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Abstract Boyer—Moore (BM) algorithm is a single pat-
tern string matching algorithm. It is considered as the most
efficient string matching algorithm and used in many appli-
cations. The algorithm first calculates two string shift rules
based on the given pattern string in the preprocessing phase.
Using the two shift rules, pattern matching operations are per-
formed against the target input string in the second phase. The
string shift rules calculated in the first phase let parts of the
target input string be skipped where there are no matches to
be found in the second phase. The second phase is a time con-
suming process and needs to be parallelized in order to realize
the high performance string matching. In this paper, we paral-
lelize the BM algorithm on the latest many-core accelerators
such as the Intel Xeon Phi and the Nvidia Tesla K20 GPU
along with the general-purpose multi-core microprocessors.
For the parallel string matching, the target input data is parti-
tioned amongst multiple threads. Data lying on the threads’
boundaries is searched redundantly so that the pattern string
lying on the boundary between two neighboring threads can-
not be missed. The redundant data search overheads increases
significantly for a large number of threads. For a fixed tar-
get input length, the number of possible matches decreases
as the pattern length increases. Furthermore, the positions
of the pattern string are spread all over the target data ran-
domly. This leads to the unbalanced workload distribution
among threads. We employ the dynamic scheduling and the
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multithreading techniques to deal with the load balancing
issue. We also use the algorithmic cascading technique to
maximize the benefit of the multithreading and to reduce the
overheads associated with the redundant data search between
neighboring threads. Our parallel implementation leads to
~17-times speedup on the Xeon Phi and ~47-times speedup
on the Nvidia Tesla K20 GPU compared with a serial imple-
mentation on the host Intel Xeon processor.

Keywords Boyer—Moore algorithm - Many-core accelera-
tor - Parallelization - Dynamic scheduling - Multithreading -
Algorithmic cascading

1 Introduction

String matching is an important algorithm commonly used in
computer and network security, bioinformatics, among many
other applications. Boyer—Moore (BM) algorithm [1] is a
classic single-pattern string matching algorithm developed
by Robert S. Boyer and J. Strother Moore. This algorithm is
known to be one of the most efficient string matching algo-
rithms. Given a sequence of characters (pattern), the BM
searches for possible matches in the input string (or target).
The algorithm first calculates the two string shift rules based
on the given pattern in the preprocessing phase. Then the pat-
tern matching is performed using the two shift rules against
the target input data in the second phase. The shift rules cal-
culated in the first phase help skip parts of the target input
string in the second phase where there are no matches to be
found. The second phase is a time consuming process and
needs to be parallelized in order to realize the high perfor-
mance string matching.

Recently, many-core accelerator chips such as the graphic
processing units (GPUs) from Nvidia and AMD, Intel’s
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Many Integrated Core (MIC) architectures, among others are
becoming increasing popular. The influence of these chips is
rapidly growing in the high performance computing (HPC)
server market and in the Top 500 list, in particular. They have
a large number of cores and multiple threads per core, levels
of cache hierarchies, large amounts (>5GB) of the on-board
memory, and >1 Tflops peak performance for the double
precision arithmetic per chip. They are mostly utilized as co-
processors and execute parallel program kernels commanded
by the host CPU with respect to the input data provided from
the host memory to the on-board device memory. Using the
many-core accelerators, a number of innovative performance
improvements have been reported for the HPC applications
and many more are still to come.

