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Abstract Graph is a fundamental data structure that cap-
tures relationships between different data entities. In practice,
graphs are widely used for modeling complicated data in dif-
ferent application domains such as social networks, protein
networks, transportationnetworks, bibliographical networks,
knowledge bases and many more. Currently, graphs with
millions and billions of nodes and edges have become very
common. In principle, graph analytics is an important big
data discovery technique. Therefore, with the increasing
abundance of large graphs, designing scalable systems for
processing and analyzing large scale graphs has become one
of the most timely problems facing the big data research
community. In general, scalable processing of big graphs is
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a challenging task due to their size and the inherent irregu-
lar structure of graph computations. Thus, in recent years,
we have witnessed an unprecedented interest in building
big graph processing systems that attempted to tackle these
challenges. In this article, we provide a comprehensive sur-
vey over the state-of-the-art of large scale graph processing
platforms. In addition, we present an extensive experimen-
tal study of five popular systems in this domain, namely,
GraphChi, Apache Giraph, GPS, GraphLab and GraphX. In
particular, we report and analyze the performance character-
istics of these systems using five common graph processing
algorithms and seven large graph datasets. Finally, we iden-
tify a set of the current open research challenges and discuss
some promising directions for future research in the domain
of large scale graph processing.

Keywords Big graph · Graph processing · Experimental
evaluation

1 Introduction

Recently, people, devices, processes and other entities have
been more connected than at any other point in history. In
general, the complex relationships, interactions and interde-
pendencies between objects are naturally modeled as graphs.
Therefore, graphs have been used to represent data sets
in a wide range of application domains, such as social
science, astronomy, computational biology, telecommunica-
tions, semantic web, protein networks, and many more [3,
32,35]. In a social graph, for example, nodes correspond to
people while friendship relationships between them are rep-
resented as edges. In practice, graph analytics is an important
and effective big data discovery tool [36]. For example, it
enables identifying influential persons in a social network,
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inspecting fraud operations in a complex interaction network
and recognizing product affinities by analyzing community
buying patterns [33].

Nowadays, graphs with millions and billions of nodes and
edges have become very common. For example, in 2012,
Facebook has reported that its social network graph contains
more than a billion users1 (nodes) and more than 140 billion
friendship relationships (edges). The enormous growth in
graph sizes requires huge amounts of computational power
to analyze. In practice, scalable processing of large scale
graphs is a challenging task due to their size in addition to
their inherent irregular structure and the iterative nature of
graph processing and computation algorithms.

The popular MapReduce framework [10] and its open
source realization, Hadoop,2 together with its associated
ecosystem (e.g.,Pig,3Hive4) represent the pervasive technol-
ogy for big data processing [37]. In principle, theMapReduce
framework provides a simple but powerful programming
model that enables developers to easily build scalable parallel
algorithms to process massive amounts of data on clusters of
commodity machines. However, the MapReduce program-
ming model has its own limitations [37]. For example, it
does not provide any direct support for iterative data analy-
sis (or equivalently, recursive) tasks. Instead, users need to
design iterative jobs by manually chaining multiple MapRe-
duce tasks and orchestrating their execution using a driver
program.

In general, graph processing algorithms are iterative and
need to traverse the graph in some way [34]. In practice,
graph algorithms canbewritten as a series of chainedMapRe-
duce invocations that requires passing the entire state of the
graph from one stage to the next. However, this approach is
ill-suited for graph processing and leads to inefficient perfor-
mance due to the additional communication and associated
serialization overhead in addition to the need of coordinating
the steps of a chained MapReduce. Several approaches have
proposed Hadoop extensions (e.g.,HaLoop [5], Twister [12],
iMapReduce [47]) to optimize the iterative support of the
MapReduce framework and other approaches have attempted
to implement graph processing operations on top of the
MapReduce framework (e.g. Surfer [8], PEGASUS [25]).
However, these approaches remain inefficient for the graph
processing case because the efficiency of graph computations
depends heavily on inter-processor bandwidth as graph struc-
tures are sent over the network after each iteration. While
most of the data might be unchanged from iteration to iter-
ation, the data must be reloaded and reprocessed at each

1 http://www.insidefacebook.com/2012/10/04/
facebook-reaches-billion-user-milestone/.
2 http://hadoop.apache.org/.
3 http://pig.apache.org/.
4 https://hive.apache.org/.

iteration, resulting in the unnecessary wastage of I/O, net-
work bandwidth, and processor resources. In addition, the
termination condition might involve the detection of when
a fix point is reached. The condition itself might require an
extra MapReduce task on each iteration, again increasing the
resource usage in terms of scheduling extra tasks, reading
extra data from disk, and moving data across the network.

To solve this inherent performance problemof theMapRe-
duce framework, several specialized platforms which are
designed to serve the unique processing requirements of
large-scale graph processing have recently emerged. These
systems provide programmatic abstractions for performing
iterative parallel analysis of large graphs on clustered sys-
tems. In particular, in 2010, Google has pioneered this area
by introducing the Pregel [30] system as a scalable platform
for implementing graph algorithms. Since then,we have been
witnessing the development of a large number of scalable
graph processing platforms. For example, the Pregel sys-
tem has been cloned by many open source projects such
as Apache Giraph.5 and Apache Hama6 It has also been
further optimized by other systems such as Pregelix [6],
Mizan [26] and GPS [38]. In addition, a family of related
systems [15,27,28] has been initiated by the GraphLab
system [28] as an open-source project at Carnegie Mellon
University and now is supported by GraphLab Inc.7 Fur-
thermore, some other systems have also been introduced
such as GraphX [16], Trinity [40], GRACE [45] and Sig-
nal/Collect [42].

In practice, experimental evaluation and comparison of
various systemswhich are tackling the same problem is a cru-
cial aspect especiallywithin the applied domains of computer
science. In this article, we provide a comprehensive survey
of the current state-of-the-art of large scale graph processing
platforms and an extensive experimental study of five popular
systems in this domain. Specifically, we make the following
contributions:

• We present a comprehensive survey of the state-of-the-
art of scalable graph processing platforms. Figure 1
illustrates our classification for the graph processing plat-
forms which we will use in our survey.

• We present the detailed results of examining the perfor-
mance characteristics of five scalable graph processing
platforms, namely, GraphChi, Apache Giraph, GPS,
GraphLab andGraphX usingfive commongraphprocess-
ing algorithms and seven large graph datasets.

• For ensuring repeatability as one of the main targets of
this work, we provide access to the test datasets and the

5 http://giraph.apache.org/.
6 http://hama.apache.org/.
7 http://graphlab.com/.
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Fig. 1 Classification of graph processing platforms

implementations of the used algorithms in our experi-
ments.8

The reminder of this paper is organized as follows. Sec-
tion 2 provides an overviewof the graph processing platforms
which have been implemented on top of the MapReduce
framework. Sections 3 and 4 cover the Pregel-based fam-
ily of systems and the GraphLab-based family of systems
respectively. Other systems are presented and discussed in
Sect. 5. Section 6 describes the details of our experimental
setup in terms of the testing environment, datasets and the
tested graph algorithms. The detailed results of our experi-
ments are presented in Sect. 7. Discussion of open research
challenges and future research directions are presented in
Sect. 8. We discuss the related work in Section before 9 we
conclude the paper in Sect. 10.

