
Cluster Comput (2015) 18:1157–1169
DOI 10.1007/s10586-015-0467-3

A data transmission algorithm for distributed computing system
based on maximum flow

Xiaolu Zhang1 · Jiafu Jiang1 · Xiaotong Zhang1 · Xuan Wang1

Received: 29 March 2014 / Revised: 20 May 2015 / Accepted: 1 June 2015 / Published online: 15 July 2015
© Springer Science+Business Media New York 2015

Abstract Data skew can lead to load imbalance and longer
computation time in the distributed computing system. To
avoid data skew and reduce the data computation time, it
is necessary to transmit the data to appropriate machines,
this may however take too much network resources. How
to balance the computational resources and the network
resources is a problem. In this paper, we introduce a com-
putation model called distributed two-phase model, in which
the process of a task can be divided into two independent
phases: data transmission and data computation. Suppose an
upper bound of relative computation time is given, we show
how to schedule data transmission with minimum resources,
such as data transmission time and occupied bandwidth, to
meet the demand. In this paper, we present a novel algorithm
to minimize data transmission time and network bandwidth
usage in the data transmission phase, with the conditions that
an upper bound of relative computation time of data compu-
tation phase is given. Moreover, the number of nodes that
participate in data computation phase is also reduced, in this
way, the computational resources are saved. The simulation
results show that the occupied bandwidth can be reduced
effectively (about 70 %) in the situation of large-scale data
sets and large number of nodes. Our algorithm is also shown
to be available in replication situation.

B Xiaotong Zhang
zxt@ies.ustb.edu.cn

Xiaolu Zhang
zxl0714@163.com

Jiafu Jiang
jiangjiafu1989@gmail.com

Xuan Wang
ustb_wx@163.com

1 University of Science and Technology Beijing, Beijing, China

Keywords Distributed computing system · Minimize
bandwidth usage · Data transmission time

1 Introduction

Data skew can result in load imbalance and longer compu-
tation time in the distributed computing system. To avoid
data skew, it is necessary to transmit the data to appropri-
ate machines and process the data concurrently. Data skew
has been widely studied in the literature [25], and a large
number of skew aware load balancing algorithms have been
developed [15,22,24], some of which are quite successful.
However, none of these algorithms considers the bandwidth
usage. Resources of a distributed system can be divided into
computational resources and network resources. Due to the
rapid development of the microprocessor, the effects of the
computation delay on the overall performance of the sys-
tem are becoming less significant [32]. On the other hand,
the communication delay still has a major effect on the sys-
tem performance and can be a major problem especially in
a system with many nodes and a high communication fre-
quency [33]. Making the data distributed evenly across a
cluster will take too much network resources. Therefore the
trade-off between the computational resources and the net-
work resources has to be considered.

Suppose an upper bound of relative computation time is
given, there can be a reasonable data transmission path so
that the computation time will not exceed the given upper
bound. Although different distributed systems may have dif-
ferent frameworks,most of themhave the samemodel, which
contains two basic processes: data transmission and data
computation. This model has been used in many recent dis-
tributed systems such as Dryad [19] and Google MapReduce
[8]. To simplify the model, two rules are added to it: (1) data

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-015-0467-3&domain=pdf

1158 Cluster Comput (2015) 18:1157–1169

computation phase of a task cannot start until all the data
of the task are transmitted to the appropriate machines; (2)
the data in different machines can be processed concurrently
without any influence on each other. The first rule seems to
be too strong, but in fact, there are alwaysmany tasks in a dis-
tributed system, therefore the computational resources will
not be wasted: when task A is in data transmission phase,
task B may be in data computation phase. By separating the
data transmission phase and the data computation phase, we
can take full advantage of the computational resources and
the network resources of the distributed system.

Data skew has been widely studied in the literature, and a
large number of skew aware load balancing algorithms have
been developed [15,24], some of which are quite success-
ful. In recent years, with the development of MapReduce,
some algorithms that focus on solving the data skew in
MapReduce are presented, such as [14,17,29]. Hadoop uses
JobQueueTaskScheduler to lower the cost of network traffic
of data transmission, the JobQueueTaskScheduler imple-
ments a greedy method that transfers the data block to the
nearest node. However, none of these algorithms considers
the trade-off between the computational resources and the
network resources. From the above facts, we introduce our
algorithm, which dynamically selects the data transmission
pathwhich canbe best suited for a particular task, and reduces
the bandwidth usage based on the dynamically measured
resource parameters. Our algorithm is based on the distrib-
uted two-phase model (hereafter referred to as the DTPM).
DTPM is different from MapReduce. Both the map phase
and the reduce phase of MapReduce contain data transmis-
sion anddata computation,while inDPTM,data transmission
and computation are separated. In some ways, DTPM is sim-
ilar to the Map phase of MapReduce model. The basic unit
of data storage, data transmission, and data computation in
DTPM is the block. Each block has the same size. We use
relative time instead of absolute time in our algorithm, for
example, if β stands for the time node A uses to process one
block of data, and node B is two times faster that node A,
then node B takes 0.5β to process the block. This paper is
concernedwith reducing of communication bandwidth usage
and data transmission time in the DTPM. The twomajor con-
tributions of this study are:

– We propose an algorithm to accomplish tasks in DTPM
with minimum data transmission time and communica-
tion bandwidth usage, in the condition that the relative
computation time does not exceed a given upper bound.

– We reduce the number of nodes which participate in the
data computation phase.

This paper is organized as follows. The model description
is given inSect. 2, inwhichwewill introduce the background,
the data transmission model and the methods to establish the

flow network and find out the minimum data transmission
time. We discuss how to minimize the occupied bandwidth
and number of nodes in Sect. 3. We show how our algorithm
can be available in replication situation in Sect. 4. The emula-
tion results are shown in Sect. 5. In Sect. 6, we give a general
introduction and comparison of related works. In Sect. 7 we
summarize our results, and mention some future work.

