics.Wedissect the node utilization, extract-
ing the idle time (time spent doing nothing), the wasted
time (time used for aborted and cancelled executions),
the useful time (time used for successful executions) and
the off-line time (time while the node is not part of the
system).

– Per-taskmetrics.We dissect the tasks overheads (the time
spent in the queue by each task), extracting the waiting
time (time spent while waiting to be scheduled) and the
wasted time (time spent in aborted executions).

Regarding the waiting time, we want to remark that this
time is usuallymeasured since themoment the task is inserted
in the queue. However, in our experiments all tasks are
inserted simultaneously at the beginning of the simulation.
As the queue is ordered, the initial tasks would have a much
shorter waiting time than the last ones. For this reason, we
redefine this term, and use it to refer to the time spent by a
task while at the head of the queue.

6.4 Choosing the group size

In tests involving EGC and BFGC (that is, competition in
groups) we need a group size. This has been fixed to 10, but
the choice has not been arbitrary. In order to select a good

123

http://www.sc.ehu.es/ccwbayes/members/cperezmig/fas/fasw

Cluster Comput (2015) 18:1229–1249 1239

Throughput (task/s)

Waiting Time (s)

0.0171

0.0174

0.0177

0.0180

70

75

80

85

90

0015705520
G

Fig. 3 System throughput and task waiting time, for the BFGC algorithm using different values of G, for the mixed system executing a mixed
workload

value for this parameter, we ran an experiment with different
values of G (from 2 to 100) for a particular scenario: mixed
system with medium workload and BFGC scheduling. We
measured system throughput and the waiting time of tasks,
and plotted the results in Fig. 3. It can be observed that, for
values of G higher than 10, there is almost no improvement
in terms of throughput; however, we can see how the waiting
time increases with G. We have chosen G = 10 because it
shows the advantages of scheduling in groups without incur-
ring into excessive scheduling delays. A thorough analysis
of the influence of G in the performance of EGC and BFGC,
including a computation of the optimum G value is left as
future work.

7 Analysis of results

In this section we analyse the results of the experiments
described before, considering different scenarios and
scheduling techniques. The baseline results will be those
obtained with FCFS, but we will also compare the results
of our proposal against other failure-aware policies.

Note that we do not expect great improvements with any
proposal (compared against FCFS) in extreme situations,
such as one with a majority of stable nodes to which users
submit small tasks: all policies will extract the maximum
potential of the system, because task abortion will be a rare

event. In the opposite extremewecan envision a very unstable
system to which users submit very long tasks. In this case,
tasks will be frequently aborted and require re-execution,
therefore nodes will spend most of their time performing
useless computations. However, we can still try to reduce
this waste of resources. In general, our policies are expected
to improve system performance by increasing the probabil-
ity of a correct execution at the first attempt, although some
penalties could be expected in BFGC in the form of increased
per-task waiting time.

When analysing simulation results, we focus first on
system-level metrics, then on the utilization of nodes and,
finally, on thewaiting times experienced by tasks – that reflect
the perception that a user would have of the HTC system. As
some proposals are knowledge-based, we include a subsec-
tion that discusses the effects on performance of inaccurate
user-provided task length estimations.

7.1 System metrics

Figure 4 summarizes the main results from the point of
view of the system: the make-span for the nine scenarios
(of stability and workload), for all the scheduling algorithms
under evaluation. As the duration of all workloads is W =
109 s, and the number of nodes in the system is n = 1000,
the optimum value of make-span (for zero overheads) would
be W

n = 106 s.

123

1240 Cluster Comput (2015) 18:1229–1249

Workload: Small Workload: Medium Workload: Large

1000000

1500000

2000000

2500000

3000000

1000000

1500000

2000000

2500000

3000000

1000000

1500000

2000000

2500000

3000000

S
ystem

 type: S
table

S
ystem

 type: M
ixed

S
ystem

 type: U
nstable

F
C

F
S

W
Q

R
−

2

W
Q

R
−

4

W
Q

R
−

FA
−

2

W
Q

R
−

FA
−

4

F
R

E
C

B
F

C

E
G

C

B
F

G
C

F
C

F
S

W
Q

R
−

2

W
Q

R
−

4

W
Q

R
−

FA
−

2

W
Q

R
−

FA
−

4

F
R

E
C

B
F

C

E
G

C

B
F

G
C

F
C

F
S

W
Q

R
−

2

W
Q

R
−

4

W
Q

R
−

FA
−

2

W
Q

R
−

FA
−

4

F
R

E
C

B
F

C

E
G

C

B
F

G
C

Scheduling Policy

M
ak

e−
sp

an
 (

s)

Fig. 4 Make-span using different scheduling policies for different scenarios (combinations of node stability and task size). The ideal make-span
is 1000000

The first row of the figure corresponds to stable systems.
In these, the choice of scheduling policy does not have a sig-
nificant influence. In fact, the make-span obtained by FCFS
in these scenarios is close to the minimum. However, BFGC
is capable of squeezing some improvements: the differences
between both policies are 1.37, 1.41 and 3.33% for small,
medium and large workloads respectively. The remaining
non-trivial policies achieve similar results, although not for
all workloads.

