Cluster Comput (2015) 18:1561-1579
DOI 10.1007/s10586-015-0455-7

@ CrossMark

A parallel cellular automata algorithm for the deterministic
simulation of 3-D multicellular tissue growth

Belgacem Ben Youssef!

Received: 18 September 2013 / Revised: 1 November 2014 / Accepted: 6 April 2015 / Published online: 22 April 2015

© Springer Science+Business Media New York 2015

Abstract Besides generating faster solutions, parallel com-
puters can be used to solve bigger or more complex problems.
In particular, they can be utilized to run simulations at finer
resolutions and to model physical phenomena more realisti-
cally. We describe in this article the development of a parallel
cellular automata algorithm used in the three-dimensional
simulation of multicellular tissue growth. Computational
models of this genre are becoming ever more important
because they provide an alternative approach to continuous
models and an ability to describe the dynamics of complex
biological systems evolving in time. We report on the dif-
ferent components of the model where cellular automata is
used to model different types of cell populations that exe-
cute persistent random walks on the computational grid,
collide, aggregate, and proliferate until they reach conflu-
ence. We elaborate on the main issues encountered in the
parallelization of the algorithm as well as its implementation
on a parallel machine with a particular focus on maintain-
ing determinism. By delaying the exchange of cells in the
shared boundaries between neighboring processors till after
all events related to cell division and motion are accounted
for in a given time step, good parallel performance results
are obtained on a high-performance cluster.

Keywords Parallel algorithm - 3-D simulation model -
Determinism - Multicellular tissue growth - Cellular
automata - Performance sweet spot - Cluster machine

B<X Belgacem Ben Youssef
bbenyoussef @ksu.edu.sa

Department of Computer Engineering, College of Computer
& Information Sciences, King Saud University, Riyadh
11543, Saudi Arabia

1 Introduction

The need for computers that are multiple times faster than
today’s most powerful machines continues to grow unabated
year after year. The demand for such computational power
arises in many multidisciplinary applications, including the
design of better drugs, the forecasting of severe storms,
and the modeling of ecological and biological systems, to
name just a few. One of the ways for increasing the com-
putational power of computers is to use faster and faster
components. Until recently, improvements in this area have
been extraordinary. In fact, for nearly thirty years, Moore’s
law has predicted a doubling of transistor capacity every
18-24 months resulting in an average annual increase in
processor performance between 25 and 52 % [1]. However,
due to the long memory latency, the decrease in available
instruction-level parallelism, and the limitations imposed
on power consumption, the increase in processor perfor-
mance has slowed recently. This has brought about a “sea
change” characterized by a switch from uniprocessors to mul-
tiprocessors [2]. As a result, the exploitation of parallelism
is expected to have more and more significance in the future
while users will have to “think in paralle]” more than ever
before.

Cellular automata (CA) are dynamic systems, in which
both space and time are discrete, consisting of a number of
identical cells in a regular lattice. They were originally intro-
duced by John von Neumann and Stan Ulam as a possible
idealization of biological systems with a particular purpose
of modeling biological self-reproduction [3]. Each cell in
the cellular space (array or grid) can be in a finite num-
ber of states. The next state of each cell is determined, at
discrete time intervals, according to its current state, the cur-
rent state of its neighboring cells, and a next-state transition
rule or function. Cellular automata provide a computationally

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-015-0455-7&domain=pdf

1562

Cluster Comput (2015) 18:1561-1579

proficient technique for analyzing the collective properties
of a network of interconnected cells. The use of cellular
automata in modeling various systems including biological
ones has a number of advantages that include the fact that
CA are sufficiently simple to allow detailed mathematical
analysis, yet complex enough to exhibit a wide variety of
complicated phenomena. Models based on cellular automata
provide an alternative approach involving discrete coordi-
nates and variables to represent a complex dynamic system.
In addition, algorithms based on cellular automata are also
suitable for parallel processing [4,5].

The development of computational and simulation mod-
els for studying biocomplexity at the cell population and
tissue level can provide powerful frameworks in this area,
particularly by employing systems-based approaches [6,7].
These approaches consider cells as system components that
migrate, proliferate and interact to generate the complex
behavior observed in living systems [8,9]. However, employ-
ing systems-based approaches could lead to models with high
complexity whose solution poses significant computational
challenges [10-12]. The availability of computational mod-
els with predictive abilities could greatly speed up progress
in this area by assisting scientists in predicting the dynamic
response of cell populations to external stimuli, and by
rapidly assessing the effect of various system parameters on
the overall tissue growth rates. Computer simulations can
thus be used to shorten the development stage by allowing
researchers to quickly screen many alternatives and choose
only the most promising ones for laboratory experimentation.