2 Hadoop-based systems

In principle, general-purpose distributed data processing
frameworks such as MapReduce [10] are well suited for
analyzing unstructured and tabular data. However, such
frameworks are not efficient for directly implementing itera-
tive graph algorithms which often require multiple stages of
complex joins [37]. In addition, the general-purpose join and
aggregation mechanisms defined in such distributed frame-
works are not designed to leverage the common patterns and
structure in iterative graph algorithms. Therefore, such obliv-
iousness of the graph structure leads to huge network traffic
and missed opportunities to fully leverage important graph-
aware optimization. Several approaches have attempted to

8 https://github.com/GraphExperiments.

deal with such limitations by implementing graph process-
ing operations on top of theMapReduce/Hadoop framework.
For example, the Surfer system [8] has been presented as
a large scale graph processing engine which is designed to
provide two basic primitives for programmers: MapReduce
and propagation. In this engine, MapReduce processes
different key-value pairs in parallel, and propagation is an
iterative computational pattern that transfers information
along the edges from a vertex to its neighbors in the graph. In
particular, to use the graph propagation feature in the Surfer
system, the user needs to define two functions: transfer
and combine. The transfer function is responsible for
exporting the information from a vertex to its neighbors,
while the combine function is responsible for aggregat-
ing the received information at each vertex. In addition,
the Surfer system adopts a graph partitioning strategy that
attempts to divide the large graph into many partitions of
similar sizes so that each machine can hold a number of
graph partitions and manage the propagation process locally
before exchanging messages and communicating with other
machines. As a result, the propagation process can exploit
the locality of graph partitions for minimizing the network
traffic.

GBASE9 is another MapReduce-based system that uses
a graph storage method, called block compression, which
first partitions the input graph into a number of blocks [22].
According to the partition results, GBASE reshuffles the
nodes so that the nodes belonging to the same partition
are placed near to each other after which it compresses all
non-empty block through a standard compression mecha-
nism such asGZip.10 Finally, it stores the compressed blocks
together with some meta information into the graph storage.
GBASE supports different types of graph queries includ-
ing neighborhood, induced subgraph, egonet, K-core and
cross-edges. To achieve this goal, GBASE applies a grid
selection strategy to minimize disk accesses and answer
queries by applying a MapReduce-based algorithm that sup-
ports incidence matrix based queries. Finally, PEGASUS11

is a large scale graph mining library that has been imple-
mented on top of the Hadoop framework and supports
performing typical graph mining tasks such as comput-
ing the diameter of the graph, computing the radius of
each node and finding the connected components via using
Generalized Iterative Matrix-Vector multiplication (GIM-V)
which represents a generalization of normal matrix-vector
multiplication [24,25]. The library has been utilized for
implementing a MapReduce-based algorithm for discover-
ing patterns on near-cliques and triangles on large scale
graphs [23].

9 http://systemg.research.ibm.com/analytics-search-gbase.html.
10 http://www.gzip.org/.
11 http://www.cs.cmu.edu/~pegasus/.
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Fig. 2 BSP programming model

3 Pregel-based systems

Bulk Synchronous Parallel (BSP) is a parallel programming
model that uses a message passing interface (MPI) to address
the scalability challenge of parallelizing jobs across multiple
nodes [44]. In principle,BSP is a vertex-centric programming
model where the computation on vertices are represented as
a sequence of supersteps with synchronization between the
nodes participating at superstep barriers (Fig. 2) and each
vertex can be active or inactive at each iteration (superstep).
Such a programming model can be seen as a graph exten-
sion of the actors programming model [9] where each vertex
represents an actor and edges represent the communication
channel between actors. In such model, users can focus on
specifying the computation on the graph nodes and the com-
munication among themwithoutworrying about the specifics
of the underlying organization or resource allocation of the
graph data. The Pregel system [30], introduced by Google
and implemented in C/C++, is recognized as the first BSP
implementations that provides a native API specifically for
programming graph algorithms using a ”think like a vertex”
computing paradigm. To avoid communication overheads,
Pregel preserves data locality by ensuring computation is per-
formed on locally stored data. In particular, Pregel distributes
the graph vertices to the different machines of the cluster
where each vertex and its associated set of neighbors are
assigned to the same node. Graph processing algorithms are
then represented as supersteps where each step defines what
each participating vertex has to compute and edges between
vertices represent communication channels for transmitting
computation results from one vertex to another. In particu-
lar, at each superstep, a vertex can execute a user-defined
function, send or receive messages to its neighbours (or any
other vertex with a known ID), and change its state from
active to inactive. Each superstep ends with a synchroniza-

tion barrier (Fig. 2), which ensures that messages sent from
one superstep are correctly delivered to the subsequent step.
In each superstep, a vertex may vote to halt (inactive sta-
tus) if it does not receive any message and it can also be
re-activated once it receives a message at any subsequent
superstep. The whole graph processing operation terminates
when all vertices are inactive and no more messages are
in transit between the vertices of the graph. In Pregel, the
input graph is loaded once at the beginning of the program
and all computations are executed in-memory. Pregel uses
a master/workers model where the master node is responsi-
ble for coordinating synchronization at the superstep barriers
while each worker independently invokes and executes the
compute() function on the vertices of its assigned por-
tion of the graph and maintains the message queue to receive
messages from the vertices of other workers.

The introduction of Google’s Pregel has triggered much
interest in the field of large-scale graph data processing and
inspired the development of several Pregel-based systems
which have been attempting to exploit different optimiza-
tion opportunities. For example, Apache Giraph is an open
source project that clones the ideas and implementation of
Pregel specification in Java on top of the infrastructure of the
Hadoop framework. In principle, the relationship between the
Pregel system and Giraph project is similar to the relation-
ship between the MapReduce framework and the Hadoop
project. Giraph has been initially implemented by Yahoo!.
Later, Facebook built its Graph Search services usingGiraph.
Giraph runs graph processing jobs as map-only jobs on
Hadoop and uses HDFS for data input and output. Giraph
also uses Apache ZooKeeper12 for coordination, checkpoint-
ing, and failure recovery schemes. Apache Hama is another
BSP-based implementation project which is designed to run
on top of the Hadoop infrastructure, like Giraph. However, it
focuses on general BSP computations and not only for graph
processing. For example, it includes algorithms for matrix
inversion and linear algebra.

GPS13 is another open source Java implementation of
Google’s Pregel which comes from Stanford InfoLab [38].
GPS extends the Pregel API to allow certain global com-
putation tasks to be specified and run by a master worker.
In particular, it provides an additional function,
master.compute(), that provides access to all of the
global aggregated values, and store the global values which
are transparent to the vertices. The global aggregated values
can be updated before they are broadcast to the work-
ers. GPS also offers the Large Adjacency List Partitioning
(LALP) mechanism as an optional performance optimiza-
tion for algorithms that send the same message to all of its
neighbours. In particular, LALP works by partitioning the

12 http://zookeeper.apache.org/.
13 http://infolab.stanford.edu/gps/.
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adjacency lists of high-degree vertices across different work-
ers. For each partition of the adjacency list of a high-degree
vertex, a mirror of the vertex is created in the worker that
keeps the partition. When a high-degree vertex broadcasts a
message to its neighbors, at most one message is sent to its
mirror at eachmachine. Then, themessage is forwarded to all
its neighbors in the partition of the adjacency list of the high-
degree vertex. This mechanism works well for algorithms
like PageRank, weakly connected components (WCC), and
single source shortest path (SSSP) with unit edge weights but
does not work well for some other algorithms like distributed
minimal spanning tree construction (DMST). Furthermore,
GPS applies a dynamic repartitioning strategy based on the
graph processing workload in order to balance the work-
load among all workers and reduce the number of exchanged
messages over the network. In particular,GPS exchanges ver-
tices between workers based on the amount of data sent by
each vertex. Similar to GPS,Mizan is an open-source project
developed in C++ by KAUST, in collaboration with IBM
Research [26]. Mizan’s dynamic repartitioning strategy is
based on monitoring the runtime characteristics of the graph
vertices (e.g., their execution time, and incoming and outgo-
ing messages) and uses this information, at the end of every
superstep, to construct amigration planwith the aims ofmin-
imizing the variations across workers by identifying which
vertices tomigrate andwhere tomigrate them to.Pregel+14 is
another Pregel-based project implemented in C/C++with the
aim of reducing the number of exchanged messages between
the worker nodes using a mirroring mechanism. In partic-
ular, Pregel+ selects the vertices for mirroring based on a
cost model that analyzes the tradeoff between mirroring and
message combining.