In this paper, we develop a high performance paralleliza-
tion for the BM string matching algorithm on the many-core
accelerator chips such as the Intel Xeon Phi and the Nvidia
Tesla K20 GPU. We partition the target input data amongst
multiple threads for parallel execution of the BM algo-
rithm. Data lying on the threads’ boundaries are searched
redundantly so that the pattern string lying on the bound-
ary between two neighboring threads can be found. The
redundant data search overheads increases as the number of
threads increases. The overhead is significant on the GPU,
in particular, where a huge number of fine-grain threads are
executed, because it increases the pressure on the on-chip
shared memories. For a fixed target length, the number of
possible match occurrences decreases as the pattern length
increases. Furthermore, the positions of the pattern string
are spread all over the target data randomly. This leads to
irregular execution times among threads participating in the
parallel execution, because the threads which find a smaller
number of matches finish earlier than the threads with a larger
number of matches. Our parallelization approach deals with
the irregular workload distribution with a careful target data
partitioning to generate appropriate number of data chunks.
Also we use the dynamic scheduling and the multithreading
to deal with the load balancing issue. The overheads associ-
ated with the redundant data search increases significantly as
the pattern size increases and the number of threads increases.
For example, on the GPU, the size of redundantly searched
data is more than two times the size of the target when the
pattern size is 50 and the number of threads reaches ~178
million. This significantly overloads the shared memories of
the GPU. We use the algorithmic cascading technique [5]
to reduce the burden on the shared memories of the GPU.
The algorithmic cascading also helps maximizing the bene-
fit of the multithreading. Our parallel implementation leads to
~17-times speedup on the Xeon Phi and ~47-times speedup
on the Nvidia Tesla K20 GPU compared with a serial imple-
mentation.

The rest of the paper is organized as follows: Sect. 2
explains the computational characteristics of the BM algo-
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rithm. Section 3 describes the architectures of the latest
many-core accelerator chips including the Intel Xeon Phi
and the Nvidia Tesla K20 GPU. Section 4 explains our par-
allelization approach for optimizing the workload balancing
among parallel threads and the algorithmic cascading tech-
nique to reduce the burden on the shared memory. Section 5
shows the experimental results on the general-purpose Intel
multi-core processor, the Xeon Phi, and the Nvidia Tesla
K20. Section 6 wraps up the paper with conclusions.

2 Boyer-Moore algorithm

Boyer—-Moore (BM) algorithm [1] is a single-pattern string
matching algorithm developed by Robert S. Boyer and J.
Strother Moore in 1977. Given a sequence of characters
(pattern), the BM searches for the possible matches in the
input string (or target). The BM algorithm consists of two
phases: preprocessing phase and pattern matching phase.
In the preprocessing step, two string shift rules are calcu-
lated in advance using the given pattern string. They are
the bad character shift rule (calculated when there is no
match) and the good suffix shift rule (calculated when there
is a match). Using these shift rules, the pattern matching is
attempted against the target in the second phase. The match-
ing starts from the rightmost character of the pattern to the
left. Whether there is a match or not, the position shift for
the next match attempt is directed to the right.

2.1 Bad character shift

The pattern matching starts from the rightmost character of
the pattern against the target. Whenever there is a mismatch
found for a character in the middle of the pattern matching,
we can skip a number of characters in the target string. The
Bad Character Shift uses this matching rule. Assume that
there is a pattern string “GCAGAGAG” with 8 characters as
shown in Table 1 below. A pattern matching is attempted in
Table 2 for a target string with 22 characters. We assume the
following two cases:

e Case 1: A pattern matching is attempted at pattern [7]
(“G”) and target [7] (“C”). As they do not match, a “C”
character is searched in the pattern string which is located
at pattern [1]. Therefore, we skip 6 characters and locate
the “C” character of the target at pattern [7].

e Case 2: The next pattern matching is attempted starting
from target [13] and pattern [7]. As they do not match and
we cannot find the missing character “T” in the pattern,
8 characters (length of the pattern) are skipped and the
pattern is located from target [14] to target [21].
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Table 1 Pattern array 0 | > 3 4 5 6 7
G C A G A G A G

Table 2 Target array and matching process

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
G C A G A A B C D E F G A T G C A G A G A G
P1 G ¢C A G A G A G
P2 G C A G A G A G
P3 G C A G A G A G

Table 3 Bad character shift

Characters with mismatch G C A

Other characters

Shift length 2 6 1 8 (= length of pattern)

<—— compare

target I B | I
patternl I B I I A I I
shitt—>|  [B] [a] |

Fig. 1 Bad character shift case 1

<—— compare
target I B | I |

pattern I A I I

shift —>| contains no B |

Fig. 2 Bad character shift case 2

As the result of the above, a bad character shift table is con-
structed as in Table 3. Figures 1 and 2 above illustrate the
two cases for the Bad Character Shift.