2 Model description

2.1 Background

A computer cluster consists of numerous network devices
(routers and switches) and computers. The computers in the
cluster are heterogeneous, which means that different nodes
have different compute ability, storage capacity, and band-
width. A simple network of computer cluster is shown in
Fig. 1 (network devices are omitted). There are N nodes in
the Fig. 1: node 1 ∼ node N . The numbers placed on the
arcs represent the network bandwidth between two compute
nodes. In order to describe DTPM and discuss the problem
in this paper, more terminology are needed. Table 1 summa-
rizes some of the important terminology that will be used in
this paper.

In the distributed system, data are distributed on the com-
puter cluster.When a task begins, somedatawhich are related
to the task will be transmitted from one node to another and
then each node will process the data that are stored on it. The
symbol Mi stands for the initial amount of data of node i
before data transmission phase, and Di stands for the final
amount of data of node i after the data transmission phase.
Note that Di is not a given parameter, the value of Di is
unknown until the data transmission phase is finished. The
symbol Fi is a Boolean value. If Fi is true, then node i is
busy and cannot process any data except that it can transmit
the data of it to other idle nodes. Otherwise, node i is idle
and it can process more data including data transmission and
data computation. Most of the properties that used in our
algorithm are changing all the time. Therefore, before each
task is executed, the properties will be updated to latest, in
this way multitask can be supported . Similarly, MapReduce

1

2 3

4 5

2

1

1

3

1

N

Fig. 1 A simple network of computer cluster

123

Cluster Comput (2015) 18:1157–1169 1159

Table 1 Some terminology
Parameter Description

Pi Processing speed of node i

Ri Maximal remaining storage capacity of node i

Ci Maximal transmission rate of node i

Mi Amount of initial data on node i

Di Amount of final data on node i

Qi Amount of data that node i should transmit

Fi A busy flag of node i

N Total number of nodes

Ttran Relative total transmission time

Tcomp Relative total computation time

Tmax The upper bound of Tcomp

Ttask Total execution time of a task

Ti The relative time that node i takes to finish processing its data

α Basic time unit in the data transmission phase

β Basic time unit in the data computation phase

achievesmultiple tasks bymaintaining the information (slots,
health status, etc.) of all of the slave nodes. There are many
methods [3,18,26] that can be used to monitor the status of
the cluster, however it is not our theme in this paper. As the
executing process of a task can be divided into two phases:

Step 1 Data Transmission Different nodes have different
abilities (processing speed, remaining storage capac-
ity, transmission rate etc.), therefore nodes that have
no enough ability to process data should transmit
their data to other nodes.

Step 2 Data Computation In this step, some operations that
specified by the task are performed on the data con-
currently.

Then the total processing time of a task is:

Ttask = αTtran + βTcomp (1)

Since Ttran and Tcomp are both relative value, the factors α

and β stand for the basic time unit of the data transmission
phase and the data computation phase, respectively. We need
α and β because that the time unit in data transmission phase
and data computation phase may be different. For example,
if Ttran = 3, Tcomp = 5, α = 2second, β = 1second, then
Ttask = 2 × 3 + 1 × 5 = 11(second). In fact α and β are
just constants that are used to unify the time unit of the two
phases, the accurate values of themare not important, because
they have no effect on our algorithm. Both α and β vary in
different tasks, and they are difficult to estimate because the
absolute speed of data computation and data transmission of
each node are difficult to estimate. Let Ti be the relative time
that node i takes to finish processing the data on it:

Ti = Di/Pi (2)

We suppose that Ti grows linearly as the amount of data
increases for simplicity. However, more complicated rela-
tion of Ti , Di , and Pi is supported. In fact, we just need
to know how Ti is related to Di and Pi . For example, let
Ti = f (Di , Pi), if f is known, our algorithm can work fine.
The algorithm description and the examples in this paper are
based on the simplified model. The relative total computa-
tion time Tcomp depends on when the last node finishes the
computation phase. Therefore,

Tcomp = max(Ti) (3)

Instead of finding theminimum Ttask , we focus on finding the
minimum Ttran and communication bandwidth usage while
satisfying the Tcomp restriction (Tcomp ≤ Tmax). In fact, it is
difficult to figure out the minimum Ttask . To figure out the
minimum Ttask , the absolute speed of data computation and
data transmission of each node has to be known. Besides,
both α and β vary in different tasks, and they are difficult to
estimate.

2.2 Data transmission

The nodes in the cluster vary in computation speed, storage
capacity, bandwidth, etc., therefore, nodes that have more
capacity should undertakemorework. Conversely, nodes that
have lower capacity should deliver their data to other nodes
which are more powerful. Let Qi stand for the amount of
data that node i should transmit. If Qi is positive, it indicates
the amount of data that node i should deliver to others. If Qi

is negative, |Qi | indicates the amount of data that node i can
receive besides of the initial data on it.

123

1160 Cluster Comput (2015) 18:1157–1169

Qi =
{
Mi Fi = True

max(�Mi − Tmax Pi�,−�Ri�) Fi = False
(4)

If node i is busy (Fi = True), it should transmit all its data
to other nodes, in this case, the amount of data that node i
should transmit is Mi . Otherwise, if node i is not busy (Fi =
False), Qi = max(�Mi −Tmax Pi�,−�Ri�). If Mi −Tmax Pi
is greater than 0, then Qi = �Mi − Tmax Pi�, which means
that node i can only process part of its initial data, and it
has to transmit the remain of its data to other nodes. If Mi −
Tmax Pi is less that 0, it means that node i can process more
data after finishing processing the initial data on it. However
due to the remaining disk space of node i , the amount of
data it can receive will not exceed Ri , therefore the function
max is used. We let the basic unit of data transmission be a
block, therefore the operators �� and �� are used. It is obvious
that Ttran is determined by when the last node finishes its
data transmission, therefore, we let all nodes finish their data
transmission at the same time to minimize the total network
bandwidth usage. In this situation,

Ttran = Qi

Bi
= Q j

B j
(5)

where symbol Bi stands for the bandwidth usage of node i .
Then we obtain

Bi = Qi

Ttran
(6)

To keep Ttran as small as possible, we should increase
Bi . However, it is difficult to calculate Bi directly from the
network. Therefore, we propose another way to obtain Ttran .
Note that if there is a feasible Ttran that can satisfy the con-
dition that Tcomp is not bigger than Tmax , then there must be
a critical value T ∗

tran(0 ≤ T ∗
tran < +∞), such that

1. If Ttran < T ∗
tran , there is no feasible solution which can

satisfy Tcomp ≤ Tmax .
2. If Ttran ≥ T ∗

tran , there must be at least one feasible solu-
tion.