Pregelix15 is a large-scale graph processing platform that
applies set-oriented, iterative dataflow approach to imple-
ment the BSP-based Pregel programming model [6]. In
particular, Pregelix treats the messages and vertex states in
the graph computation as relational tupleswith awell-defined
schema and uses relational database-style query evaluation
techniques to execute the graph computation. For example,
Pregelix treats message exchange as a join operation fol-
lowed by a group-by operation that embeds functions which
capture the semantics of the graph computation program.
Therefore, Pregelix generates a set of alternative physical
evaluation strategies for each graph computation program
and uses a cost model to select the target execution plan
among them.The execution engine of Pregelix isHyracks [4],
a general-purpose shared-nothing dataflow engine. Given a
graph processing job, Pregelix first loads the input graph
dataset (the initial Vertex relation) from a distributed file
system, i.e., HDFS, into a Hyracks cluster and partitions it

14 http://www.cse.cuhk.edu.hk/pregelplus/.
15 http://pregelix.ics.uci.edu/.

using a user-defined partitioning function across the worker
machines. Pregelix leveragesB-tree index structures from the
Hyracks storage library to store partitions ofVertexonworker
machines. During the supersteps, at each worker node, one
(or more) local indexes are used to store one (or more) parti-
tions of the Vertex relation. After the eventual completion of
the overall graph computation, the partitionedVertex relation
is scanned and dumped back to HDFS. Giraph++ [43] has
proposed a think like a graph programming paradigm that
opens the partition structure to the users so that it can be uti-
lized within a partition in order to bypass the heavy message
passing or scheduling facilities. In particular, the graph-
centric model can make use of the off-the-shelf sequential
graph algorithms in distributed computation, allows asyn-
chronous computation to accelerate convergence rates, and
naturally support existing partition-aware parallel/distributed
algorithms.

4 GraphLab family

GraphLab [28] is an open-source large scale graph process-
ing project, implemented in C++, which started at CMU
and is currently supported by GraphLab Inc. Unlike Pregel,
GraphLab relies on the shared memory abstraction and the
GAS (Gather, Apply, Scatter) processing model which is
similar to but also fundamentally different from the BSP
model that is employed by Pregel. The GraphLab abstrac-
tion consists of three main parts: the data graph, the update
function, and the sync operation. The data graph represents
a user-modifiable program state that both stores the muta-
ble user-defined data and encodes the sparse computational
dependencies. The update function represents the user com-
putation and operates on the data graph by transforming data
in small overlapping contexts called scopes. In the GAS
model, a vertex collects information about its neighbour-
hood in the Gather phase, performs the computations in the
Apply phase, and updates its adjacent vertices and edges in
the Scatter phase. As a result, in GraphLab, graph vertices
can directly pull their neighbours’ data (via Gather) without
the need to explicitly receive messages from those neigh-
bours. In contrast, in the BSP model of Pregel, a vertex can
learn its neighbours’ values only via the messages that its
neighbours push to it. GraphLab offers two executionmodes:
synchronous and asynchronous. Like BSP, the synchronous
mode uses the notion of communication barriers while the
asynchronous mode does not support the notion of commu-
nication barriers or supersteps. It uses distributed locking to
avoid conflicts and to maintain serializability. In particular,
GraphLab automatically enforces serializability by prevent-
ing adjacent vertex programs from running concurrently by
using a fine-grained locking protocol that requires sequen-
tially grabbing locks on all neighbouring vertices.
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To avoid the imbalanced workload caused by high
degree vertices in power-law graphs, another member of the
GraphLab family of systems, PowerGraph [15], has been
introduced to tackle this challenge. In particular, PowerGraph
introduced a partitioning scheme that cuts the vertex set in
a way such that the edges of a high-degree vertex are han-
dled by multiple workers. Therefore, as a tradeoff, vertices
are replicated across workers, and communication among
workers are required to guarantee that the vertex value on
each replica remains consistent. PowerGraph eliminates the
degree dependence of the vertex-programby directly exploit-
ing the GAS decomposition to factor vertex-programs over
edges. Therefore, it is able to retain the think-like-a-vertex
programming style while distributing the computation of a
single vertex-program over the entire cluster. In principle,
PowerGraph attempts to merge the best features from both
Pregel and GraphLab. From GraphLab, PowerGraph inher-
its the data-graph and shared-memory view of computation
eliminating the need for users to specify the communication
of information. From Pregel, PowerGraph borrows the com-
mutative, associative gather concept. PowerGraph supports
both the highly-parallel bulk-synchronous Pregel model of
computation as well as the computationally efficient asyn-
chronous GraphLab model of computation.

Another member of the GraphLab family of systems is
GraphChi [27]. Unlike the other distributed members of the
family, GraphChi,16 implemented in C++, is a centralized
system that can process massive graphs from secondary stor-
age in a single machine. In particular, GraphChi relies on
a Parallel Sliding Windows (PSW) mechanism for process-
ing very large graphs from disk. PSW is designed to require
only a very small number of non-sequential accesses to the
disk, and thus it can perform well on both SSDs and tra-
ditional hard drives. PSW partitions the input graph into
subgraphs, called shards. In each shard, edges are sorted by
the source IDs and loaded into memory sequentially. In addi-
tion, GraphChi supports a selective scheduling mechanism
that attempts to converge faster on some parts of the graph
especially on those where the change on values is significant.
Themain advantage of systems likeGraphChi is that it avoids
the challenge of finding efficient graph cuts that are balanced
and can minimize the communication between the workers,
which is a hard challenge. It also avoids other challenges
of distributed systems such as cluster management and fault
tolerance.

5 Other systems

In addition to the families ofHadoop-, Pregel- andGraphLab-
based systems, some other systems have been introduced.

16 http://graphlab.org/projects/graphchi.html.

For example, Trinity17 is a memory-based distributed system
which focuses on optimizing memory and communication
cost under the assumption that the whole graph is parti-
tioned across a memory cloud [40]. Trinity is designed to
support fast graph exploration as well as efficient paral-
lel graph computations. In particular, Trinity organizes the
memory of multiple machines into a globally addressable,
distributed memory address space (a memory cloud) to sup-
port large graphs. In addition, Trinity leverages graph access
patterns in both online and offline computation to optimize
memory and communication for best performance. A Trin-
ity system consists of slaves, proxies, and clients. A Trinity
slave stores graph data and performs computation on the
data. Specifically, each slave stores a portion of the data
and processes messages received from other slaves, prox-
ies, or clients. A Trinity proxy only handles messages but
does not own any data. It usually serves as a middle tier
between slaves and clients. A Trinity client is responsi-
ble for enabling users to interact with the Trinity cluster.
It is a user interface tier between the Trinity system and
end-users. The memory cloud is essentially a distributed
key-value store which is supported by a memory storage
module and a message passing framework. Trinity sup-
ports a language called TSL (Trinity specification language)
that bridges the graph model and the data storage. Due to
the diversity of graphs and the diversity of graph applica-
tions, it is usually hard to support efficient general purpose
graph computation using a fixed graph schema. Therefore,
instead of using a fixed graph schemawith fixed computation
models, Trinity let users define the graph schema, com-
munication protocols, and computation paradigms through
TSL.