2.2 Good suffix shift

The Good Suffix rule searches for either a matching suffix or
a symmetric prefix—suffix pair in the pattern. After finding
such strings, we can skip a number of characters accordingly.
Assume that there is a pattern string “GCAGAGAG” with 8
characters. A suffix or a prefix—suffix pair is searched for the
pattern as shown in Table 4:

e Forsingle character “G” located at pattern [0] and pattern
[7], we find a common prefix—suffix pair (Good suffix
(GS) case 2.

e For characters with lengths 2 or 3, there is no common
suffix or prefix—suffix pair.

Table 4 Finding suffix or prefix—suffix pair

I:' prefix, I:' suffix, I:' Good Suffix (GS) casel or 2

Length=1: GS case2
Common prefix-suftix="G”

Length=2:
No common suffix or prefix-
suffix pair

Length=3:
No common suffix or prefix-
suffix pair

Length=4: GS casel
Common suffix="AG”

G|C|A|G|A|G|A|G Length=5:
G|C|A|G|A|G|A|G No common suffix or prefix-
G|C|A|G|A|G|A|G suffix pair
GICIAIGIAIGIALG Length=6: GS casel

G| C EAGIEN EE N Common suffix="AGAG”
G|C|A|G|A|G|A|G

G|C|A|G|A|G|A|G Length=7:
G|C|A|G|A|[G|A|G No common suffix or prefix-
G|C|A|G|A|G|A|G suffix pair
G|C|A|G|A|G|A|G Length=8: GS case2
G|C|A|G|A|G|A|G Common prefix-suffix=
G|C|A|G|A|G|A|G “GCAGAGAG”

e For characters with length 4, we find a common suffix
“AG” (GS case 1).

e For characters with length 5, there is no common suffix
or prefix—suffix pair.

e For characters with length 6, we find a common suffix
“AGAG” (GS case 1).
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Table S Suffix array

Length-1 o 1 2 3 4 5 6 7

Length of suffix or prefix—suffix 1 0 0 2 0 4 0 8

b compare
target [ ] |

pattern| [ | [ |

shift ——> | | [ ] |

Fig. 3 Good suffix shift case 1

<—— compare

target [ | |

pattern | | | |

shift—>| | [ ]

Fig. 4 Good suffix case 2

e For characters with length 7, there is no common suffix
or prefix—suffix pair.

e For characters with length 8, we find a common prefix—
suffix pair “GCAGAGAG” (GS case 2).

According to the above, we construct a suffix array table
(Table 5).

Figure 3 illustrates the GS case 1. Figure 4 illustrate the
GS case 2 where there is a common prefix—suffix pair. In this
case, we skip the characters so that the prefix is located under
the target with which the previous suffix was matched.

Table 6 shows the matching process for a pattern “GCA-
GAGAG” against the target string. As explained above, the
pattern matching is first attempted at the last character of the
pattern (pattern [7]) and target [7]. The pattern [4:7] and tar-
get [4:7] match and the first mismatch occurs at target [3].
Referring to the Suffix_Array [3] in Table 5, we find that
there is a common suffix with length 2. Therefore we shift 4
characters to locate pattern [2:3] under target [6:7].

2.3 Time complexity of the BM algorithm

The time complexity for the BM algorithm is O(3 m) when
there is no match found in the target and O(mn) when at least

Table 6 Target array and matching process

one match is found (m: length of pattern, n: length of target)
[2]. According to the Galil Rule [4], the BM is superior to
other string matching algorithms because of its linear time
complexity. However, when there is (are) a match (matches)
found, its complexity depends on the length of the target.
Thus, when the length of the target increases, its execution
time also increases accordingly.

3 Archictectures of many-core accelerator chips

Recently, many-core accelerator chips are becoming increas-
ingly popular for the HPC applications. Representative chips
are the Nvidia Tesla K20 based on the Kepler GK110 archi-
tecture and the Intel Xeon Phi based on the MIC architecture.
In the following subsections, we describe these architectures.