Let G = (V, E) be the undirected graph of the cluster
with compute node set V , arc set E . Each arc(u, v) stands
for a network transmission channel between node u and node
v. We also assume that Pi , Ci , Mi , and Fi of each node
are known. Therefore, we can figure out the T ∗

tran by binary
search shown in Algorithm 1.

Algorithm 1 is similar to the classic binary search algo-
rithm [7], but we still provide the pseudocode for intuition.
Each time we obtain a possible Ttran , we check whether it is
feasible by calling the function Check(Ttran). This function
will be called log T times, where T denotes the upper bound
of Ttran . Details are presented in the next subsection.

Algorithm 1 Binary search to figure out T ∗
tran

Require:
G = (V, E), Pi ,Ci , Mi , Fi , 1 ≤ i ≤ N

Ensure:
T ∗
tran

1: Le f t = 0,Right = I N F
2: // Take a tolerance eps and stop when Right and Le f t differ by

less than eps.
3: while Right − Le f t > eps do
4: Ttran = (Right + Le f t)/2
5: if Check(Ttran) == True then
6: Right = Ttran
7: else
8: Le f t = Ttran
9: end if
10: end while
11: T ∗

tran = (Right + Le f t)/2
12: return T ∗

tran

2.3 Establish flow network

In this subsection, we will discuss the method that we use
to check whether a specific Ttran is feasible. We utilize the
algorithm which is used to solve the maximum flow problem
[28].Weneed to build a flownetwork according to the cluster.
For the sake of simplicity, we take two steps to build the
flow network. Firstly, we build a flow network according to
the Qi of each node and the bandwidth between each two
nodes, without considering theCi . Secondly, we takeCi into
consideration and establish the final flow network.We follow
the steps below to build the first phase flow network:

Step 1 Let G ′ = (V ′, E ′) be a graph with V ′ = V , E ′ = ∅.
Each arc (u, v) ∈ E ′ has an associated non-negative
real valued capacity C ′(u, v), which means the max-
imal amount of data that can be transmitted between
node u and node v.

Step 2 Add a source S and a sink T to V ′.
Step 3 For each node i in V , we calculate Qi using Eq. (4).

If Qi > 0, add a directed arc (S, i) to E ′, and let
C ′(S, i) = Qi . If Qi < 0, add a directed arc (i, T)

to E ′, let C ′(i, T) = −Qi .
Step 4 For each arc (u, v)in E , add an undirected arc (u, v)

to E ′, let C ′(u, v) = C ′(v, u) = �b(u, v)Ttran�
where b(u, v) stands for the bandwidth between node
u and node v.

The value ofC ′(S, i)means the amount of data that node i
should transmit, similarly, the value ofC ′(i, T) stands for the
amount of data that node i can receive. The value of C ′(u, v)

stands for the maximum amount of data that can be trans-
mitted between node u and node v during Ttran . Therefore,
a feasible flow of G ′ stands for a feasible data transmission
path. For example, suppose the cluster shown in Fig. 2 has
the following properties:

123

Cluster Comput (2015) 18:1157–1169 1161

Fig. 2 A simple cluster

Table 2 Properties of the cluster

Property Value

Tmax 1.5

Ci [1, 2, 1, 1, 1]

Mi [3, 0, 2, 0, 0]

Fi [False, False, False, False, False]

Pi [1, 3, 0.5, 1, 1]

Ri [1, 5, 2, 2, 2]

As shown in Table 2, Ci = [1, 2, 1, 1, 1] means that C1 =
1,C2 = 2,...,C5 = 1.Other properties follow the same rules.We
substitute Pi , Mi , Fi , Ri and Tmax into Eq. (4), and obtain Qi

= [2, -4, 2, -1, -1]. Supposewewant to checkwhether Ttran =
2 is feasible, we firstly build the flow network following the
steps above, the process is shown in Fig. 3.

Note that so far we do not consider the maximal transmis-
sion rate Ci of each node, to take it into consideration, we
need another flow network based on Fig. 3. We divide each
node i(1 ≤ i ≤ N) into two nodes : node i+ and node i−,
as shown in Fig. 4. Let C ′′(u, v) stand for the capacity of arc
(u, v). In a feasible flow, we have

n∑
p=1

Fin_p = Ci =
m∑

q=1

Fout_q (7)

and

Ci ≤ C ′′(i+, i−) (8)

p+ p-
Ci

Fin_1 Fout_1

Fin_p

Fin_n

Fout_q

Fout_m

Fig. 4 Divide each node into two nodes

In this way, neither the amount of input flow nor output
flow of node i will exceed C ′′(i+, i−). The algorithm below
illustrates the steps of building the flownetwork of the second
phase. Figure 5 illustrates the final flow network after all
above steps.

Step 1 Let G ′′ = (V ′′, E ′′) be a directed graph with V ′′ =
{S, T }, E ′′ = ∅. Each arc (u, v) ∈ E ′′ has an associ-
ated non-negative real valued capacity C ′′(u, v).

Step 2 For each node i in V , add two nodes: node i+ and
node i− to V ′′.

Step 3 For each directed arc (S, i) in E ′, add a directed arc
(S, i+) to E ′′, let C ′′(S, i+) = C ′(S, i). Similarly,
for each directed arc (i, T) in E ′, add a directed arc
(i−, T) to E ′′, let C ′′(i−, T) = C ′(i, T).

Step 4 For each undirected arc (u, v) in E ′, add two
directed arcs (u−, v+) and (v−, u+) to E ′′. Let
C ′′(u−, v+) = C ′′(v−, u+) = C ′(u, v).