For the scenarios where there is enough diversity of nodes
and tasks, those in which the proportion of unstable nodes
is in the range 50–90%, we can see that failure-aware poli-
cies contribute to shorten considerably the make-span. As
expected, these policies enhance the correct distribution of
tasks among the different types of nodes, so that the number
of re-executions decreases and, thus, make-span improves.
We can also see that the best policy is BFGC. Allowing
nodes to choose, from a set of tasks, those that better fit into
its expected lifetime seems to be a correct strategy from the
point of view of system-level task throughput. The improve-
ments over FCFS obtained by the BFGC policy are 16.88,
16.97 and 15.92% for the mixed scenarios, while for the

unstable scenarios the improvements of BFGC are 19.13,
20.46 and 17.79%.

As expected, FR and EC exhibit a very similar behaviour,
because their purposes andmetrics are similar. Scheduling in
groups (EGC, BFGC) is better than scheduling for the task
at the head of the queue, but only when using the f2 met-
ric (best node-to-task fit). WQR is not competitive, due to
the overheads imposed by replication, and the failure-aware
variations (WQR-FA-2, WQR-FA-4) are even worse. This
behaviour of WQR scheduling is explained in [14], where
authors tested their proposals with different number of tasks
in the workload: when the number of tasks per node in the
workload is small (under 50), WQR-FA outperforms WQR.
However, when this ratio increases, WQR is relatively bet-
ter. In our experiments, the number of tasks per node in the
workloads vary from 77 to 395, which are bad settings for
WQR-FA.

7.2 Node utilization

Wehave plotted in Figs. 5 and 6 the results about node utiliza-
tion. In order to simplify graphs and explanations, we have

123

Cluster Comput (2015) 18:1229–1249 1241

Workload: Small Workload: Medium Workload: Large

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

S
ystem

 type: S
table

S
ystem

 type: M
ixed

S
ystem

 type: U
nstable

F
C

F
S

W
Q

R
−

4

W
Q

R
−

FA
−

4

F
R

B
F

G
C

F
C

F
S

W
Q

R
−

4

W
Q

R
−

FA
−

4

F
R

B
F

G
C

F
C

F
S

W
Q

R
−

4

W
Q

R
−

FA
−

4

F
R

B
F

G
C

Scheduling Policy

N
od

e
U

til
iz

at
io

n Utilization
 of nodes

Idle

Wasted

Useful

Offline

Fig. 5 Utilization of nodes for different scenarios (combinations of node stability and task size). Average for all nodes

removed the data points corresponding toWQR-2 (which are
worse than those of WQR-4), WQR-FA-2 (which are worse
than those of WQR-FA-4), and all of our policies except
BFGC (because the remaining three perform worse than this
one).

In Fig. 5 we can see a dissection of how nodes spend
the time, averaged over all nodes; time is split into useful
time, idle time, wasted time and off-line time following this
equation

tnode = tuse f ul + tidle + twasted + to f f line

As the systems considered in the simulated scenarios include
nodes of different characteristics, we have gathered in Fig. 6a
the dissection for the stable nodes only, while Fig. 6b focuses
on the unstable nodes.

In general, the utilization of failure-aware scheduling poli-
cies results in an increment of the useful time of nodes for all
the scenarios, even in the most stable ones. BFGC is the pol-
icy achieving the highest ratios of useful time, and the lowest
of wasted time. WQR-4 and FR are respectable runner-ups.
While this is true for almost all the scenarios, we can see that
all the algorithms increase the wasted time in the last sce-

nario (the one with mostly unstable nodes with a majority of
large tasks). This is a worst-case scenario in which it is very
difficult to find a node good enough to successfully complete
a task. However, note that our algorithm is still capable of
increasing useful time.

Focusing on stable nodes, see Fig. 6a, we can see that
FCFS does not maximize their useful time, leaving them
empty for seizable periods. All the remaining policies do
a better job, reaching a useful time close to 100%.We do not
see wasted or off-line periods because these nodes rarely fail.

If we observe Fig. 6b, with data about unstable nodes,
we can see why BFGC is the best policy: its choice of short
tasks for unstable nodes results in a significant utilization
of these nodes. In the remaining policies, unstable nodes are
ignored (idle time) or process tasks that are too long for them,
resulting in excessive abortions and re-executions (wasted
time). Note, however, that BFGC is a good policy only when
there is enough node and task diversity.