3.1 Nvidia Tesla K20 GPU

The latest GPU architecture is characterized by a large num-
ber of uniform fine-grain programmable cores or thread
processors which have replaced separate processing units for
shader, vertex, and pixel in the earlier GPUs. Also, the clock
rate of the latest GPU has ramped up significantly. These
have drastically improved the floating-point performance of
the GPUs, far exceeding that of the latest CPUs. The fine-
grain cores (or thread processors) are distributed in multiple
Streaming Multiprocessors (SM) (or Thread Blocks) (see
Fig. 5). Multiple threads assigned to each SM execute in
the SIMD (Single Instruction Multiple Data) mode. Each
thread executes the same instruction directed by the com-
mon Instruction Unit on its own data streaming from the
device memory to the on-chip cache memories and registers.
When a running group of threads (or WARP) encounters a
cache miss, for example, the context is switched to a new
thread group (or WARP) while the cache miss is serviced
for the next few hundred cycles. Thus the GPU executes in a
multithreaded fashion as well [10].

The GPU is built around a sophisticated memory hierarchy
as shown in Fig. 5. There are registers and local memories
belonging to each thread processor or core. The local memory
is an area in the off-chip device memory. Shared memory,
level-1 (L-1) cache, and read-only data cache are integrated
in a thread block of the GPU. The shared memory is a fast (as

11 12 13 14 15 16 17 18 19 20 21

0 1 2 3 4 5 6 7 8 9 10
G C A T A G A G D E F
P1 G C A G A G A G
P2 G C A G A G A
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GPU Chip
Thread Block (Streaming Multiprocessor)-N

| Thread Block (Streaming Multiprocessor}-2

Thread Block (Streaming Multiprocessor)-1

= |
Thread | Thread

_ Processor1 Prmssorzj

Thread l
Processor M
Unit

=

Fig. 5 Architecture of a latest GPU (Nvidia Tesla K20)

fast as registers) programmer-managed memory. Level-2 (L-
2) cache is integrated on the GPU chip and used amongst all
the thread blocks. Global memory is an area in the off-chip
device memory accessed from all the thread blocks, through
which the GPU can communicate with the host CPU. Data in
the global memory gets cached directly in the shared-memory
by the programmer or they can be cached through the L-2
and L-1 caches automatically as they get accessed. There are
constant memory and texture memory regions in the device
memory also. Data in these regions is read-only. They can be
cached in the L-2 cache and the read-only data cache.

In order to efficiently utilize the latest advanced GPU
architectures, programming environments such as CUDA
from Nvidia [9], OpenCL from Khronos Group [12], Ope-
nACC [13] from a subgroup of OpenMP Architecture Review
Board (ARB) have been developed. Using these environ-
ments, users can have a more direct control over the large
number of GPU cores and its sophisticated memory hier-
archy. The flexible architecture and the programming envi-
ronments have led to a number of innovative performance
improvements in many application areas and many more are
still to come.

3.2 Intel Xeon Phi

The Intel Xeon Phi (codenamed Knights Corner) is based
on the Intel MIC architecture which combines multiple x 86

Fig. 6 Architecture of Intel Xeon Phi

cores on a single chip [6]. This chip can run in either the
native mode where an application runs directly on it or in
the offload mode where the application runs on the host side
and only the selected regions (compute-intensive regions) are
offloaded to the Xeon Phi. For the offload mode, the Xeon
Phi is connected to a host Intel Xeon processor through a
PCI-Express bus. In this paper, we use the Xeon Phi 5110P
for our parallel implementation of the BM:

e This coprocessor has 60 in-order compute cores support-
ing 64-bit x86 instructions. These cores are connected by
a high performance bidirectional ring interconnect (see
Fig. 6). It also has one service core, thus total 61 cores
on the chip.

e Each core is clocked at 1053MHz and offers the four-
way simultaneous multi-threading (SMT), 512-bit wide
SIMD vectors which correspond to eight double preci-
sion or sixteen single precision floating point numbers.

e Each core has a32KB L1 data cache, a 32 KB L1 instruc-
tion cache, and 512KB unified L2 cache. Thus, 60 cores
have a combined 30 MB L2 cache. The L2 cache is fully
coherent using the hardware support.

e The Xeon Phi chip has 16 memory channels delivering up
to 5GT/s. The total size of the on-board system memory
is 8GB.