Step 5 For each node i in S′, add a directed arc (i+, i−)

with C ′′(i+, i−) = �CiTtran� to E ′′.

After establishing the flownetwork,we obtain amaximum
flow of it. The result is shown in Fig. 6. If the sum of flow to
the sink T equals to the sum of all Qi (Qi > 0, 1 ≤ i ≤ N),
then the current Ttran is feasible. It is easy to obtain the real
feasible flow from the flow shown in Fig. 6. We remove the
source S and sink T , combine node i+ and node i− into
node i , and Fig. 7 illustrates the result. The number on each
arc indicates the amount of data that are transmitted during
Ttran . The flow size of arc (S, i+) means the total amount
of data that node i transmits to other nodes, the flow size of

1 2

3 4

5

S T

1 2

3 4

5

S T

1 2

3 4

5

2

2 1

1

4

S T

1 2

3 4

5

2
2

2

2

2

6

1

1

4

Step 1 Step 2 Step 3 Step 4

4

Fig. 3 Process of building flow network

123

1162 Cluster Comput (2015) 18:1157–1169

S T

1+

2+

3+

4+

5+

2

2
2

6

1

4

1-

3-

2-

4-

5-

2

2

2

2

2

2

1

2

2

4

2

4

4

6

Fig. 5 Final flow network

Fig. 6 A feasible flow when Ttran = 2

1

2 3

4 5

2

1

2

Fig. 7 The real feasible flow when Ttran = 2

arc (i−, T) means total amount of data that node i receives
from other nodes.

Up to this point, we have discussed the way to judge
whether a specific Ttran is feasible, and figured out the T ∗

tran .
The function Check(Ttran) contains two main steps : estab-
lishing the flow network and calculating the maximum flow
of it, and the latter will take much more time when N is
large. Let M stand for the number of arcs in G. The process
of building the network flow is the process of adding nodes
and arcs to G ′′, which has 2N + 2 nodes, and 2M + N + N
arcs. Therefore the process of establishing the network flow

Fig. 8 The flow network with cost

takes O(4N + 2M + 2) steps. In the next section we will
discuss how to minimize the network bandwidth usage.

3 Optimizing

3.1 Minimize the occupied bandwidth

In Sect. 2 we discuss how to find out T ∗
tran and a feasible flow,

which can satisfy the condition Tcomp ≤ Tmax . However the
feasible flow is not optimal. Now our goal is to minimize the
total occupied bandwidth in the data transmission phase. To
achieve that goal, we let Gc = (Vc, Ec) be a flow network
with Vc = V ′′, Ec = E ′′. Each arc (u, v) ∈ Ec has an
associated real valued pair (Cc(u, v), A(u, v)). Let Cc(u, v)

equal toC ′′(u, v) and let A(u, v) be the unit cost of arc (u, v).
The value of A(i+, i−)(1 ≤ i ≤ N) is 1, while A(u, v)

equals to zero in the other circumstance. Figure 8 illustrates
the flow network with cost of G ′′ shown in Fig. 5.

Let fc denote a feasible flow of Gc, the total cost of fc is

C(fc) =
∑
i∈V

f (i+, i−) (9)

where f (i+, i−) denotes the flow size between node i+
and i−. Note that f (i+, i−) can also denote the band-
width usage of node i , thus the total bandwidth usage equals
to C(fc). Therefore, we calculate the minimum cost and
maximum flow of Gc using any of these algorithms: Dou-
ble Scaling:O(nm(log log U)log(nC)) [2], Jens Vygen &
Orlin:O(m log m(m+nlog n)) [31] etc.. Note that, the “min-
imumcost&maximumflow”algorithmcanfind aflowwhich
is maximum, but has the lowest cost among the maximums.

123

Cluster Comput (2015) 18:1157–1169 1163

Fig. 9 A feasible minimum cost and maximum flow

One of the feasible flow is shown in Fig. 9. The number on
each arc indicates the total amount of data that are transmitted
during Ttran .

3.2 Minimize the number of nodes

We can calculate the amount of final data (Di) of each node.
For example, we can obtain D3 after data transmission: D3 =
M3−2 = 2−2 = 0.We can obtain Di = [1, 2, 0, 2, 0]. After
calculating the amount of final data of each node, we find that
only node 1, node 2, and node 4 participate in the data compu-
tation phase.Wediscover that if node 3 transmits all its data to
node 2 instead of node 4, the result (Di = [1, 4, 0, 0, 0]) will
also be a feasible flow, however, the number of nodes which
participate in the data computation phase is less than that in
Fig. 9. We divide all the nodes in fc into three categories:

Type 1 Nodes that do not participate in data computation
phase (Di = 0).

Type 2 Nodes that participate in data computation because
they receive data from other nodes (Di > 0, Mi =
0).

Type 3 Nodes that must participate in data computation
(Di > 0, Mi > 0).

We use a greedy algorithm to change nodes of type 2 into
type 1. Steps below illustrate how to reduce the number of
nodes:

Step 1 For each node i in fc, if node i is of type 1 and
(i−, T) ∈ Ec, delete arc (i−, T) in Gc.

Step 2 Sort the nodes of type 2 in fc by Di from smallest to
largest, let Nsorted denote the the list of sorted nodes.

Step 3 For each node i in Nsorted , delete arc (i−, T) in Gc,
then try to find a feasible flow of minimum cost &
maximum flow of Gc. If there is no a feasible flow
or the cost of this feasible flow is larger than before,
then recover the arc that has just been deleted.

Note that in the flow network, the total input flow size of
a node must equal to the total output flow size, therefore arc

1

2 3

4 5

2

2

Fig. 10 The optimized flow networkwith aminimumnumber of nodes

(i−, T)must exist so that node i of type 2 (Di > 0, Mi = 0)
can receive data from other nodes. Figure 10 shows an opti-
mized flow network of Fig. 9. In the optimized flow network,
only two nodes (node 1 and node 2) participate in the com-
putation phase.