The reader may have noticed, when observing Figs. 4
and 5, that the make-span and the per-node useful time in the
case of mediumworkloads (those with a majority of medium
tasks) is, for all scheduling policies, better than that obtained
with small workloads, but these metrics get worse for large

123

1242 Cluster Comput (2015) 18:1229–1249

Workload: Small Workload: Medium Workload: Large

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

S
ystem

 type: S
table

S
ystem

 type: M
ixed

S
ystem

 type: U
nstable

F
C

F
S

W
Q

R
−

4

W
Q

R
−

FA
−

4

F
R

B
F

G
C

F
C

F
S

W
Q

R
−

4

W
Q

R
−

FA
−

4

F
R

B
F

G
C

F
C

F
S

W
Q

R
−

4

W
Q

R
−

FA
−

4

F
R

B
F

G
C

Scheduling Policy

N
od

e
U

til
iz

at
io

n Utilization
 of nodes

Idle

Wasted

Useful

Offline

(a) Only stable nodes

Workload: Small Workload: Medium Workload: Large

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

S
ystem

 type: S
table

S
ystem

 type: M
ixed

S
ystem

 type: U
nstable

F
C

F
S

W
Q

R
−

4

W
Q

R
−

FA
−

4

F
R

B
F

G
C

F
C

F
S

W
Q

R
−

4

W
Q

R
−

FA
−

4

F
R

B
F

G
C

F
C

F
S

W
Q

R
−

4

W
Q

R
−

FA
−

4

F
R

B
F

G
C

Scheduling Policy

N
od

e
U

til
iz

at
io

n Utilization
 of nodes

Idle

Wasted

Useful

Offline

(b) Only unstable nodes

Fig. 6 Utilization of nodes for different scenarios (combinations of node stability and task size) for stable and unstable nodes

123

Cluster Comput (2015) 18:1229–1249 1243

Table 1 Number of tasks, make-span and mean number of executions
per tasks for each workload, for the unstable scenario under FCFS
scheduling

Small Medium Large

Number of tasks 395895 216637 77797

Mean number of
executions per task

1.413 1.641 3.633

Make-span (s) 2375664 2018959 3036418

workloads. This non-linear effect requires further examina-
tion.

We must take into account the overheads derived from
the scheduling process that, although relatively small, are
incurred by each scheduled tasks: I/O operations, time
between scheduling attempts, etc. But the figures clearly
show that themain source of overhead is thewasted time (e.g.
re-execution of aborted tasks due to node failures). Notice,
too, that the number of tasks in a workload depends on the
average task size, because the total duration of all workloads
is fixed.

In Table 1 we have summarized some metrics for each
type of workload, only for the unstable systemwith the FCFS

policy (this has been done for illustrative purposes, the num-
bers for other scheduling policies follow the same pattern).
We can see the number of jobs per workload (fewer jobs
means less scheduling overhead), the measured number of
executions per task (the closer to one the better, because all
the excess comes from re-executions) and the global make-
span for consuming the whole workload (the closer to 106

the better). Medium workloads result in fewer tasks being
scheduled, compared to small workloads, but the number of
re-executions does not increase drastically, yielding a better
overall behaviour. However, although the number of tasks
in the large workload is small, the number of re-executions
increases drastically (because many tasks are too long, given
the on-line periods of the nodes, and they are rarely com-
pleted at the first attempt). This explains why the make-span
for this workload is severely longer.

7.3 Task overheads

We have measured and dissected the overheads suffered by
tasks when scheduled using different policies, plotting the
results in Fig. 7.We can see how the waiting times are almost
negligible, comparedwithwasted times due to re-executions.

Workload: Small Workload: Medium Workload: Large

0

250

500

750

0

2000

4000

0

5000

10000

15000

S
ystem

 type: S
table

S
ystem

 type: M
ixed

S
ystem

 type: U
nstable

F
C

F
S

W
Q

R
−

4

W
Q

R
−

FA
−

4

F
R

B
F

G
C

F
C

F
S

W
Q

R
−

4

W
Q

R
−

FA
−

4

F
R

B
F

G
C

F
C

F
S

W
Q

R
−

4

W
Q

R
−

FA
−

4

F
R

B
F

G
C

Scheduling Policy

T
im

e
(s

) Overhead of Task

Waiting Time

Wasted Time

Fig. 7 Overheads of tasks for different scenarios (combinations of node stability and task size). Note the different y-axis scale for each row