Programmers can use the same programming languages and
models on the Xeon Phi as the Intel Xeon Processor. It can
run applications written in Fortran, C/C++, etc., and parallel
models such as OpenMP, MPI, Pthreads, Intel Clik Plus, Intel
Thread Building Block [6].

4 High performance parallelization of
Boyer-Moore algorithm

The BM algorithm consists of the preprocessing phase and
the pattern matching phase as explained in Sect. 2. We paral-
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Fig. 7 Parallel execution scenario of Boyer—-Moore algorithm

lelize the second phase of the BM where the two shift rules
generated in the first phase are used for the pattern matching
against the target input data loaded in the memory (see Fig. 7).
Previously, there have been research on parallelizing the BM
algorithm on the GPU [7], [11], [14]. In [11], they compared
the performance of the BM algorithm, the Knuth-Morris-
Pratt algorithm, and a brute-force approach. They proved
that the BM is most efficient. In [7], [14], they conducted a
study on parallelizing the Boyer—Moore-Horspool algorithm
on a GPU for a bioinformatics application. All these previous
research focused on maximizing the utilization of the GPU
cores and its memory hierarchy. In this paper, we parallelize
the BM in order to optimize the workload distribution, redun-
dant data copy and search overheads, etc., on the many-core
accelerator chips and multi-core processors.

4.1 Issues in parallelizing Boyer-Moore algorithm

The time complexity for the BM algorithm grows with the
increase in the length of the target when there is (are) a match
(matches). When there is no match, the complexity depends
only on the length of the pattern. Therefore, when we paral-
lelize the BM algorithm we need to minimize the execution
time for the large target sizes. For the parallel execution of
the BM, we partition the target data amongst a number of
threads. Some threads would find matches whereas other
threads may find no matches. Thus the workload distribu-
tion has large variances and we need to balance the workload
amongst the threads participating in the parallel execution.
Furthermore, when partitioning the target input data for the
parallel execution, data lying on the threads’ boundaries are
searched redundantly so that the pattern string lying on the
boundary can be found. The overheads associated with the
redundant data search increases significantly as the pattern
size increases and the number of threads increases. Thus we
need to reduce the overheads also.

4.2 Parallelization on multi-core processor and Xeon
Phi

We first parallelize the BM algorithm on the Intel multi-
core processor and on the Intel Xeon Phi which has a large
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Fig. 8 Static scheduling where each thread work on single large data

chunk
thr-0 |chunk0> chunk4 >—_ia_l_g:}
thrl | chunk1>| chunks >||:d]§l 0
N
thr-2 || chunk?2 > chunk7> E
thr-3 | _chunk3__ Y chunké Yidle’

Fig. 9 Dynamic scheduling where each thread works on multiple
chunks

number of x 86 cores. We parallelize the algorithm by parti-
tioning the input target data into a number of chunks. Then
we let each thread match the pattern with respect to its tar-
get data chunk. When we generate the target data chunks,
we assume that we search (pattern_length—1)-bytes of data
redundantly from its neighboring chunk. Although different
threads have almost the same target length, they have dif-
ferent contents. The number of pattern occurrences in each
thread may vary significantly. Thus the application of the two
shift rules may result in different execution time for different
threads. Figure 8 illustrates the parallel execution scenario
where each thread is assigned a target chunk with almost the
same length, however, some threads have finished its execu-
tion and sit idle while other threads are still working on the
pattern matching. Thus the overall parallel execution time is
determined by the laggard thread. In order to minimize the
inefficiency of the idle threads, we partition the target data
into smaller chunks and have each thread work on a number
of chunks. We use the dynamic scheduling policy by let-
ting a thread which finishes early for its assigned chunk pick
up another chunk, thereby reduces the workload variances
among threads. Figure 9 shows the execution scenario of the
dynamic scheduling.