Signal/Collect18 is a vertex-centric programming model
where graph algorithms are decomposed into two oper-
ations on a vertex: (1) signaling along edges to inform
neighbours about changes in vertex state and (2) collect-
ing the received signals to update the vertex state [42]. In
the Signal/Collect programming model, all computations
are executed on a compute graph, where the vertices are
the computational units that interact by the means of sig-
nals that flow along the edges. Vertices collect the signals
and perform some computation on them and then signal
their neighbors in the compute graph. Signal/Collect sup-
ports both synchronous and asynchronous scheduling of the
signal and collect operations. It can also both parallelise
computations on multiple processor cores, as well as dis-
tribute computations over a commodity cluster. Internally,
the system uses the Akka19 distributed actor framework for
message passing. The scheduling of operations and mes-

17 http://research.microsoft.com/en-us/projects/trinity/.
18 https://code.google.com/p/signal-collect/.
19 http://akka.io/.
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sage passing is done within workers. A vertex stores its
outgoing edges, but neither the vertex nor its outgoing
edges have access to the target vertices of the edges. In
order to efficiently support parallel and distributed execu-
tions, modifications to target vertices from the model are
translated into messages that are passed via a message
bus. Every worker and the coordinator have one pluggable
message bus each that takes care of sending signals and
translating graph modifications to messages. At the execu-
tion time, the graph is partitioned by using a hash function
on the vertex ids. In addition, in order to balance the parti-
tions, Signal/Collect employs the optimizations introduced
by GPS [38] (see Sect. 3). The default storage implemen-
tation of Signal/Collect keeps the vertices in memory for
fast read and write access. In principle, graph loading can be
done sequentially from a coordinator actor or also in parallel,
where multiple workers load parts of the graph at the same
time. In addition, specific partitions can be assigned to be
loaded by particular workers so that each worker can load
its own partition which increases the locality of the loading
process.

Spark20 is a MapReduce-like general data-parallel com-
putation engine which was developed initially at UC Berke-
ley, in Scala, and is currently released as an Apache
project [46]. Spark’s programming model consists of: (1)
an in-memory data abstraction called resilient distributed
datasets (RDDs) and (2) a set of deterministic parallel opera-
tions on RDDs that can be invoked using data primitives,
such as map, filter, join, and groupBy. RDDs can either
be created from data residing in external storage, such as
a distributed file system, or can be derived from existing
RDDs by applying one of Spark’s data primitives. RDDs are
partitioned across a cluster of machines and each data prim-
itive on RDDs executes in parallel across these machines.
A Spark program is a directed acyclic graph of Spark’s
primitives, which are applied on a set of initial and derived
RDDs. Unlike MapReduce, programmers can perform iter-
ative computations very easily on Spark by using Scala’s
loop constructs, such as for and while. In addition, Spark
supports interactive computations through the Spark inter-
preter. GraphX [16] is a distributed graph engine built on
top of Spark. GraphX extends Sparks Resilient Distributed
Dataset (RDD) abstraction to introduce the Resilient Distrib-
uted Graph (RDG), which associates records with vertices
and edges in a graph and provides a collection of expres-
sive computational primitives. The GraphX RDG leverages
advances in distributed graph representation and exploits
the graph structure to minimize communication and storage
overhead. While the basic GraphX RDG interface naturally

20 https://spark.apache.org/.

expresses graph transformations, filtering operations, and
queries, it does not directly provide an API for recursive
graph-parallel algorithms. Instead, the GraphX interface is
designed to enable the construction of new graph-parallel
APIs. In addition, unlike other graph processing systems,
the GraphX API enables the composition of graphs with
unstructured and tabular data and allows the same physical
data to be viewed both as a graph and as collections without
data movement or duplication. GraphX relies on a flexi-
ble vertex-cut partitioning to encode graphs as horizontally
partitioned collections. By leveraging logical partitioning
and lineage, GraphX achieves low-cost fault tolerance. In
addition, by exploiting immutability, GraphX reuses indices
across graph and collection views and over multiple iter-
ations, reducing memory overhead and improving system
performance.

TurboGraph21 is a disk-based graph engine which is
designed to process billion-scale graphs very efficiently by
using modern hardware on a single PC [19]. Therefore,
similar to GraphChi, TurboGraph belongs to the central-
ized category of systems. In particular, TurboGraph is a
parallel graph engine that exploits the full parallelism of
multicore and FlashSSD IO in addition to the full over-
lap of CPU processing and I/O processing. By exploiting
multi-core CPUs, the system can process multiple CPU
jobs at the same time, while by exploiting the FlashSSDs,
the system can process multiple I/O requests in parallel
by using the underlying multiple flash memory packages.
In addition, the system applies a parallel execution model,
called pin-and-slide, which implements the column view of
the matrix-vector multiplication. By interpreting the matrix-
vector multiplication in the column view, the system can
restrict the computation to just a subset of the vertices, uti-
lizing two types of thread pools, the execution thread pool
and the asynchronous I/O callback thread pool along with
a buffer manager. Specifically, given a set of vertices, the
systems starts by identifying the corresponding pages for
the vertices and then pin those pages in the buffer pool. By
exploiting the buffer manager of the storage engine, some
pages that were read before can exist in the buffer pool,
and the system can guarantee that those pages pinned are
to be resident in memory until they are explicitly unpinned.
The system then issues parallel asynchronous I/Os to the
FlashSSD for pages which are not in the buffer pool. As
soon as the I/O request for each page is completed, a call-
back thread processes the CPU processing of the page. As
soon as either an execution thread or a callback thread fin-
ishes the processing of a page, it unpins the page, and an
execution thread issues an asynchronous I/O request to the

21 http://wshan.net/turbograph.
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Fig. 3 Timeline representation
of large scale graph processing
platform. Glow rectangles
denote Hadoop-based systems,
dashed-lined rectangles denote
Pregel-based family of system,
grey-filled rectangles denote
GraphLab-based family of
systems and white-filled
solid-lined rectangles denote
other systems

FlashSSD. With this mechanism, the system can slide the
processing window one page at a time for all pages cor-
responding to the input vertices. and can fully utilize both
CPU and FlashSSD I/O parallelism and fully overlap CPU
processing and I/Oprocessing. TheGRACE system,22 imple-
mented in C++, is another centralized system that has been
introduced as a general parallel graph processing framework
that provides an iterative synchronous programming model
for developers. GRACE follows batch-style graph program-
ming frameworks to insulate users from low level details by
providing a high level representation for graph data and let-
ting users specify an application as a set of individual vertex
update procedures. The programming model captures data
dependencies using messages passed between neighboring
vertices like the BSPmodel. GRACE combines synchronous
programming with asynchronous execution for large-scale
graph processing by separating application logic from exe-
cution policies.

Figure 3 provides a timeline representation of the scal-
able graph processing systems. It is notable that there
has been increasing interest from both industry and acad-
emia (especially starting from 2010) on developing and
tuning graph-processing algorithms and platforms. Hence,
users has started to face the daunting challenge of select-
ing an appropriate platform for their specific application
and requirements. In practice, having a limited under-
standing of the performance characteristics of the graph-
processing platforms can lead to significant time- and
effort-loss, and may eventually even limit the growth of
the entire domain community. In the following, we report
about our experimental evaluation and analysis of the per-
formance characteristics for five popular systems in this
domain.

22 http://www.cs.cornell.edu/bigreddata/grace/.

6 Experimental setup

6.1 Systems and datasets

In our experimental evaluation, we analyze and compare the
performance characteristics of five popular systems which
the research and industrial community are currently using
and building upon, namely,ApacheGiraph,GPS,GraphLab,
GraphChi and GraphX. The first two systems belong to the
Pregel-based family of systems where Giraph represents
the popular open source clone implementation for Pregel
while GPS is a growing project that has a rapidly increas-
ing user base and one of the popular optimization of the
Giraph systems. GraphLab and GraphChi represent the
Graphlab-based family of systems where Graphlab is a
distributed member while GraphChi is a centralized mem-
ber of the family. Finally, GraphX has been selected as
emerging competitor to these systems which is based on
a the rapidly growing SPARK system. It should be also
noted that we have excluded the Hadoop-based family of
systems from our experiments as they have not shown any
usage popularity in the domain of large scale processing of
systems. In addition, several studies have shown that the
performance inadequacy of Hadoop-based algorithms graph
processing [30]. It should be also noted that all selected sys-
tems are distributed systems except GraphChi which has
been selected as a representative of centralized scalable graph
processing systems.