123

1244 Cluster Comput (2015) 18:1229–1249

Table 2 Percentage of
non-delayed tasks (waiting time
≤ τs), waiting time (average and
σ) and wasted time (average and
σ) for the mixed system with
medium workload

Policy Non-delayed tasks (%) Waiting time (s) Wasted time (s)

Mean σ Mean σ

Small tasks (10%)

FCFS 83.11 6.05 7.48 20.76 125.66

BFGC 46.18 11.90 11.55 34.46 166.04

Medium tasks (80%)

FCFS 78.46 7.10 8.52 428.31 1239.14

BFGC 63.57 10.69 17.89 486.50 1406.11

Large tasks (10%)

FCFS 65.00 10.63 12.00 4952.18 9328.21

BFGC 81.60 6.17 16.97 1378.57 4011.97

All tasks

FCFS 77.58 7.35 8.91 837.59 3431.54

BFGC 63.62 10.37 17.32 529.87 1812.23

The bottom block gathers the results considering all the tasks in the workload, while the other ones consider
only a particular class of tasks

Note that as waiting time we only measure the time spent by
tasks at the head of the queue; therefore, the picture would
be very different if we hadmeasured the times since the tasks
were submitted (enqueued). Also, in group-based scheduling
policies (such as BFGC) the waiting time is measured as zero
for those tasks executed in advance of their turn.

We can observe that replication-based techniques, namely
WQR and WQR-FA, cause increased wasted times. This is
because with these policies tasks can be aborted not only
because of node failures, but also because when a replica
finishes, the remainingones are cancelled. FRand, especially,
BFGC waste less resources. In scenarios with enough stable
nodes to execute the large tasks (see upper and middle row of
Fig. 7), the benefits of BFGC compared with the remaining
policies are worth noticing.

The figure shows clearly howwaiting times are very small
(less than 12 s), but wasted time may be significant in those
scenarios with long tasks. The waiting time of BFGC is
slightly higher than for other policies (due to the used scale,
this is not clearly visible in the figure), because it can skip
tasks at the head of the queue in favor of other tasks better
suiting the characteristics of the available nodes. However,
this increment is negligible, while the advantages of BFCG
in terms of wasted time are substantial. To better illustrate
this issue, we have summarized in Table 2 the number of
non-delayed tasks (those that wait at the head of Q less than
τs seconds), together with the average waiting time and the
average wasted time, for policies FCFS and BFGC. We also
include in the table the standard deviation (σ) of bothmetrics.
This information corresponds to the execution of a medium
workload in a mixed system. The data is averaged for all
the tasks forming the workload, and also dissected for the
different types of tasks of the workload. We can observe
how the reordering of tasks performed by BFGC results in

longer waiting times, but mainly for medium and small tasks,
because large tasks are prioritized in the stable nodes. This
reordering also results in higher values of wasted time in
small (20.8 s for FCFS vs. 34.5 s for BFGC) and medium
(428.3 vs. 486.5) tasks, but much lower wasted time for long
tasks (4952.2 vs. 1378.6). Averaging all tasks, the wasted
time drops from 837.6 to 529.9 s, as reflected in Fig. 7. The
difference is useful time in BFGC, explaining the globally
better make-span.

As a summary of this and the previous subsections, we
conclude that in those non-homogeneous scenarios com-
posed of a variety of nodes and tasks, failure-aware schedul-
ing policies result in improved task throughput. They try to
avoid sending tasks to nodes not capable of completing them.
This is the basis of FR, which is a good option despite its sim-
plicity. However, BFGC goes a step further and assigns tasks
to nodes looking for the best fit between the expected lifetime
of the node and the task length, and experiments have proven
that this is a successful approach, as wasted time is dras-
tically reduced. Policies based on replication (WQR-based)
are worse than FR and BFGC, as they cause excessive wasted
time.

7.4 Dealing with inaccurate estimations of task
durations

Note that the most effective policies tested in this work are
knowledge-based, that is, they use the user-provided estima-
tion of the execution time (length) of the tasks submitted to
the HTC system. In our simulation, we have used a task’s
length as the exact run time, that is, the time while a worker
node is busy executing the task.We know, however, that these
estimations may not be accurate, and real run times may be
widely different.

123

Cluster Comput (2015) 18:1229–1249 1245

Fig. 8 Make-span for several
scheduling algorithms for
different scenarios and
inaccuracy factors (k). Time
computed after all tasks in the
workload have been completed
(or dropped after 100
unsuccessful trials). The ideal
make-span for k = 1 is 1000000

It is known that users tend to overestimates the tasks’
runtime in order to avoid having the task killed before
completion [30], a common practice in scheduling systems
for supercomputers. However, we have not considered this
option: in the experiments, all tasks run until completion –
unless they fail after 100 execution attempts, something that
we consider a pathological situation.