We also parallelize the BM algorithm on the Intel Xeon
Phi. Basically we use the same parallelization methodology
as we use for the multi-core microprocessor. However, we
use the off-load mode of the Xeon Phi [6] so that the parallel
kernel can be offloaded from the host multi-core processor
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Host
Target Data M?m ory
#pragma offload
| XeonPhi
/ Target Data Me:mnor;

#pragma omp parallel

(%) () G

1yduoay

yoaeas
yoaeas
yoieas

Result

_ |

Fig. 10 Parallel execution using off-load mode on the Intel Xeon Phi

to the Xeon Phi. The target data is first copied from the host
memory to the on-board device memory of the Xeon Phi.
Then the host CPU commands the execution of the parallel
kernel on the Xeon Phi. Afterwards, the execution result is
copied back to the host memory (Fig. 10). There are up to
60 cores for the user process on the Xeon Phi (plus one ser-
vice core). Each core can have up to 4-way hyper-threading
[8]. Therefore, we use up to 240 threads and the dynamic
scheduling on the Xeon Phi. The overheads with the redun-
dant data search is rather small on the Xeon Phi compared
with the GPU as the maximum number of threads applicable
is small (240).

C. Parallelization on GPU

In order to parallelize the BM on the GPU, we copy the
target input data from the host memory and store in the
Global Memory (GM) region of the device memory of the
GPU board. Then the input target data stored in the GM
is partitioned and loaded into the Shared Memory (SM) of
a hardware block (or Streaming Multiprocessor: SMX) for
the parallel execution. Threads in each SMX search the pat-
tern in their assigned target data chunk in parallel. As in
the multi-core and the Xeon Phi parallelization, we search
(pattern_length—1)-bytes of data from its neighboring chunk
redundantly because a pattern may lie on the boundaries
of consecutive target data chunks. Since the SM is only
accessible from the threads running on the same SMX, we
redundantly copy the boundary data accessed by the different
threads running on the different SMX. Figure 11 illustrates
the parallel pattern matching performed by threads in each
SMX for the data copied from the GM to the SM.

In our parallelization, we divide the data mapped to each
SMX by the size of the shared memory (SM) to generate a
number of software blocks. Thus each SMX handles multiple
software blocks. This helps hide the GM access latencies by
the multithreaded execution of the SMX. Furthermore, the
high degree of multithreading on the GPU helps smoothen
the irregular execution times on different threads. When the

Target Data

—
Global
l Memory
store T T —_— !

Host
Memory
cudaMemcpyHostToDevice
T T
i Target Data
_i__
U
Sharse'gl)ﬁl_lg% L e store
SMX-1's SM

SMX-(M-1)’s SM

o o ;
| Partial Target Data

?d1naQg

I |
[ __search i i
thr-0 ¥ cearch |

I

1

I

i

I

thr-1 i search | i
thr-2 Y earch I

thr-3

Fig. 11 Parallel execution of BM on the GPU
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| store || | |- Store |

SMX-0's SM| SMX-0's SM|

store

_lem

I

store

i

Fig. 12 Algorithmic cascading (ACC) of two blocks from four blocks

number of blocks mapped to each SMX increases beyond the
capacity of the SMX (and the shared memory in each SMX),
however, there will be blocks which do not get mapped to the
SMX. This will saturate the SMX and also will leave many
blocks idle. Furthermore it results in the increased mapping
overheads.

In order to solve the problem of excessively high degree of
multithreading, we cascade multiple blocks algorithmically
(or algorithmic cascading: ACC) [5]. This increases the size
of the block and the amount of work for each thread, and
decreases the number of blocks mapped to each SMX. Fig-
ure 12 shows the parallel execution using the ACC technique.
Unlike in the execution of Fig. 11 where each block is exe-
cuted by each thread, every other block gets cascaded, for
example, and executed by the same thread. Thus it increases
the size of target data per thread and decrease the number
blocks. This reduces the number of idle blocks which are not
mapped, thus improve the benefit of multithreading. It also
reduces the mapping overheads and leads to the improved
performance.

The ACC also reduces the overheds associated with the
redundant data search. The size of the redundantly searched
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Table 7 Experimental environment

CPU Intel® Xeon® E5-2620
2.00GHz x 2 (6 cores x 2)
Memory 32GB
Xeon Phi Intel® Xeon Phi™
Coprocessor 5110P
(8 GB, 1.053 GHz, 60 core)
GPU Nvidia Tesla K20 (5 GB, 2496 CUDA core)
oS CentOS 6.3

data grows significantly with the size of the pattern and
the number of threads. For example, the size of redun-
dantly searched data is ~2.08-times the size of the target
when the pattern length is 50 and the number of threads
(no_of_blocks x no_of _threads/block) reaches ~178 mil-
lion. Using the ACC, the effective size of the target data per
thread gets increased by the degree of the ACC. Thus, the
data search overhead is also reduced.