In our experiments for evaluating the performance char-
acteristics of the selected scalable graph processing systems,
we have been using the following datasets:

• Amazon dataset23: This dataset consists of reviews from
the popular Amazon E-commerce website. The data span

23 http://snap.stanford.edu/data/web-Amazon.html.
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Table 1 Characteristics of the used graph datasets

Dataset name Number of nodes Number of edges Size on disk

Wikitalk 2,394,385 5,021,410 1 GB

Amazon 21,365,698 140,015,189 18 GB

Citation 3,774,768 16,518,948 43 GB

Friendster 65,608,366 1,806,067,135 120 GB

LUBM 30K 12 ×108 3 ×109 700 GB

LUBM 40K 2 ×109 5 ×109 950 GB

LUBM 50K 28 ×108 7 ×109 1.2 TB

a period of 18 years (Jun 1995–Mar 2013), including
about 35 million reviews which include product and
user information, ratings, and a plain text review. The
dataset include 34,686,770 reviews, 6,643,669 users and
2,441,053 products.

• Friendster dataset24: the dataset represents an on-line
social gaming network where users can form friendship
edge each other.

• Citation dataset25: the U.S. patent dataset spans 37 years
(1963–1999), and includes all the patents granted during
that period, totaling 3,923,922 patents. The citation graph
includes all citations made by patents granted between
1975 and 1999, totaling 16,522,438 citations.

• Wikitalk dataset26: Wikipedia is a well-known open
encyclopedia which has been established collaboratively
by volunteers across theworld. In this encyclopedia, each
registered user has a talk page where she and other users
can edit in order to communicate and discuss updates to
various articles on Wikipedia. The dataset used a com-
plete dump of the Wikipedia page edit history (January
2008) and created a network that contains all the users
and discussion from the inception of Wikipedia till Jan-
uary 2008.

• LUBM dataset27: This datasets offers an ontology for
academic information (e.g., universities) which is aug-
mented with a data generator that can generate synthetic
datasets with different sizes via controlling the number of
universities. For the sake of conducting scalability exper-
iment, we used the LUBM data generator to generate
three datasets with sizes of 30 K, 40 K and 50 K univer-
sities resulting in 700 GB, 950 GB and 1.2 TB of data,
respectively.

Table 1 describes the details of the different datasets used
in our experiments.

24 https://snap.stanford.edu/data/com-Friendster.html.
25 https://snap.stanford.edu/data/cit-Patents.html.
26 https://snap.stanford.edu/data/wiki-Talk.html.
27 http://swat.cse.lehigh.edu/projects/lubm/.

6.2 Workload setup

In order to vary our tests for the different performance char-
acteristics of the evaluated systems, we built a workload that
consists of the following three main graph computation and
processing algorithms:

• PageRank: A graph computation that assigns a value to
each vertex in the graph according to the number of its
incoming/outgoing edges [31].

• Shortest Path: A graph processing operation to find the
path between two vertices in a graph such that the sum
of the weights (i.e., number of edges) of its constituent
edges is minimized. In our workload, we generated ten
instances of this operation. Five instances are used to find
the shortest connecting paths between two user nodes and
five instances are used to find the shortest connecting
paths between two product nodes.

• Pattern Matching: A graph processing operation to find
the existence(s) of a pattern graph (e.g. path, star) in the
large graph. We have also generated ten instances of this
operation in our workload with different patterns based
on the user or product information.

• Triangle Count: A graph computation that counts the
number of triangles in the graph. In other words, it com-
putes the intersection of each vertex’s neighbor list with
the neighbor list of each of its neighbors, for all vertices
in the graph.

• Connected Component: A graph computation that iden-
tifies the subgraphs in which any two vertices are
connected to each other by paths, and which is connected
to no additional vertices in the supergraph. In particular,
connected components can be considered as a special
graph reachability operation that labels all vertices in a
connected component with the same label.

The evaluation workload has been implemented using the
native API of the evaluated systems. Our implementation of
the PageRank and Shortest Path tasks have followed
the implementation presented in the original
Pregel Paper [30]. For the implementation of the
Pattern Matching task, we have followed the approach
presented by Fard et al. [13]. Finally, for the imple-
mentation of the Triangle Count and Connected
Component, we have followed the approach presented by
Ediger and Bader [11]. We have released our implementa-
tions for the different algorithms using the different evaluated
systems on (https://github.com/GraphExperiments/). The
algorithms of Giraph and GPS are implemented in Java.
The algorithms of GraphLab and GraphChi are imple-
mented in C++. The algorithms of GraphX are implemented
in Scala. Table 2 illustrates the version of the tools, Hadoop
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Table 2 Used software environments

System Version Hadoop version Java version

Apache Giraph 1.1.0 2.6.0 7

GraphX 1.3.0 2.6.0 7

GPS Revision 112 0.20.203.0 7

GraphLab 1.3 2.6.0 7

and Java environments that have been used for the implemen-
tation and execution of our experiments.

6.3 Testing environment

We have employed Amazon AWS cloud services for con-
ducting our experiment. Our experiments on the distributed
graph processing have utilized a computing cluster that con-
sists of 15 m3.2xLarge Ubuntu 14.04 EC2 instances.28 In
addition, we have used a single Ubuntu 14.0 c4.8xlarge EC2
instance for evaluating the centralized GraphChi system.
For all distributed graph processing systems, the Java heap
memory has been set to 4 GB. All of the experiments have
been running on EC2 instances in theAmazon Sydney region
in order to reduce the effect of potential differences of hard-
ware specifications in different regions. Furthermore, in our
evaluation, we were concerned about the variability of per-
formance in EC2 instances [39]. Therefore, each test has
been executed 5 times where the longest and shortest exe-
cution times for each test were dropped and the average
of the remaining three execution times were taken as the
results.

EBS volumes have been used as the storage medium for
the EC2 instances. Since the maximum capacity of an EBS
volume is 1TBand the size of someof the datasetswhich have
been used in our experiments is larger than or nearly equal
to 1TB, we have employed RAID0 configuration in order to
enable the VMs to utilise more storage and avoid failure due
to the low disk space condition.We have employed the Ama-
zon AWS Cloud watch service29 for monitoring the cluster.
AWS Cloud watch was activated for all the instances during
the experiments and we have analysed the AWS cloud watch
information for CPU Usage, Network traffic, I/O usage and
memory usage. AWS Cloud watch does not support memory
usage by default. Therefore, we used a script30 provided by
Amazon support in order to enable the instances to report
their memory usage to AWS Cloud watch.

28 Please refer to a table with specification of EC2 instances on http://
aws.amazon.com/ec2/instance-types/.
29 http://aws.amazon.com/cloudwatch/.
30 http://docs.aws.amazon.com/AmazonCloudWatch/latest/
DeveloperGuide/mon-scripts-perl.html.

6.4 Performance metrics

In Giraph and GraphLab, the execution of graph algorithms
goes through three main steps: reading the input graph flow
through the execution engine, getting the graph processed,
and writing the result as output graphs or values. Therefore,
in order to measure and compare the performance character-
istics of the two evaluated systems, we used the following
metrics:

• Reading Time: represents the required time for reading
the input graph data from the underlying storage layer,
partitioning them and loading them into the memory of
the different nodes of the computing cluster.

• Processing Time: represents the required time for execut-
ing the graph operation or computation. In particular, this
time includes local vertex computation, barrier synchro-
nization, and communication.

• Writing Time: represents the required time for writing the
result to the underlying storage.

• Total Execution Time: represents the total time for exe-
cuting the graph operation or computation. In particular,
it is the total sum of the reading time, processing time
and the writing time.

• CPU Utilization: represents the average per-node CPU
utilization across all nodes of the computing cluster.