4 Replication

In this section, we describe how our algorithm works when
the data are replicated. Before the discussion of replication,
we want to introduce the concept of copyset [6]. A copyset
is a set that stores all of the copies of a specified data, which
can be a file or a chunk. Asaf Cidon et al. pointed out that
a large number of distinct copysets will increase the proba-
bility of losing data under a massive correlated failure. We
make our algorithm available under the situation of repli-
cation when the number of copysets is not too large. Our
solution is adding virtual nodes, each of which stands for a
copyset, into our initial network topology. Therefore if the
number of copysets is too large, the total number of nodes
will be too large. According to the study of Asaf Cidon et al.,
a well designed storage system should have a small number
of copysets, in which situation our solution will work fine.
Specifically, when we consider the situation of replication,
we do the following things to the initial network topology
G = (V, E):

Step 1 Add Nc virtual nodes to V , where Nc is the number
of copysets. Each virtual node represents a copyset.

Step 2 Link each virtual node with its corresponding real
nodes, let the bandwidth between the virtual node
and its corresponding real nodes be infinity.

Now we get a new network topology , when a task begins,
we do the following things:

Step 1 Let the busy flag of each virtual node be busy.
Because the virtual nodes do not have any compute
ability.

Step 2 For each virtual node i , let Mi be the total amount of
initial data located in its corresponding copyset, the

123

1164 Cluster Comput (2015) 18:1157–1169

Fig. 11 The copysets and the
initial network with virtual
nodes

2 4

Copyset S4

3 4

Copyset S2

1 2

Copyset S1

1 3

Copyset S3

1

3 4

2

2

2

1

S1

S3

S2

S4
1

infinity

infinity

infinity infinity

infinity infinity

infinity

infinity

Fig. 12 A feasible flow in replication situation

same data will be counted only once. Let Mj be zero
where node j is a real node.

In this way, a virtual node has to transmit all its data to
its corresponding real nodes. Because that each data has sev-
eral replicas, however only one of them should be processed
(calculated or transmitted to other nodes) during one task.
Therefore we need a scheme of data distribution to decide on
which node a specified data should be processed. The way a
virtual node transmits its data represents the scheme of data
distribution we need. For a specific copyset, if the virtual
node i transmits k data to one of its corresponding real node
j , it means that the amount of data which are processed in
node j is k.

The remaining steps are the same with what we mention
in Sects. 2 and 3. Here is an example of how we modify the
initial network topology. Suppose we have four real nodes,
node 1 ∼ node 4, four copysets, copyset S1 ∼ S4. Figure
11 shows the copysets and the initial network with virtual
nodes. The black spots in each node represent the data, for
example the amount of data of copyset S1 is 2. A possible
feasible flow in this situation is shown in Fig. 12.

The data transmission of the virtual node means the data
distribution of the real nodes in the same copyset in the data
computation phase. For example, as shown in Fig. 12, the

virtual node S3 transmits all its data to node 1 and node 3,
it means that, for copyset S3, the amount of data that are
processed in node 1 is 2, while the amount of data that are
process in node 3 is 1.

5 Simulation

A series of experiments are conducted to evaluate the effect
of our algorithm as well as our optimization which is dis-
cussed in Sect. 3.We compare our algorithm to the algorithm
which is used in Hadoop to reduce bandwidth usage. Before
optimization, the algorithm focuses on solving the data skew
problem, and make the Tcomp not larger than Tmax , but it
will occupy too much bandwidth. To see how the occupied
bandwidth and the number of nodes which take part in com-
putation phase decrease after the optimization, we pick three
typical variables: Tmax , total amount of data, total number of
nodes. Thenwe compare the optimized algorithm to the algo-
rithm which is used to schedule the map tasks in Hadoop[1]
to reduce bandwidth usage. The nodes are arranged in a tree
network, because tree topology is most typical in real world.
In every experiment, we randomly let half of the nodes be
busy. Other variables are generated randomly, such as Pi ,Ci ,
Mi , and Ri . Each experiment is repeated over 100 times and
the result shows the average situation. The network topology
is shown in Fig. 13. All the nodes are arranged in the leafs
of the tree, and each inner node denotes a switch, which can
connect to up 32 other switches or nodes. We build the tree
from bottom to top: every 32 nodes are connected to a switch,
and every 32 switches are connected to an upper layer switch.
For example, if we have 4096 nodes, then the tree will have
4 layers: 4096 = 32 × 32 × 4 × 1.

5.1 Tmax

In this experiment, we aim at finding the effect of Tmax . The
network topology is shown in Fig. 13. Table 3 summarizes

123

Cluster Comput (2015) 18:1157–1169 1165

1 2 3 32 node 1024

... ...

...

Fig. 13 The network topology in the experiments

Table 3 Range of the variables

Variable Range

Pi (0, 128)

Ri (0, 512)

Ci (0, 1024)

Mi (0, 1024)
N∑
i=1

Mi 100,000

Fi Half of the nodes will be busy.

N 1024

T ∗
max (0, +∞)

∗ The symbol * means that the variable is a controlled argument in this
experiment

Fig. 14 The occupied bandwidth and nodes of different Tmax

the variables that we use in this experiment. The results are
shown in Fig. 14.

As we saw from the scenario of Fig. 14, the occupied
bandwidth and number of nodes that take part in computation
can be decreased by about 73 and 33 % respectively when
Tmax grows up. There is no feasible flow when Tmax is too
small (less than 3.4 in this experiment).

Table 4 Range of the variables

Variable Range

Pi (0, 128)

Ri (0, 512)

Ci (0, 1024)

Mi (0, 1024)
N∑
i=1

M∗
i (2500, 2500 * 50)

Fi Half of the nodes will be busy.

N 1024

Tmax 5

∗ The symbol * means that the variable is a controlled argument in this
experiment

Fig. 15 The occupied bandwidth and nodes of different amount of data

5.2 The amount of data

In the second experiment, we study how the amount of data
can effect the result of optimization. Table 4 summarizes
the variables that we use in this experiment. We conduct a
series of tests, the initial amount of data is 2500. We increase
the amount of data by 2500 in each test, based on the data
distribution in previous test. In this way we keep the amount
of data changing while not influencing too much on the data
distribution. The results are shown in Fig. 15. The occupied
bandwidth and number of nodes that take part in computation
can be decreased by about 71 and 14 % respectively when
the amount of data grows up.