5 Experimental results

In this section, we show the experimental results of paral-
lelizing the BM algorithm on the multi-core processors, the
Intel Xeon Phi, and the GPU. Table 7 summarizes the exper-
imental environments. The multi-core processors are 2 Intel
Xeon E5-2620 (2.0 GHz, 6 cores each), the host memory is
32GB in size, the Xeon Phi has 60 compute cores with 8§GB
of the on-board memory, the GPU is Nvidia Tesla K20 with
2496 single-precision cores and 5GB of the device memory.
We used the CentOS 6.3. For the parallel implementation
on the multi-core and the Xeon Phi, we used OpenMP [3].
For the parallel implementation on the GPU, we used CUDA
[9,10].

5.1 Results on multi-Core processors and Xeon Phi

Figure 13 shows the throughput performance (in Gbps) of
the serial implementation and two parallel implementations
with the static scheduling and the dynamic scheduling using
12 threads running on 12 cores (2 x 6 cores). In all the
experiments, we used 1000 chunks. Figure 14 shows the
speedups of the two parallel implementations over the serial
implementation. Overall the dynamic scheduling gives 11-
times speedup over the serial implementation using 12 cores.
The static scheduling gives 10-times speedup. The dynamic
scheduling gives ~10% gain over the static scheduling. It
helps balance the workloads among multiple threads.

The performance improvements get reduced as the length
of the pattern increases. This is because we search
(pattern_length—1)-bytes of redundant data from its neigh-
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Fig. 14 Speedup comparisons of statuc scheduling and dynamic
scheduling on Intel Xeon multi-core processors

boring chunks. As the pattern length increases, the size of the
data chunk assigned to each thread increases which results
in the enlarged problem size. For instance, when the number
of target data chunks is 1000, 3996 characters are searched
redundantly when the pattern size is 5. When the pattern size
increases to 50 characters, 48,951 characters are searched
redundantly.

Figure 15 shows the throughput performance (in Gbps)
on the Xeon Phi using serial implementation and parallel
implementations using 60, 120, 180, 240 threads. The best
performance was obtained using 180 threads on 60 cores, thus
3-way hyper-threading was used in each core. The resulting
throughput is greater than 80 Gbps and the average speedup
is 14.75 and the maximum speedup is 17.14 over the serial
implementation (Fig. 16).

5.2 Results on GPU
Figure 17 shows the throughput performance (in Gbps)

on the Nvidia Tesla K20 GPU compared with the serial
implementation. The GPU experiments were conducted with
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and without using the ACC technique. Using the ACC,
we obtained an average speedup of 33 and the maximum
speedup of 47. The ACC gives 30 % better performance than
without using it. As explained earlier in subsection A, the
redundant data search and copy affects the performance.
The amount of redundant data search using the ACC is
significantly reduced to degree_of ACC x no_of_blocks x

1 2 4 8 16 32 64
Degree of ACC

Fig. 19 Benefit of ACC for different pattern lengths

(no_of_threads/block—1)x (pattern_length—1). (For exam-
ple, when the degree of ACC = 64, pattern length = 50,
the no of blocks = 21,730, and the no of threads per block
= 128, total 8,654,450,560 characters are searched redun-
dantly.) The amount of the redundant data copy is calculated
as (no_of_blocks—1) x (pattern_length—1).

In order to search for an optimal degree of the ACC, we’ve
conducted experiments by doubling it from 1 (no ACC) to 64.
The Fig. 19 shows that, as the degree of the ACC increases,
the performance steadily improves for all the pattern lengths.
The ACC degree of 64 gives the best performance. Figure 20
shows the benefit of the ACC in the speedups.