• RAMUsage: represents the average per-node main mem-
ory usage across all nodes of the computing cluster.

• Network Traffic: represents the average per-node usage of
network bandwidth formessage and data communication
across all nodes of the computing clutser.

7 Experimental results

7.1 Execution times

Figures 4, 5, 6, 7 and 8 illustrate the performance compar-
ison between our evaluated systems using our experimental
graph datasets (Table 1) and the five tasks of our workload:
PageRank (Fig. 4), Shortest Path (Fig. 5), Pattern Match-
ing (Fig. 6), Connected Component (Fig. 7) and Triangle
Count (Fig. 8) algorithms. As discussed earlier, the execution
of graph algorithms in the evaluated systems goes through
three main steps: reading the input, processing the graph and
writing the results. As shown in Figs. 4, 5, 6, 7 and 8 , in
our experiments, in addition to measuring the total execution
time for each task, we have measured the execution times
for each of the processing phases in order to characterize
the weight for each of these phases with regard to the total
execution times. Some key remarks about the results of our
experiments are given as follows:
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Fig. 4 The execution times metrics for the PrageRank algorithm for all systems using the different datasets
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Fig. 5 The execution times metrics for the Shortest Path algorithm for all systems using the different datasets
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Fig. 6 The execution times metrics for the Pattern Matching algorithm for all systems using the different datasets
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Fig. 7 The execution times metrics for the Connected Component algorithm for all systems using the different datasets
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Fig. 8 The execution times metrics for the Triangle Count algorithm for all systems using the different datasets
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• The weight of the writing phase is nearly negligible for
all systems in all tasks and over all datasets. In particular,
the execution time of the writing phase is not consum-
ing any significant time in comparison to the other two
phases: reading and processing. For most of the cases,
the processing phases is the most time consuming phase
with respect to the total execution time. In very few cases
of our experiments, the execution time for the reading
phase has exceeded the execution time of the processing
phase. In particular, in the Pattern Matching task
(Fig. 6), for the Friendster (Fig. 6d), LUBM-40K
(Fig. 6f) and LUBM-50K (Fig. 6g) datasets, the execu-
tion time of the reading phase has exceeded the execution
time for the processing phase in all distributed sys-
tems (GraphX, Giraph, GPS, GraphLab) while in the
LUBM-30K (Fig. 6e) dataset, this case happened only
for the Giraph, GPS and GraphLab systems.

• Asexpected, the evaluated centralized system,GraphChi,
has shown slower performance in comparison to the rest
of the evaluated distributed large scale graph process-
ing systems. For example, the total execution times
of the GraphX system has shown to be, on aver-
age, about two times faster than GraphChi on the
PageRank (Fig. 4h),Triangle Count (Fig. 8h) and
Connected Components (Fig. 7h) tasks and about
three times faster on theShortest Path (Fig. 5h) and
Pattern Matching (Fig. 6h) tasks.

• Among the distributed graph processing systems, on
average (Figs. 4h, 5h, 6h, 7h, 8h) GraphX, has shown to
be the most efficient in terms of the total execution time
for all graph processing tasks. On average, the Giraph
andGraphLab systems have shown very comparable per-
formance in all tasks while the GPS systems has been
slightly slower than them.

• For the PageRank task (Fig. 4), the GraphX system
has shown to be the most efficient for processing all
datasets while the GraphChi system has shown to be the
slowest on processing all datasets. The GraphLab sys-
tem has shown to be slightly outperforming the Giraph
and GPS systems on processing the Amazon (Fig. 4b),
Friendster (Fig. 4d) and LUBM-50K (Fig. 4g)
datasets while the Giraph system has shown to be
slightly outperforming the GraphLab and GPS systems
on processing the Wikitalk (Fig. 4a), Citation
(Fig. 4c), LUBM-30K (Fig. 4e) and LUBM-40K (Fig. 4f)
datasets.

• For the Shortest Path task (Fig. 5), the GraphX
systemhas also shown to be themost efficient for process-
ing all datasets while the GraphChi system has also
shown to be the slowest on processing all datasets. The
GraphLab systemhas shown to be slightly outperforming
theGiraph andGPS systems on processing the Amazon
(Fig. 5b),Citation (Fig. 5c),Friendster (Fig. 5d),

LUBM-30K (Fig. 5e) and LUBM-40K (Fig. 5f) datasets
while theGiraph system has shown to be slightly outper-
forming the GraphLab and GPS systems on processing
the Wikitalk (Fig. 5a) and LUBM-50K (Fig. 5g)
datasets.

• For the Pattern Matching task (Fig. 6), similar to
the previous tasks, the GraphX system has shown to
be the most efficient for processing all datasets while
the GraphChi system has shown to be the slowest on
processing all datasets. TheGraphLab system has shown
to be slightly outperforming theGiraph andGPS systems
on processing the Wikitalk (Fig. 6a), Citation
(Fig. 6c), LUBM-30K (Fig. 6e) and datasets while the
Giraph system has shown to be slightly outperform-
ing the GraphLab and GPS systems on processing the
Amazon (Fig. 6b),Friendster (Fig. 6d),LUBM-40K
(Fig. 6f) and LUBM-50K (Fig. 6g) datasets.

• For the Connected Component task (Fig. 7), The
GraphLab system has been outperforming the Giraph
and GPS systems on processing all datasets except for
the Wikitalk dataset (Fig. 7a) where the Giraph sys-
tem has shown better performance. Similarly, for the
Triangle Count task (Fig. 8), The GraphLab sys-
tem has been outperforming theGiraph andGPS systems
on processing all datasets except for the Friendster
dataset (Fig. 8d) where the Giraph system has shown
better performance.

7.2 RAM usage, network traffic and CPU utilization

Figure 9 illustrates the comparison between our evaluated
systems in terms of themain memory usagemetric using our
experimental graph datasets and the five tasks of our work-
load: PageRank (Fig. 9a), Shortest Path (Fig. 9b), Pattern
Matching (Fig. 9c),Connected Component (Fig. 9d) and Tri-
angle Count (Fig. 9e) algorithms. On average (Fig. 9f), the
GraphX system has shown the lowest average RAM usage
slightly outperforming theGiraph,GraphLab andGPSwhile
the GraphChi system, as expected as a centralized system,
has shown the highest average RAM usage. In principle, the
consumption of the RAM usage has been varying from one
experiment to another. For example, for the Page Rank
task (Fig. 9a), the RAM usage for the GraphX system has
been higher than the Giraph and GPS systems for process-
ing the Amazon, Friendster, Citation, LUBM-30K,
LUBM-40K and LUBM-50K datasets while it has been lower
for processing the Wikitalk dataset. For example, for
the Shortest Path task (Fig. 9b), GraphX system has
been lower than the Giraph and GPS systems for processing
all datasets. For the Pattern Matching task (Fig. 9c),
GraphX system has been higher than the Giraph and GPS
systems for processing all datasets except the LUBM-50K
dataset. Given that each node of cluster has 30 GB of main
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Fig. 9 The Main Memory Usage metric for all systems using the different algorithms and different datasets
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memory, we believe that the evaluated systems could have
better utilized the availablemainmemory for improving their
total execution times. On average, the average utilization of
the available memory does not exceed 30%.

Figure 10 illustrates the comparison between our evalu-
ated systems in terms of the network traffic metric using our
experimental graph datasets and the five tasks of our work-
load: PageRank (Fig. 10a), Shortest Path (Fig. 10b), Pattern
Matching (Fig. 10c), Connected Component (Fig. 10d) and
Triangle Count (Fig. 10e) algorithms. In this experiment, we
have excluded the GraphChi systems as it is a centralized
system that involves no data communication between the
nodes. On average (Fig. 10f), the GraphX system has shown
the lowest netwrok traffic slightly outperforming the Giraph
andGraphLab systems while theGPS system has shown the
highest network traffic. The comparison between our eval-
uated systems in terms of the network traffic metric using
our experimental graph datasets is illustrated in Fig. 11 for
the five tasks of our workload: PageRank (Fig. 11a), Short-
est Path (Fig. 11b), Pattern Matching (Fig. 11c), Connected
Component (Fig. 11d) and Triangle Count (Fig. 11e) algo-
rithms. On average (Fig. 11f), GraphLab system has shown
the lowest CPU utilization slightly lower the Giraph and
GraphX systems while the GraphChi system has shown the
highest CPU utilization.