5.3 The number of nodes

In the third experiment, we study how the number of nodes
can effect the result of optimization. Table 5 summarizes
the variables that we use in this experiment. The results are

123

1166 Cluster Comput (2015) 18:1157–1169

Table 5 Range of the variables

Variable Range

Pi (0, 128)

Ri (0, 512)

Ci (0, 1024)

Mi (0, 1024)
N∑
i=1

Mi 100,000

Fi Half of the nodes will be busy.

N∗ (256, 10,000)

Tmax 10

∗ The symbol * means that the variable is a controlled argument in this
experiment

Fig. 16 The occupied bandwidth and nodes of different number of
nodes

shown in Fig. 16. The occupied bandwidth can be decreased
by about 72%when the number of nodes grows up.However,
the number of nodes that take part in computation is volatile.
This is because when we change the number of nodes, the
network topology changes too, which results in the change
of data distribution.

5.4 Comparison to another bandwidth saving algorithm

In the fourth experiment, we compare our optimized algo-
rithm to the algorithm which is used to schedule the tasks
in Hadoop to reduce bandwidth usage. The strategy of mov-
ing computation to the data, instead of moving the data to
the computation allows Hadoop to achieve high data local-
ity which in turn results in less bandwidth usage. In this
experiment, we simulate the default hadoop scheduler called
JobQueueTaskScheduler which can be found in the source
code of Hadoop, and show the results of bandwidth usage in
both situations. When simulating the task in Hadoop, each

Fig. 17 The occupied bandwidth in our algorithm and Hadoop

block of data are processed in a map task, there are no reduce
tasks in this experiment. The variables that we use in this
experiment are the same as those in second experiment. The
results are shown in Fig. 17.

5.5 Discussion

A series of experiments are conducted to evaluate the effect
of our optimization. To see how the occupied bandwidth and
the number of nodes which take part in computation phase
decrease after the optimization, we pick three typical vari-
ables: Tmax , total amount of data, total number of nodes. The
experimental results show that our algorithm can effectively
reduce the occupied bandwidth (about 70 %). The second
and third experiments prove that our algorithm can work fine
under a large scale of system.Moreover, the number of nodes
that participate in data computation phase can also decrease,
in this way, part of the computational resources can be saved.
We think the number of nodes which take part in computa-
tion phase can be further reduced. In the fouth experiment,
we compare our algorithm to the default algorithm which is
used in Hadoop to reduce bandwidth usage, and find that our
algorithm can still have a better effect on reducing bandwidth
usage.

6 Related work

Data skew has been widely studied in the literature, and
a large number of skew aware load balancing algorithms
have been developed, some of which are quite successful.
Abdelsalam (Sumi) Helal et al. introduced a dynamic and
transactional re-allocation scheme based on the work on disk
cooling in shared memory architecture by Scheuermann et
al. The proposed scheme detects access skew as it occurs
and re-allocates data partitions to underloaded processing

123

Cluster Comput (2015) 18:1157–1169 1167

Table 6 Polynomial algorithms
for the max flow problem

Year Due to Running time

1956 Ford & Fulkerson O(nmU)

1977 Malhotra, Kumar & Maheshwari O(n3)

1989 Ahuja, Orlin & Tarjan O(nm log(n
√
U/(m + 2)))

1996 Cheriyan, Hagerup & Mehlhorn O(n3/ log n)

2012 Orlin O(nm)

2012 Orlin O(n2/ log n) if m = O(n)

elements on the fly [15]. Hongjun Lu et al. presented a fully
dynamic partitioning approach that could effectively distrib-
ute the workload among both intra- and inter-processing
nodes without priori knowledge of data distribution [24].
In recent years, with the development of MapReduce, some
algorithms that focus on solving the data skew inMapReduce
are presented, such as [14,17,29]. However, none of these
algorithms considers the network resources usage. Resources
of a distributed system can be divided into computational
resources and network resources. Due to the rapid develop-
ment of the microprocessor, the effects of the computation
delay on the overall performance of the system are becom-
ing less significant. On the other hand, the communication
delay still has a major effect on the system performance and
can be a major problem especially in a system with many
nodes and a high communication frequency. A lot of efforts
have been made to reduce the network resources usage in
distributed systems. For example, Min Li et al. proposed
a cloud platform called CAM that provides an innovative
resource scheduler particularly designed for hostingMapRe-
duce applications in the cloud, their system could reduce
network traffic and average MapReduce job execution time
by a factor of 3 and8.6, respectively [23].DzmitryKliazovich
et al. presented a scheduling approach that combines energy
efficiency and network awareness, named DENS [21]. The
DENS methodology balances the energy consumption of a
data center, individual job performance, and traffic demands.
The proposed approach optimizes the trade-off between job
consolidation (tominimize the amount of computing servers)
and distribution of traffic patterns (to avoid hotspots in the
data center network).Unfortunately, none of these algorithms
considers the trade-off between the computational resources
and the network resources.

Some researches havebeenmade touse themaximumflow
algorithm to reduce network resources in the distributed sys-
tems. The algorithm called Balance-Reduce(BAR) [20] was
proposed to reduce the job completion time gradually by
tuning the initial task allocation. Differ from our algorithm,
it only aims at reducing the completion time of tasks inte-
grally. Instead that our algorithm focus on optimizing both
the completion time and the bandwidth of each single task
to achieve better effect. Both of BAR and our work consider

the network state and cluster workload in the algorithms. The
authors of [27] proposed a low cost network coding algorithm
based on the maximum flow algorithm and key link. Differ-
ently from our model, it focuses on data transmission while
our model contains both data transmission and data compu-
tation. Another data transmission algorithm to deal with the
load rebalancing problem in distributed file systems in clouds
has been presented in [16]. Compared with our work, [16]
requires data transmission to reduce the demanded network
traffic caused by rebalancing the loads of nodes as much
as possible, while our algorithm aims at minimize network
bandwidth usage and data transmission time.