For all the experimental results shown above, we’ve set the
number of software blocks to be mapped to each SMX as 16
and the number of threads per each block as 128. These num-
bers denote the degree of the multithreading at the software
block level and at the thread level within each block on our
target Tesla K20 chip. In order to optimize the performance
of the BM algorithm, we’ve searched these numbers through
extensive experiments. The maximum number of software
blocks that can be mapped to each SMX on the K20 is 16.
The maximum number of threads that can be mapped to each
SMX is limited to 2,048. Therefore we attempt to assign
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16 blocks and let each block use 3KB of the shared mem-
ory when we set the size of the shared memory as 48KB
(48KB/16 = 3KB). Then we set the number of threads to
be mapped to each SMX as 128, because 2,048/16 = 128.
Thus 3KB/128 = 24byte of the shared memory is assigned to
each thread. In the same way, we’ve also set (no of software
blocks per each SMX, no of threads per each block)-pairs as
(8,256), (4,512), (2, 1024) as the Table 8 shows. The num-
ber of software blocks decreases to 8, 4, 2, thus the size of
the shared memory mapped to each block increases to 6KB,
12KB, 24KB. The number of threads per each blocks, on the
other hand, increases to 256, 512, 1024. Thus the size of the
shared memory assigned to each thread remains at 24 bytes.

Figures 21 and 22 show the performance results of using
the pair combinations shown in Table 8, when the degree
of the ACC is set to 1 (no ACC). Mapping 16 blocks to
each SMX and mapping 128 threads per each block give
the best performance. Thus we’ve used these numbers in
the experiments of which the results are shown in the above
figures (Figs. 17, 18, 19, 20).

5.3 Summary of experimental results

Figures 23 and 24 show performance comparisons of the
serial implementation, the parallel implementations on two 6-
core Intel Xeon using 12 threads with the dynamic scheduling
for the load balancing, implementations on the Intel Xeon Phi
using 60 cores and 3-way hyper-threading per core, and on the
Tesla K20 GPU using the ACC technique. Figure 23 shows
the throughput comparisons and Fig. 24 shows the speedup

Table 8 (No of blcoks per smx,

Fig. 21 Throughput comparisons among the (no of blocksper SMX,
no of threads per each block) pairs shown in Table 8

Target Data Size : 4000MB

w A S
o v O un

w128

o

256

= NN W
%]

Speedup(times)
w

512

[y
o

m 1024

o u

Pattern Length

Fig. 22 Speedup comparisons among the (no of blocksper SMX, no
of threads per each block) pairs shown in Table 8

comparisons among different parallel implementations over
the serial implementation. Overall, the GPU implementation
shows the best performance, followed by the Xeon Phi, then
the multi-core implementation when comparing at the single
chip level, because the multi-core performance is obtained
using 2 chips. As the length of the pattern increases, the
absolute performance (throughput) increases. However, the
speedup decreases due to the computations performed on
the redundantly searched data on the data chunk bound-
aries. Also, as the pattern length increases and the number of
threads increases, the number of threads without any pattern
match occurrences increases. This leads to unbalanced load
distributions among the threads.

no of threads per block)-pairs # Of software block per SMX 16 8 4 2

used for experiments # Of thread per software block 128 256 512 1024
Shared memory size per software block 3KB 6KB 12KB 24KB
Shared memory size per thread 24B 24B 24B 24B
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6 Conclusion

In this paper, we proposed a high performance parallelization
of the BM algorithm which significantly improves the load
balancing among parallel threads for the irregular workload
distributions and the redundant data copy and search over-
heads on the many-core accelerator chips including the Intel
Xeon Phi and the Nvidia GPU. Our parallelization approach
partitions the given set of target input data to generate a num-
ber of data chunks. In order to optimize the load balancing
among threads, we carefully decide the chunk size and the
resulting number of chunks. Then we employ the dynamic
scheduling to smoothen the execution time variances among
different threads. On the Xeon Phi, the multithreading using
the Hyper-Threading technology is also used to further the
performance improvements. The multithreading on the GPU
also improves the load balancing among threads by assigning
a large number of threads per each core, thus the overall run
time variance gets minimized. Furthermore, the GPU imple-
mentation uses the algorithmic cascading (ACC) to maximize
the benefit of the multithreading and to minimize the redun-
dant data copy and search overheads. Experimental results
show ~17-times speedup on the Xeon Phi and ~47-times
speedup on the Nvidia Tesla K20 GPU compared with a ser-
ial implementation.
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