7.3 Lessons and experience

During our experiments, we have faced a number of chal-
lenges that provided us with some lessons and experience
which we will discuss in this section. For example, one of
the challenges is configuring the Java heap memory size. In
principle, there are some formulas for setting the Java heap
memory. However, these formulas are not 100% accurate. In
practice, insufficient Java heap memory can negatively affect
the performance as CPU will be busy with garbage collec-
tion most of the time. On the other hand, over allocation of
heap memory prevents the system from using the memory
for other tasks. Several pre-experiment tests have been con-
ducted in order to find adequate configuration for the Java
heap size.

In principle, installing and setting up the GraphX,
GraphChi and GraphLab systems is a fairly straightforward
process. For example, theGraphLab system provides scripts
to build a cluster on Amazon Cloud service which makes
building of a cluster for this purpose on AWS a straightfor-
ward task. We needed to build and compile the evaluated
systems before we are able to use them. We have faced some
issues with compiling the GraphLab and GraphChi systems
due to their dependency on several tools. We haves searched
several forums and also did many trial and errors processes
to compile them. On the other hand, compiling the Apache

Giraph with different Hadoop versions and the GraphX sys-
tem has been relatively straightforward.

In practice, an important feature that facilitates conducting
the experiments and debugging process is the logging sup-
port and the provided outputs of the experimental systems.
Apache Giraph employs the Hadoop logging mechanism
and generates useful information for each superstep which
enabled us to track the different sections of the experi-
ments more accurately. In addition, there are many available
monitoring tools (e.g., Ambari31) for the Hadoop frame-
work which can be used for this purpose. Even though
other systems also include their own logging solutions, we
realized that the Apache Giraph’s logging infrastructure is
more adequate than other systems, especiallyGraphLab and
GraphChi.

Regarding the provided API of the various systems,
we found that implementing complicated algorithm and
reader/writer (i.e., the part of the implementation which is
responsible for reading a dataset, loading a graph into the
system and writing the output to the disk) with the GraphX
andApache Giraph systems is not complicatedmainly due to
the nature of Java language (the API language of GraphX is
Scala and its syntax is close to Java). In addition, they enable
you to run the program locally which makes the debugging
procedure quicker. However, we have found that it is a bit
more complicated to run the programs with the GPS and
GraphLab systems locally.

Finally, both of the Apache Giraph and GPS systems are
designed based on the Hadoop framework infrastructure and
they are similar to each other in many aspects, for exam-
ple, the node and edge loaders. Since the performance of
Hadoop is affected by its configuration and it has a number
of different parameters (e.g., number of mappers, number
of reducers, maximum memory for mapper and reducers).
Thus, achieving a high performance is not a straightforward
process and optimally configuring these metrics needs its
own research [21]. In addition, an appropriate configuration
for these parameters does not only depend on the size and the
type of cluster (i.e, configuration of VMs in a cluster) but also
depends on the format, size of dataset and the type of algo-
rithms. These are additional important parameters that needs
to be considered for adequately configuring the systems.

8 Open challenges

In this section, based on our survey and experimental study,
we shed the lights on some of the research challenges which,
we believe, need to be addressed in order to ensure that the
vision of designing and implementing successful and scal-
able graph processing platform can be achieved and can

31 http://hortonworks.com/hadoop/ambari/.
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Fig. 10 The Network Traffic metric for all systems using the different algorithms and different datasets
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Fig. 11 The CPU Utilization metric for all systems using the different algorithms and different datasets
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significantly contribute to the goal of conducting efficient and
effective graph analytics in different application domains.
For example, in the early days of the Hadoop framework,
the lack of declarative languages to express the large scale
data processing tasks has limited its practicality and the wide
acceptance and the usage of the framework [37]. Therefore,
several systems (e.g., Pig, Hive, Tenzing [7], HadoopDB [1])
have been introduced to the Hadoop stack to fill this gap
and provide higher-level languages for expressing large scale
data analysis tasks on Hadoop. In practice, these languages
have seen wide adoption in the industry and research com-
munities. Currently the systems/stacks of large scale graph
processing platforms are suffering from the same challenge.
Therefore, we believe that it is beyond doubt that high level
language abstractions that ease the user’s job for expressing
their graph processing jobs and enable the underlying sys-
tems/stack to perform automatic optimization are crucially
required and represent an important research direction to
enrich this domain.

In practice, one of the possible scenarios is that users need
to execute a computation that combines graph analytics with
other analytics techniques. Currently, most of the large scale
graph processing platforms have the limitation that they are
not able to connect their graph processing capabilities with
the vast ecosystem of other analytics systems. Teradata Aster
6.0 [41] have started to tackle this challenge by extending its
analytics capabilities with a multi-engine processing archi-
tecture which supports bulk synchronous parallel execution,
and a specialized graph engine that enables iterative analysis
of graph structures. In particular, it allows that graph analyt-
ics functions written to the vertex-oriented API as exposed
by the graph engine to be invoked from the context of an SQL
query and composed with existing SQL-MR functions [14].
However, we believe that further development and research
by the different graph processing platforms is still required
to tackle this important challenge.

In general, parallelizing graph algorithms with efficient
performance is a very challenging and tricky task. In princi-
ple, the computation cost is typically driven by the structure
of node-edge relations of the underlying graph. Thus, the
degree of parallelism is often affected by the number of
computation per graph’s node and the communication over-
head especially when many edges spawn different graph
chunks. In addition, given the common lack of structure of
the computation, it becomes very challenging to find the right
graph partitioning strategy that can maximize the locality
of processing and achieve good load balancing especially
with the wide spectrum of graph characteristics of different
application domain. Therefore, we believe that it is crucially
required to develop adaptive techniques that attempts to auto-
matically optimize the degree of parallelism and partitioning
mechanism depending on the characteristics of the underly-
ing graph and with a minimal involvement from the end user.

With the emergence of big graph processing platforms,
several studies have attempted to assess the different per-
formance characteristics of these systems using different
algorithms, datasets, computing resources and metrics (see
Sect. 9). In principle, benchmarks need to play an effective
role in empowering users to make better decisions regarding
choosing the adequate platforms that suit their application’s
requirements. However, in general, designing a good bench-
mark is a challenging task due to the many aspects that
should be considered which can influence the adoption and
the usage scenarios of the benchmark. Unfortunately, most of
the reported benchmarking studies have been self-designed
and there is a clear lack of standard benchmarks that can
be employed in this domain. This is a clear gap that we sug-
gest to attract more attention from the research community in
order to guide and improve the significance of the outcomes
of such evaluation and benchmarking studies.

9 Related work

With the growing number of large scale graph processing
systems, users started to face the daunting challenge of select-
ing an appropriate platform for their specific application and
requirements. Guo et al. [18] have identified three dimen-
sions of diversity that complicate the process of gaining
knowledge and deeper understanding for the performance
of graph-processing platforms: dataset, algorithm, and plat-
form diversity. Dataset diversity is the result of the wide set
of application domains for graph data. Algorithm diversity is
an outcome of the different goals of processing graphs (e.g.
PageRank, subgraph matching, centrality, betweens). Plat-
form diversity is the result of the wide spectrum of systems
which are influenced by the wide diversity of infrastructure
(compute and storage systems). This has led to platforms
which areHadoop-based, Pregel-based,GraphLab-based and
many other systems.