Our previous work in [13—15] showed that the simulations
of realizable multicellular tissue objects is a computationally
demanding task that requires small time steps to accurately
describe the dynamics of multiple cell populations and long
times to complete them. In addition to the size of the cellu-
lar array, several input parameters affect the execution time
needed to run a simulation of this type. Some of these include
initial cell seeding density, cell migration speed, and cell
division time. For instance, we estimate that these factors,
when combined together, yield a serial execution time of
over 200 h for the simulation of tissue growth of 1 cm?
in size. Based on the average size of the area of a mam-
malian cell at confluence, this represents a cellular space of
10003 computational sites, where it is assumed that each site
has a side equal to 10 wm [15]. Such an outcome points
to the need for using parallel computing systems in order
to reduce the time to obtain simulation results. This arti-
cle builds on this work by considering the parallelization
of a three-dimensional computational and stochastic model
for multicellular tissue growth using cellular automata while
accounting for mammalian cell migration, division, collision,
and aggregation. In the next section, we present some related
work in this area. Afterwards, we describe the computational
model and present the sequential algorithm. We then discuss

@ Springer

different aspects related to its parallelization including the
issue of maintaining determinism. After describing the par-
allel algorithm, we present the obtained performance results
on a cluster. Finally, we provide our conclusion and future
directions for our research. With this work, our overall con-
tributions are twofold:

1. The development of a parallel algorithm using cellular
automata to model tissue growth comprised of multiple
cell populations, each with its own division and migration
characteristics.

2. The implementation of the above parallel algorithm on
a cluster machine while maintaining determinism and
efficiency in terms of simulation and performance results,
respectively.

2 Related work

Various modeling approaches have been used to simulate the
population dynamics of proliferating cells. These models can
be classified as: deterministic, stochastic, and based on cel-
lular automata or agents. Deterministic models, such as the
ones developed by Frame and Hu in [16] and Cherry and
Papoutsakis in [17], provide insight into simple cell popula-
tion dynamics. Such models may be useful in fitting specific
quantitative results; but they give little or no topological
information of the cell colonies before confluence or pro-
vide means of interpreting the parameters in terms of the
biological processes involved.

Lim and Davies developed a stochastic two-dimensional
model based on a matrix of irregular polygons and using the
Voronoi tessellation technique to address the issue of cell
topology [18]. While this model accounted for the forma-
tion and merging of cell colonies, it made some restrictive
assumptions on cell interactions and did not address cell
motility. Ruaan, Tsai, and Tsao proposed another stochas-
tic model for the simulation of density-dependent growth of
anchorage-dependent cells on flat surfaces [19]. Their model
included the effects of cell motion and considered that cell
sizes varied with time.

A two-dimensional model based on cellular automata was
developed by Zygourakis, Bizios, and Markenscoff [20]. The
model allows for contact inhibition during the proliferation
process. Using the cellular automata concept, Hawboldt,
Kalogerakis, and Behie [21] as well as Forestell, Milne,
and Behie [22] modeled contact-inhibited synchronous cell
growth on microcarriers. Both of these models were two
dimensional and did not account for cell motion. Moreover,
the assumption of uniform doubling time of cell populations
was somewhat unrealistic in cell proliferation phenomena.
Later, Lee et al. showed the importance of cell motility
and cell-cell interactions in describing the cell proliferation

Cluster Comput (2015) 18:1561-1579

1563

Table 1 Overview of
deterministic, stochastic, and
cellular automata models used
in the simulation of cell
proliferation dynamics and
tissue growth

Author(s) Model type Main features Limitations
Frame and Hu [16] Deterministic Growth rate based on cell All cells assumed to be
density equally contact-inhibited
Cherry and Deterministic Perimeter cell growth in Assumption of circular cell
Papoutsakis [17] cell colonies colonies only
No colony mergings
Lim and Davies [18] Stochastic Random cell division No cell motion
Cells represented as Restricted cell-cell
irregular polygons interactions
Ruann et al. [19] Stochastic Density-dependent growth ~ Restricted cell motion