In BFGC, if the user estimate for a task exceeds its
actual run time, the effects will not be negative: the assigned
resource will be released sooner than planned. Note, thought,
that if the task was assigned to a stable node, the scheduler
could have found a better match with a less stable node. In
contrast, if a task with a short predicted run time, assigned
to an unstable node, runs longer than expected (user under-
estimation), it may be aborted and need re-execution.

We wanted to assess the effects of the inaccuracy of
user-provided length estimations in the effectiveness of the
scheduling algorithms analysed in this paper. To do so, we
introduce in our simulation-based experiments an inaccu-
racy factor k. Execution times used by tasks are no longer
the lengths declared in theworkload; instead, they are recom-
puted as follows: for each task i of length li , the run time used
in the simulation, ri , is chosen uniformly at random from the
interval [li/k, li × k]. In the experiments, k is varied from
1 (accurate estimation) to 3 (actual run times may be up to
three times shorter / longer than predicted).

In Fig. 8 we show the make-span obtained by FCFS,
WQR-4, WQR-FA-4, FR and BFGC for three representa-
tive scenarios (stable system with a majority of short tasks,
mixed system with a majority of large tasks, and unstable
system with a majority of medium tasks). As a reference, for
these three scenarios with accurate predictions (k = 1), the
make-span reductions of BFGC over FCFS are 1.37, 15.92
and 20.46% respectively. Note that we have included in the
plots a variation of the BFGC, BFGCE, that will be explained
later. We have also included the ideal make-span R

n , where R
is the sum of all tasks’ run times. This value increases with
k because, on average, tasks will take longer run times than
predicted.

For the second and third scenario, failure-aware policies
fall somewhere in between FCFS and the ideal make-span.
However, the behaviour of BFGC deteriorates clearly, when
compared against other policies, for large values of k. In the
first scenario, BFGC can be much worse than the plain FCFS
and the remaining policies.

It is not difficult to explain this behaviour: BFGC tries to
find a good task-to-nodematch, but the actual task length can
be very inadequate, given the stability characteristics of the
chosen node. Then, re-executions will be a frequent event.
In fact, we have observed that, for large values of k, some
long tasks arefinally dropped after 100 attempts, and this hap-
pens regardless of the scheduling policy.We have gathered in

123

1246 Cluster Comput (2015) 18:1229–1249

Table 3 Minimum inaccuracy
factors for which the scheduler
starts dropping tasks for
different workload/system
scenarios, together with the
number of dropped tasks

Small/stable Large/mixed Medium/unstable

Minimum k Dropped
tasks

Minimum k Dropped
tasks

Minimum k Dropped
tasks

FCFS – – 1.5 4 1.2 7

WQR-4 – – – – 1.7 1

WQR-FA-4 3.0 1 1.7 6 1.3 11

FR – – – – 1.6 1

BFGC – – 2.5 1 2.2 1

BFGCE – – – – – –

Fig. 9 Make-span for several
scheduling algorithms for
different scenarios and
inaccuracy factors (k). Time
computed after 99.9% of the
tasks in the workload have been
completed. None of the tasks
has been dropped. The ideal
make-span for k = 1 is 1000000

Table 3 the minimum value of k at which the scheduler starts
dropping tasks, together with the total number of dropped
tasks in the corresponding experiment. Note that only the
BFGCE algorithm (discussed later) can complete all tasks in
all scenarios, regardless of k (at least in the considered [1, 3]
range).

Dropped tasks distort the results represented in Fig. 8,
because they may represent different numbers of actually
completed tasks. In order to reduce this distortion, we have
plotted in Fig. 9 the make-span of the first 99.9% completed
tasks. The remaining 0.1% includes all the dropped ones, in
all the experiments. Plots are now much clear: BFGC and its
variation are the best options, even with severely bad inac-
curacy factors.

Nevertheless, we still need to deal with that small per-
centage of dropped tasks. A good scheduling policy must
be able to find the right nodes to execute them, even when
the “knowledge” they have about the tasks’ lengths is inac-
curate. Now we introduce BFGCE, which is BFGC with a
correction of the user-provided estimation of the length of a
task. BFGCE operates exactly like BFGC but, when a task
is aborted, the user-provided length is corrected (actually,
increased using a factor ec), and this corrected value is used
in further scheduling attempts. The system assumes that the
length prediction was inaccurate, and that, next time, the task
should be assigned to a more stable node. After some pre-
liminary tests, we have manually set ec = 10%, although we
plan tomake a deeper analysis of the effects of this parameter

123

Cluster Comput (2015) 18:1229–1249 1247

in future works (maybe considering a different correction per
user). The figures and table shows that BFGCE succeeds in
completing all tasks and results in the shortest make-spans
for all scenarios and inaccuracy factors.