To alleviate this challenge and with the crucial need to
understand and analyze the performance characteristics of
existing big graph processing systems, several recent stud-
ies have been conducted that attempt to achieve this goal.
For example, in our previous work, Barnawi et al. [3] have
conducted a study to evaluate the performance characteris-
tics of two popular systems, namely, Giraph and GraphLab.
The experiments of this study have used three scaling sizes
of the Amazon dataset32 which consists of reviews from the
popular Amazon E-commerce website. The benchmarking
workload of the study included three graph computation and
processing algorithms: PageRank, shortest path and pattern
matching. All the experiments of this study have been con-
ducted on the Amazon EC2 platform. In particular, we used a

32 http://snap.stanford.edu/data/web-Amazon.html.
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cluster of 6 large instances for the shortest path andPageRank
algorithms. For the pattern matching algorithm, they used a
cluster of 7 x-large instances. The study used four metrics
to measure and compare the performance characteristics of
the two evaluated systems: reading time which represents
the required time for reading the input graph data from the
underlying storage layer, partitioning them and loading them
into thememory of the different nodes of the computing clus-
ter, processing time which represents the required time for
executing the graph operation or computation, writing time
which represents the required time forwriting the result to the
underlying storage and total execution timewhich represents
the total time for executing the graph operation or computa-
tion. The results from this study show that the performance
of the two systems is very comparable for all algorithms or
metrics and there is no clear winner. The study also show
that the performance of both systems has been found to scale
well with the size of the input graph.However, neither system
uses the available memory sizes on the computing clusters
efficiently. The results also show that the performance of the
underlying storage system can clearly affect the performance
of the reading phase and consequently the total execution
time of the graph processing task. For example, the perfor-
mance of Giraph system using HDFS as its storage system,
significantly outperforms HBase storage system. However,
the processing phase of the graph algorithms is considered
as the dominant phase in consuming the total execution time.
In this work, we have extended our experimental evaluation
to include three more systems, six more datasets, two more
graph algorithms and three more metrics. Such variety in the
different experimental settings have helped us to reveal more
insights and build a more comprehensive picture about the
evaluated systems.

Han et al. [20] have conducted another study Giraph,
GPS,Mizan, and GraphLab using four different algorithms:
PageRank, single source shortest path, weakly connected
components, and distributedminimum spanning tree on up to
128 Amazon EC2 machines. The experiments used datasets
which are obtained from SNAP33 (Stanford Network Analy-
sis Project) and LAW34 (Laboratory for Web Algorithms).
The study has considered different metrics for comparison:
total time which represents the total running time from start
to finish and includes both of the setup time, the time taken
to load and partition the input graph as well as write the
output, and computation time, which includes local vertex
computation, barrier synchronization, and communication.
In addition, the study has considered the memory usage
and total network usage metrics for its benchmarcking. The
results of this study show that Giraph and GraphLab’s syn-
chronous mode have good all-around performance while

33 http://snap.stanford.edu/data/.
34 http://law.di.unimi.it/datasets.php.

GPS excels at memory efficiency. The results also show that
the synchronous mode of Giraph, GPS, and GraphLab out-
performs that of Mizan in all experiments. The results also
identified thatGPS’sLALPanddynamicmigration optimiza-
tions provide little performance benefit, and that GraphLab’s
asynchronous mode has poor scalability and performance
due to communication overheads. The study has also identi-
fied several potential areas for improvement. For example, for
Giraph, the authors suggest using better workload balancing
to reducemaximummemory usage, and a need for adjacency
list data structures that are both mutation and memory effi-
cient. For GPS, the study suggests exploiting data locality to
improve the scalability of setup times, and avoiding message
polling to minimize superstep overheads. For Mizan, adding
system and message processing optimizations to improve
performance and scalability. Finally, for GraphLab, the study
suggested reducing communication overheads for its asyn-
chronous mode.

Another benchmarking study has been conducted by Lu et
al. [29] to evaluate the performance characteristics ofGiraph,
GraphLab/ PowerGraph, GPS, Pregel+, and GraphChi. The
study has used large graphs with different characteristics,
including skewed (e.g., power-law) degree distribution, small
diameter (e.g., small-world), large diameter, (relatively) high
average degree, and random graphs. The study has also used
several evaluation algorithms including PageRank, diameter
estimation, single source shortest paths (SSSP) and Graph
Coloring. The experiments of the study were running on a
cluster of 15 machines, each with 48 GB of main memory.
The results of the study has shown that there is no single sys-
tem that has superior performance in all cases but GPS and
Pregel+ have better overall performance than GraphLab and
Giraph. The authors explain that Pregel+ has better perfor-
mance because of the combination of mirroring and message
combining techniques while GPS also benefits significantly
from its LALP technique. They also mentioned that Giraph
generally has poorer performance because it does not employ
any specific technique for handling skewed workload and
mainly relies on the combiner for message reduction.

Finally, Guo al. [17] have conducted a benchmarking
study which considered a set of various systems which are
more focussed on general purpose distributed processing
platforms. In particular, the study has considered the fol-
lowing systems:Hadoop, YARN35 which represents the next
generation of Hadoop that separates resource management
and job management, Stratosphere36 which is an open-
source platform for large-scale data processing [2], Giraph,
GraphLab and Neo4j37 which represents one of the popu-

35 http://hadoop.apache.org/docs/current/hadoop-yarn/
hadoop-yarn-site/YARN.html.
36 http://stratosphere.eu/.
37 http://neo4j.com/.
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lar open-source graph databases. The study has focused on
four benchmarking metrics: raw processing power, resource
utilization, scalability and overhead. The study has used
seven different datasets and five algorithms including general
statistics algorithm, breadth-first search, connected compo-
nent, community detection and graph evolution. Similar to
the other studies, the results of this study have shown that
there is no overall clear winner among the evaluated sys-
tems. However, the results have shown that Hadoop is the
worst performer in all cases. The results have also shown
that multi-iteration algorithms suffer from additional per-
formance penalties in Hadoop and YARN. The results also
have shown that data ingestion takes much longer for Neo4j
than for HDFS. In addition, the data ingestion time of HDFS
increases nearly linearly with the graph size and the per-
centage of overhead time in execution time is diverse across
the platforms, algorithms, and graphs. We believe that all of
these studies have just scratched the surface on the process
of evaluating and benchmarking big graph processing sys-
tems. More comprehensive studies which track the diversity
challenge of dataset, algorithm, metric, and platform are still
required in order to have a deeper andmore solid understand-
ing of the large scale graph processing and analytics domain.
There is still a big room for improvement in this direction.

We believe that the current study is more comprehensive
than [17,20,29] in terms of attempting to cover the spec-
trum of popular family of systems in the large scale graph
processingdomain. In addition, it is richer in termsof the used
experimental datasets and benchmarking tasks. However, we
believe that there is still room for more benchmarking and
experimental studies for covering other systems with other
datasets and benchmarking tasks.

10 Conclusion

Recently, the usage of large scale graph processing platforms
have rapidly grown in both of academia and industry for sev-
eral purposes and application domains. This is expected to
continue in the future as more and more problems require
the use of big graphs and thus also the ability to handle
them effectively. To this end, we presented a thorough sur-
vey of the state-of-the-art of the emerging platforms in this
domain. We have also conducted an extensive experimen-
tal study for the performance characteristics, using several
metrics, of five popular systems in this domain using various
datasets and benchmarking tasks. The results of our experi-
ments have shown some interesting characteristics about the
performance of the evaluated systems. In addition, our analy-
sis for the detailed results has provided a set of useful insights.
Finally, we identified and presented a set of the current open
research challenges and also presented some of the promis-
ing directions for future research in the domain of large scale

graph processing. In general, we believe that there are still
many opportunities for new innovations and optimizations in
the domain of large scale graph processing. Hence, we con-
sider this article as an important step on helping researchers
to understand the domain and guiding them towards the right
direction for improving the state-of-the-art.
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