The maximum flow problem was first formulated in 1954
by T. E. Harris as a simplified model of Soviet railway traffic
flow in 1955 [28]. LesterR. Ford, Jr. andDelbert R. Fulkerson
created the first known algorithm, the Ford-Fulkerson algo-
rithm [11,12]. Over the years, various improved solutions
to the maximum flow problem were discovered, notably the
shortest augmenting path algorithm of Edmonds and Karp
[10] and independentlyDinitz; the blockingflowalgorithmof
Dinitz [9]; the push-relabel algorithm ofGoldberg and Tarjan
[4]; and the binary blocking flow algorithm of Goldberg and
Rao [13]. The electrical flow algorithm of Christiano et al.
[5], and Spielman finds an approximately optimal maximum
flow but only works in undirected graphs [30]. The follow-
ing table lists the time complexities of different algorithms
for solving the maximum flow problem. Table 6 summarizes
these developments.

7 Conclusion and future work

In this paper, we introduce the distributed two-phase model
(DTPM), and propose an algorithm to minimize the data
transmission time and the bandwidth usage in this model,
while a given upper bound of relative computation time is
satisfied. The algorithm we use to establish the flow network
takes O(4N + 2M + 2). Besides, we introduce the way to
reduce the number of nodes that participate in the data com-
putation phase. The results show that the occupied bandwidth
can be reduced effectively (about 70 %) in the situation of
large-scale data sets and large number of nodes. We describe

123

1168 Cluster Comput (2015) 18:1157–1169

how our algorithm can work in replication situation while
the number of copysets is not large. Although priority is not
our main subject, we can support different priorities of dif-
ferent user, without changing our algorithm. We can achieve
priority by adding a logical layer. For example, a task of an
user with high priority can be launched earlier. We can also
limit the range of Tcomp of users with different priorities. We
also plan to consider several high-level objectives, such as
intelligent scheduler based on genetic algorithm and energy
saving.

Acknowledgments This work was supported by the National 863
Project (2011AA040101) and was jointly funded by the Beijing munic-
ipal Education Commission of the Scientic Research.

References

1. Apache hadoop. http://www.hadoop.apache.org
2. Ahuja, R.K., Goldberg, A.V., Orlin, J.B., Tarjan, R.E.: Finding

minimum-cost flows by double scaling. Math. Program. 53(1–3),
243–266 (1992)

3. Buyya, R.: Parmon: a portable and scalable monitoring system for
clusters. Software 30(7), 723–740 (2000)

4. Cherkassky, B.V., Goldberg, A.V.: On implementing the pushrela-
bel method for the maximum flow problem. Algorithmica 19(4),
390–410 (1997)

5. Christiano, P., Kelner, J.A.,Madry, A., Spielman, D.A., Teng, S.H.:
Electrical flows, laplacian systems, and faster approximation of
maximum flow in undirected graphs. In: Proceedings of the 43rd
Annual ACM Symposium on Theory of Computing, pp. 273–282.
ACM Press, San Jose (2011)

6. Cidon, A., Rumble, S., Stutsman, R., Katti, S., Ousterhout, J.,
Rosenblum, M.: Copysets: reducing the frequency of data loss in
cloud storage. In: Presented as part of the 2013 USENIX Annual
Technical Conference, pp. 37–48. USENIX (2013)

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.L., et al.:
Introduction to Algorithms. MIT Press, Cambridge (2001)

8. Dean, J., Ghemawat, S.: Mapreduce: a flexible data processing
tool. Commun. ACM 53(1), 72–77 (2010). doi:10.1145/1629175.
1629198

9. Dinic, E.: Algorithm for solution of a problem of maximum flow in
a network with power estimation. Soviet Math. Doll. 11(5), 1277–
1280, (1970) (English translation by RF. Rinehart)

10. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic
efficiency for network flow problems. J. ACM (JACM) 19(2), 248–
264 (1972)

11. Ford,D., Fulkerson,D.R.: Flows inNetworks. PrincetonUniversity
Press, Princeton (2010)

12. Ford, L.R., Fulkerson,D.R.:Maximal flow through a network. Can.
J. Math. 8(3), 399–404 (1956)

13. Goldberg, A.V., Rao, S.: Beyond the flow decomposition barrier.
J. ACM (JACM) 45(5), 783–797 (1998)

14. Gufler, B., Augsten, N., Reiser, A., Kemper, A.: Handling Data
Skew in Mapreduce, pp. 574–583. Eindhoven University of Tech-
nology, Noordwijkerhout (2011)

15. Helal, A.S., Yuan, D., Hesham, E.R.: Dynamic data reallocation
for skewmanagement in shared-nothing parallel databases. Distrib.
Parallel Databases 5(3), 271–288 (1997)

16. Hsiao, H.C., Chung, H.Y., Shen, H., Chao, Y.C.: Load rebalancing
for distributed file systems in clouds. IEEE Trans. Parallel Distrib.
Syst. 24(5), 951–962 (2013). doi:10.1109/TPDS.2012.196

17. Ibrahim, S., Jin, H., Lu, L., He, B., Antoniu, G., Wu, S.: Handling
partitioning skew in mapreduce using leen. Peer-to-Peer Netw.
Appl. 6(4), 409–424 (2013)

18. Imamagic, E., Dobrenic, D.: Grid infrastructure monitoring system
based on nagios. In: Proceedings of the 2007 Workshop on Grid
Monitoring, pp. 23–28. ACM Press, New York (2007)

19. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: dis-
tributed data-parallel programs from sequential building blocks.
SIGOPS Oper. Syst. Rev. 41(3), 59–72 (2007). doi:10.1145/
1272998.1273005

20. Jin, J., Luo, J., Song, A., Dong, F., Xiong, R.: Bar: an efficient
data locality driven task scheduling algorithm for cloud com-
puting. In: Cluster, Cloud and Grid Computing (CCGrid), 2011
11th IEEE/ACM International Symposium on, pp. 295–304. IEEE
Press, New York (2011)