8 Conclusions

In this work we have presented several policies that can be
used in an HTC system in order to improve the schedul-
ing process in the presence of failures. They have been
proposed and evaluated in an HTC-P2P environment, but
could be used in other platforms, such as desktop/grid com-
puting systems or supercomputers. Moreover, they can be
combined with other mechanisms for fault tolerance, such
as checkpointing/restart-ing and replication. The utilization
of the information about previous failures together with the
expected duration of tasks is used by nodes to select the most
appropriate task to execute from those waiting in the queue.
Taking into account this information reduces the number of
re-executions triggered by aborted executions, so that nodes
are used more efficiently and the overheads suffered by tasks
are reduced.

We have tested our proposals by simulating the schedul-
ing process in an HTC system where each node executes its
own scheduler so it can make its own decisions about which
task to execute. We have also implemented, for comparison
purposes, other scheduling algorithms from the literature.
Experimental results show that our failure-aware proposals
do a good job finding appropriate task-to-node fits, decreas-
ing wasted time and increasing system throughput. This
is particularly true for BFGC. It is to be noted that these
distributed schedulers perform better than the competitor,
centralized approaches.

As our proposals are knowledge-based, we have also
tested their behaviour when dealing with inaccurate esti-
mations of user-provided task durations. Results state that,
even with severe inaccuracy factors (up to k = 3), a minor
modification of BFGC (namely, BFGCE, which corrects the
estimation of the duration of a task when it needs to be re-
executed) performs much better than the remaining policies
tested in this work.

As future work, we aim to implement and test these tech-
niques in a real HTC system. In particular, in the HTC-P2P
system we work with. Then, we plan to dig further into these
aspects:

– Competition-based scheduling must be complemented
with adequate score functions. In this work we propose
two, based on the properties of the exponential distribu-
tion, but others should be valid. We could use different
distributions (such as Weibull) or, as other researchers

have done, characterize nodes using Markov models and
histograms.

– Weneed to dig deeper in the influence of someparameters
used by our algorithms, such as the time to perform the
competition (τc, fixed to 10 s in our experiments) and the
group size (G, fixed to 10 in our experiments). It would
be even possible to vary these parameters dynamically
taking into consideration the observed performance.

– Group scheduling could go a step further. Currently, a
node only competes for the task that better fits its charac-
teristics. However, it could compete also for the second
best task in the group, or even for all the tasks in the
group.

– The way BFGCE corrects user-provided estimations
must be explored further. As hinted before, BFGCEcould
create a per-user accuracy model based on his/her previ-
ous record, adapting the correction factor through this
model.

– The failure-aware policies could be complemented with
a replicationmechanism, in which the number of replicas
would depend on estimations of the average number of
re-executions per task. This mechanism should improve
the response time perceived by users.

– We also consider the possibility of using analytical tools,
such as queueing theory, to fully understand the behav-
iour of the different scheduling algorithms discussed in
this paper.

Acknowledgments This work has been partially supported by the
Saiotek andResearchGroups 2013-2018 (IT-609-13) programs (Basque
Government), TIN2013-41272P (Ministry of Science and Technol-
ogy), COMBIOMED-RD07/0067/0003 network in computational bio-
medicine (Carlos III Health Institute) and by the NICaiA Project
PIRSES-GA-2009-247619 (European Commission). Mr Pérez-Miguel
is supported by a doctoral grant from the Basque Government. Jose
Miguel-Alonso andAlexanderMendiburu aremembers of theEuropean
Network of Excellence on High Performance and Embedded Architec-
ture and Compilation (HiPEAC).

References

1. Litzkow,M., Livny,M.,Mutka,M.:Condor—ahunter of idlework-
stations. In: Proceedings of the 8th International Conference of
Distributed Computing Systems, June 1988

2. Anderson, D.P.: BOINC: A system for public-resource computing
and storage. In: Proceedings of the 5th IEEE/ACM International
Workshop on Grid Computing, pp. 4–10 (2004)

3. Pérez-Miguel, C., Miguel-Alonso, J., Mendiburu, A.: High
throughput computing over peer-to-peer networks. Future Gener.
Comput. Syst. 29(1), 352–360 (2013)

4. Lakshman, A., Malik, P.: Cassandra: a decentralized structured
storage system. ACM SIGOPS Oper. Syst. Rev. 44, 35–40 (2010)

5. White, T.: Hadoop: The Definitive Guide. “O’Reilly Media,
Sebastopol (2009)

6. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica,
I.: Spark: cluster computing with working sets. In: Proceedings of