Zygourakis et al. [20]
Forestell et al. [22]

Hawboldt et al. [21]

Lee et al. [23,24]
Kansal et al. [26]

Chang et al. [25]

Ben Youssef [15]

Cellular automata

Cellular automata

Cellular automata

Cellular automata

Cellular automata

Cellular automata

Cellular automata

Cell motility

Contact-inhibited cell
proliferation

Cell growth on
micro-carriers

Cell growth for any
cell line or microcarrier
Cell motion and division

Tumor growth

Simplified cell division

No cell motion

Restricted number of cells
and their neighbors

No cell motion
Synchronous growth
One cell per square (2D)

No cell motion

Cickovski et al. [27]

Ben Youssef and Tang
[13]

Cellular automata

Cellular automata

3-D model No tracking of individual
cells
3-D model No cell motion
Cell division and death No contact inhibition
3-D model Single cell type
Cell motion, division, and
collision
Morphogenesis No cell motion
Multiple cell types
Multiple cell types Cell size does not vary

Formation of multicelluar
aggregates in 3D

rates [23]. This work was succeeded by another model that
described the locomotion of migrating endothelial cells in
two dimensions [24].

Chang and his team developed a 3-D cellular automata
based model to describe the growth of microbial unit cells
[25]. This model considered the effects of bacterial cell divi-
sion and cell death. Other models based on cellular automata
have also been used to solve more specific modeling prob-
lems. For instance, Kansal et al. developed a model to
simulate brain tumor growth dynamics [26]. Their model
utilizes a few automaton cells to represent thousands of real
cells, thus reducing the computational time requirements of
the model while limiting its ability to track individual cells
in the cellular space. Another cellular automata model was
used by Cickovski et al. in [27] as a framework to simulate
morphogenesis. This model used a hybrid approach to sim-
ulate the growth of an avian limb. The cellular automaton
governed cell interactions while reaction-diffusion equation
solvers were used to determine the concentration levels of

surrounding chemicals. In Table 1, we present an overview
of these deterministic, stochastic, and CA models while high-
lighting their main features and limitations.

Our extended three-dimensional cellular automata model
represents a further refinement based on its inclusion of mul-
tiple cell types and its coverage of cell motion, division,
collision, and aggregation. In particular, the model allows us
to quickly evaluate the relative effect of many system para-
meters on the tissue growth rates including the initial density
of seed cells and their spatial distribution as well as predict
the time required for tissue growth given the properties of
each cell population. Since natural tissues are multicellular
and have a specific three-dimensional architecture, the sim-
ulation of tissue growth consisting of more than one type
of cells becomes paramount. Further, because these multiple
types of cells tend to organize themselves into very specific
spatial patterns, the discrete cellular automata approach may
be considered to be ideally suited to treat such problems with
complicated geometry. Models with a predictive capability

@ Springer

1564

Cluster Comput (2015) 18:1561-1579

are also suitable for the visual and quantitative exploration
of a diverse range of testable hypotheses and ‘“what-if”
query scenarios, thus providing a basis for a rational design
approach [28]. This makes them a necessary prerequisite for
developing systems control strategies for biotechnological
processes involving the proliferation and growth of contact-
inhibited cells [29].

While our main focus here is on CA-based models, there
also exist anumber of agent-based lattice-free models to sim-
ulate tissue growth [30-32]. Agent-based models (ABMs)
can be thought of as generalizations of CA models, where
a number of individual and autonomous constituent entities
(known as agents) interact locally in order to create a higher
level, group behavior [10]. These models apply the dynam-
ics of cell proliferation and death to describe tissue pattern
formation and growth. Other related models are suitable for
describing the locomotion of a fixed number of cells where
cells move relatively slowly with respect to other processes
like the diffusion of soluble substances [33,34]. Additional
ABMs employ feedback mechanisms between cells and the
substrate to model cells entering and leaving the tissue and
to establish homeostasis in such systems [35]. Some of the
agent-based models use regular triangulation to generate
the neighborhood topology for the cells, thus allowing for
a continuous representation of cell sizes and locations in
contrast to grid-based models [36]. Others utilize multiscale
approaches to model collective phenomena in multicellular
assemblies [37]. The reader is referred to the recent work by
Hwang et al., which reviews a number of rule-based mod-
eling techniques of multicellular biological systems using,
among others, agent-based models [10].