21. Kliazovich, D., Bouvry, P., Khan, S.U.: Dens: data center energy-
efficient network-aware scheduling. Clust. Comput. 16(1), 65–75
(2013)

22. Kwon, Y., Balazinska, M., Howe, B., Rolia, J.: Skewtune: mitigat-
ing skew in mapreduce applications. In: Proceedings of the 2012
ACMSIGMOD International Conference onManagement of Data,
pp. 25–36. ACM Press, New York (2012)

23. Li, M., Subhraveti, D., Butt, A.R., Khasymski, A., Sarkar, P.: Cam:
a topology aware minimum cost flow based resource manager for
mapreduce applications in the cloud. In: Proceedings of the 21st
international symposium on High-Performance Parallel and Dis-
tributed Computing, pp. 211–222. ACM Press, Hoboken (2012)

24. Lu, H., Yu, J.X., Feng, L., Li, Z.: Fully dynamic partitioning: han-
dling data skew in parallel data cube computation. Distrib. Parallel
Databases 13(2), 181–202 (2003)

25. Märtens, H.: A classification of skew effects in parallel data-
base systems. In: Euro-Par 2001 Parallel Processing, pp. 291–300.
Springer, New York (2001)

26. Massie, M.L., Chun, B.N., Culler, D.E.: The ganglia distributed
monitoring system: design, implementation, and experience. Par-
allel Comput. 30(7), 817–840 (2004)

27. Run-liu, W., Yun-hui, Y.: Low cost network coding algorithm for
data distribution network. In: Proceedings of 8th International Con-
ference on Wireless Communications, Networking and Mobile
Computing (WiCOM), pp. 1–4 (2012). doi:10.1109/WiCOM.
2012.6478566

28. Schrijver, A.: On the history of combinatorial optimization (till
1960). Handbook of Discrete Optimization pp. 1–68 (2005)

29. Slagter, K., Hsu, C.H., Chung, Y.C., Yi, G.: Smartjoin: a network-
aware multiway join for mapreduce. Clust. Comput. 17, 1–13
(2014)

30. Spielman, D.A., Teng, S.H.: Nearly-linear time algorithms for
graph partitioning, graph sparsification, and solving linear systems.
In: Proceedings of the 36h Annual ACM Symposium on Theory of
Computing, pp. 81–90. ACM Press, New York (2004)

31. Vygen, J.: On dual minimum cost flow algorithms. Math. Methods
Oper. Res. 56(1), 101–126 (2002)

32. Yook, J., Tilbury, D.: Performance evaluation of distributed control
systems with reduced communication. Ann Arbor 1001, 48,109
(2001)

33. Yook, J.K., Tilbury, D.M., Soparkar, N.R.: Trading computation for
bandwidth: reducing communication in distributed control systems
using state estimators. IEEE Trans. Control Syst. Technol. 10(4),
503–518 (2002)

123

http://www.hadoop.apache.org
http://dx.doi.org/10.1145/1629175.1629198
http://dx.doi.org/10.1145/1629175.1629198
http://dx.doi.org/10.1109/TPDS.2012.196
http://dx.doi.org/10.1145/1272998.1273005
http://dx.doi.org/10.1145/1272998.1273005
http://dx.doi.org/10.1109/WiCOM.2012.6478566
http://dx.doi.org/10.1109/WiCOM.2012.6478566

Cluster Comput (2015) 18:1157–1169 1169

Xiaolu Zhang is currently a
graduate student and working
towards his M.E. degree at Uni-
versity of Science and Technol-
ogy Beijing, China. His major is
Computer Science and Technol-
ogy. His current research interest
includes distributed storage and
algorithm design.

Jiafu Jiang is currently a gradu-
ate student and working towards
his M.E. degree at University of
Science and Technology Beijing,
China. His major is Computer
Science andTechnology.His cur-
rent research interest includes
cloud computing and distributed
computing.

Xiaotong Zhang received the
Ph.D. degrees fromUniversity of
Science and Technology Beijing,
in 1997, and 2000, respectively.
Hewas anAssistant Professor, an
Associated Professor and Profes-
sor in the Department of Com-
puter Science and Technology,
University of Science and Tech-
nology Beijing, from 2000 to
2009. He was the visiting scholar
from 2010 to 2011 in LONGLab
of Department of Computer Sci-
ence and Engineering of Lehigh
University. Now he is Vice Pres-

ident of the Department of Computer Science and Technology, Uni-
versity of Science and Technology Beijing. His industry experience

includes affiliation with Beijing BM Electronics High-Technology Co.,
Ltd. from 2002 to 2003, where he worked on digital video broadcast-
ing communication systems and IC design, His industrial cooperation
experience includes BLX IC Design Co., Ltd, North Communications
Corporation of PetroChina, and Huawei Technologies Co., Ltd. etc.
His research includes work in quality of wireless channels and net-
works, wireless sensor networks, networks management, cross-layer
design and resource allocation of broadband and wireless network,
signal processing of communication, computer architecture, the tech-
nology of big data, cloud computing, distributed system.

Xuan Wang is currently study-
ing at University of Science and
Technology Beijing for a doc-
torate. Her major is Computer
Science and Technology. Her
research includes work in load
balancing of disturbed system,
distributed storage, cloud com-
puting, algorithm design and dis-
tributed computing.

123

	A data transmission algorithm for distributed computing system based on maximum flow
	Abstract
	1 Introduction
	2 Model description
	2.1 Background
	2.2 Data transmission
	2.3 Establish flow network

	3 Optimizing
	3.1 Minimize the occupied bandwidth
	3.2 Minimize the number of nodes

	4 Replication
	5 Simulation
	5.1 Tmax
	5.2 The amount of data
	5.3 The number of nodes
	5.4 Comparison to another bandwidth saving algorithm
	5.5 Discussion

	6 Related work
	7 Conclusion and future work
	Acknowledgments
	References