123

1248 Cluster Comput (2015) 18:1229–1249

the 2nd USENIX conference on Hot topics in cloud computing, pp.
10–10 (2010)

7. Javadi, B., Abawajy, J., Buyya, R.: Failure-aware resource provi-
sioning for hybrid cloud infrastructure. J Parallel Distrib. Comput.
72, 1318–1331 (2012)

8. Anglano, C., Canonico, M.: Advances in Grid Computing: EGC
2005. In: Sloot, P.M., Hoekstra, A.G., Priol, T., Reinefeld, A.,
Bubak, M. (eds.) European Grid Conference, Amsterdam, The
Netherlands, February 14–16, 2005, Revised Selected Papers. Lec-
ture Notes in Computer Science. Springer, Berlin (2005)

9. Cirne, W., Paranhos, D., Costa, L., Santos-Neto, E., Brasileiro, F.,
Sauvé, J., Silva, F.A.B., Barros, C.O., Silveira, C.: Running bag-of-
tasks applications on computational grids: the MyGrid approach.
In: Proceedings of the 2003 International Conference on Parallel
Processing, pp. 407–416 (2003)

10. Bansal, Jyoti, Rani, Shaveta, Singh, Paramjit: TheWorkQueuewith
dynamic replication-fault tolerant scheduler in desktop grid envi-
ronment. Int. J. Comput. Technol. 11(4), 2446–2451 (2013)

11. Oliner, A.J., Sahoo, R.K., Moreira, J.E., Gupta, M., Sivasubrama-
niam, A.: Fault-aware job scheduling for bluegene/l systems. In:
Proceedings of the IEEE 18th International in Parallel and Distrib-
uted Processing Symposium, p. 64 (2004)

12. Li, Y., Lan, Z., Gujrati, P., Sun, X.H.: Fault-aware runtime strate-
gies for high-performance computing. IEEETrans. Parallel Distrib.
Syst. 20(4), 460–473 (2009)

13. Amoon, M.: A fault-tolerant scheduling system for computational
grids. Comput. Electr. Eng. 38(2), 399–412 (2012)

14. Anglano,C.,Brevik, J.,Canonico,M.,Nurmi,D.,Wolski,R.: Fault-
aware scheduling for bag-of-tasks applications on desktop grids.
In: Proceedings of the 7th IEEE/ACM International Conference on
Grid Computing, pp. 56–63 (2006)

15. Brevik, J., Nurmi, D., Wolski, R.: Automatic methods for predict-
ing machine availability in desktop grid and peer-to-peer systems.
In: Proceedings of the IEEE International Symposium on Cluster
Computing and the Grid, 2004. CCGrid 2004, pp. 190–199 (2004)

16. Byun, E., Choi, S., Baik, M., Gil, J., Park, C., Hwang, C.: MJSA:
Markov job scheduler based on availability in desktop grid com-
puting environment. Future Gener. Comput. Syst. 23(4), 616–622
(2007)

17. Ramachandran, Karthick, Lutfiyya, Hanan, Perry, Mark: Decen-
tralized approach to resource availability prediction using group
availability in a P2P desktop grid. Future Gener. Comput. Syst.
28(6), 854–860 (2012)

18. Xiaoping, H., Zhijiang, W., Congming, W., yu, W., Yongshang,
C., Ling, S.: Availability-based task monitoring and adaptation
mechanism in desktop grid system. In: Proceedings of the Sixth
International Conference on Grid and Cooperative Computing,
2007. GCC 2007, pp. 444–450 (2007)

19. Hyun, J.H.: An effective scheduling method for more reliable
execution on desktop grids. In: Proceedings of the 12th IEEE
International Conference on High Performance Computing and
Communications (HPCC), 2010, pp. 172–179 (2010)

20. Hui, L., Groep, D., Wolters, L.: Workload characteristics of a
multi-cluster supercomputer. In: Feitelson, D.G., Rudolph, L.,
Schwiegelshohn, U. (eds.) Job Scheduling Strategies for Paral-
lel Processing. Lecture Notes in Computer Science, pp. 176–193.
Springer, Berlin (2005)

21. Chun, B.G., Dabek, F., Haeberlen, A., Sit, E., Weatherspoon, H.,
Kaashoek,M.F.,Kubiatowicz, J.,Morris,R.: Efficient replicamain-
tenance for distributed storage systems. In: Proceedings of the
3rd conference on Networked Systems Design & Implementation,
USENIX Association, vol. 3, pp. 4–4 (2006)

22. Stefan, S., Gummadi, P.K., Gribble, S.D.: Measurement study of
peer-to-peer file sharing systems. In: Electronic Imaging 2002,
International Society for Optics and Photonics, pp. 156–170 (2001)

23. Cuenca-Acuna, F.M., Martin, R.P., Nguyen, T.D.: Autonomous
replication for high availability in unstructured P2P systems. In:
Proceedings of the Symposium on Reliable Distributed Systems
(SRDS) (2003)

24. Yao, Z., Leonard, D., Wang, X., Loguinov, D.: Modeling heteroge-
neous user churn and local resilience of unstructured p2p networks.
In: Proceedings of the 2006 14th IEEE International Conference
on Network Protocols, 2006. ICNP’06, pp. 32–41 (2006)

25. Schroeder, B., Gibson, G.A.: Disk failures in the real world: What
does an MTTF of 1,000,000 hours mean to you?. In: Proceedings
of the 5th USENIX conference on File and Storage Technologies,
FAST ’07, Berkeley, CA, USA, USENIX Association (2007)

26. Nurmi, D., Brevik, J., Wolski, R.: Modeling machine availability
in enterprise and wide-area distributed computing environments.
In: In Euro-Par05, pp. 432–441 (2003)

27. Ford, D., Labelle, F., Popovici, F., Stokely, M., Truong, V.A., Bar-
roso,L.,Grimes,C.,Quinlan, S.:Availability in globally distributed
storage systems. In: Proceedings of the 9th USENIX Symposium
on Operating Systems Design and Implementation (2010)

28. Khan, M.M., Navaridas, J., Palma, L.A., Rast, A.D., Jin, X., Plana,
L.A., Lujan, M., Woods, J.V., Miguel-Alonso, J., Furber, S.B.:
Event-driven configuration of a neural network cmp system over a
homogeneous interconnect fabric. In: Proceedings of the 8th Inter-
national Symposium on Parallel and Distributed Computing, 2009.
ISPDC ’09, pp. 54–61 (2009)

29. Brown, R.: Calendar queues: A fast 0(1) priority queue implemen-
tation for the simulation event set problem.Commun.ACM 31(10),
1220–1227 (1988)

30. Tang, W., Desai, N., Buettner, D., Lan, Z.: Analyzing and adjust-
ing user runtime estimates to improve job scheduling on the blue
gene/p. In: Proceedings of the IEEE International Symposium on
Parallel & Distributed Processing (IPDPS), 2010, pp. 1–11 (2010)

Carlos Pérez-Miguel received
his MSc and PhD in Computer
Science from the University of
the Basque Country UPV/EHU,
Gipuzkoa, Spain in 2005 and
2015, respectively. His research
interests include parallel and dis-
tributed systems and especially,
peer-to-peer networks.

Alexander Mendiburu recei-
ved a BSc degree in Computer
Science and a PhD degree from
the University of the Basque
Country UPV/EHU, Spain, in
1995 and 2006 respectively.
Since 1999, he has been a Lec-
turer at the Department of Com-
puter Architecture and Technol-
ogy, University of the Basque
Country UPV/EHU. His main
research areas are evolution-
ary computation, probabilistic
graphical models, and parallel
computing.

123

Cluster Comput (2015) 18:1229–1249 1249

Jose Miguel-Alonso received
his MSc and PhD in Computer
Science from the University of
the Basque Country UPV/EHU
in 1989 and 1996, respectively.
He is currently a full Profes-
sor in the Department of Com-
puter Architecture and Technol-
ogy. Prior to this, he was a visit-
ing Assistant Professor at Purdue
University for a year. He teaches
different courses, at graduate and
undergraduate levels, related to
computer networking and high-
performance and distributed sys-

tems, and has supervised (and currently supervises) several PhD
students working on these topics.

123

	Competition-based failure-aware scheduling for High-Throughput Computing systems on peer-to-peer networks
	Abstract
	1 Introduction
	2 Related work
	3 A proposal for failure-aware scheduling in an HTC-P2P system
	3.1 Distributed first come first served scheduling
	3.2 Competition scheduling
	3.3 Competition scheduling in groups of tasks

	4 Score functions
	4.1 Computing the expected survival time of a node
	4.2 Measuring the fitness of the duration of a task to the expected survival time of a node

	5 Other failure-aware scheduling algorithms
	5.1 Failure-aware WorkQueue with replication/fault-tolerant scheduling
	5.2 A fault tolerant scheduling system for computational grids (FR)

	6 Experimental environment
	6.1 Scenarios under test
	6.2 Scheduling algorithms under test
	6.3 Gathered metrics
	6.4 Choosing the group size

	7 Analysis of results
	7.1 System metrics
	7.2 Node utilization
	7.3 Task overheads
	7.4 Dealing with inaccurate estimations of task durations

	8 Conclusions
	Acknowledgments
	References