3 Engineering 3-D bioartificial tissues

Each year, millions of surgical procedures are performed
to relieve patients who are affected by tissue loss, due to
burns, injuries, or organ failure. Operations treating patients
using tissue reconstruction and organ transplantation have
been highly successful. However, the number of patients
treated by these therapies is small due to the limited number
of donors available [38]. The growth of three-dimensional
tissue with proper structure and function is the main goal of
tissue engineering. Tissue engineers draw on the knowledge
gained in the fields of biology, biochemistry, engineering,
and the medical sciences to develop bioartificial implants
or to induce tissue remodeling in order to replace, repair or
enhance the function of a particular tissue or organ [18]. The
three-dimensional structure of natural tissues is supported by
an extracellular matrix (ECM) that often has the form of a
three-dimensional network of cross-linked protein strands.
In addition to determining the mechanical properties of a
tissue, the ECM plays many important roles in tissue devel-

@ Springer

Fig. 1 New bone growth: a dog leg bone with a missing section is held
in place with braces (a). A polymer scaffold primed with bone-growth-
promoting proteins (b) fills the gap. The scaffold is slowly infiltrated by
new bone (c). Ultimately, the degradable scaffold is completely replaced
by bone (d). The new tissue (e) has its own blood supply (red and blue
vessels). The leg bone has healed (f)

opment. Biochemical and biophysical signals from the ECM
modulate fundamental cellular activities, including adhe-
sion, migration, proliferation, as well as differentiation and
programmed cell death [11,20]. For example, extracellular
matrices may be used to promote wound healing, a serious
problem with patients suffering from many debilitating dis-
eases [8]. As shown in Fig. 1, the tissue engineering approach
to wound healing consists of the following steps:

1. A biocompatible matrix is used to fill the defect (wound).

2. The scaffold may contain bioactive agents (growth fac-
tors) that induce neighboring cells to migrate into the
scaffold, proliferate and produce their own extracellular
matrix.

3. This process continues until the wound heals.

4 Computational model

Tissue regeneration is a highly dynamic process. When cells
are seeded in a 3-D scaffold, they migrate in all directions,
interact with each other and proliferate until they completely
fill the space available to them. This assumes that enough
nutrients are always available to sustain cell growth every-
where in the interior of the scaffold. To model this dynamic
process, we consider cellular automata consisting of three-
dimensional grids with N3 total cubic computational sites
[3,39]. Each site is a finite automaton that can exist in one
of a finite number of states at each time interval that is inter-
acting with its six immediate neighbors as shown in Fig. 2.
That is, a site may be either:

Cluster Comput (2015) 18:1561-1579

1565

UPL

X ot
|[WEST 1= | | — | BART|
SOUTH *

D i

Fig. 2 A cell in the cellular automaton interacts with its six immediate
neighbors. This is known as the von Neumann neighborhood in three
dimensions

e empty and available for a cell to move in, or

e occupied by a cell, which is at a given point in its mitotic
cycle and moves in a certain direction. No other cell can
move or divide into an already occupied site.

Proliferating cells execute persistent random walks in
space [40,41]. This process consists of the following stages:

1. Each cell in the population moves in one direction for
a certain period of time (persistence). At the end of this
interval, the cell stops and turns to continue its migra-
tion in another direction. The persistence is a random
variable whose density function can be determined ex-
perimentally.

2. When two cells collide, they stop for a short period of
time before resuming their migration to move away from
each other.

3. At the end of its cycle, a cell stops to divide into two
daughter cells.

4. This process is repeated until the cell population has com-
pletely filled the scaffold or until the cells cannot migrate
and divide any further [13].

To simulate these dynamics, the state x;() of each cellular
automaton takes values from a set of integer numbers that
code all the required information about the cell type, its
migration speed, the direction of movement, and the time
remaining until the next direction change and the next cell
division. Our model also considers cell division time as a
random variable whose probability density function can be
obtained experimentally using the procedure described by
Lee and coworkers [24]. Hence, every automaton has its state
evolving at discrete time steps At through interactions with
neighboring automata. Let us consider the j-th automaton

that contains a cell at time #,. Its state x;(r) is specified by
the following numbers:

1. Cell type k; ;: For each cell population, this is a unique
identifier. The number of modeled cell populations is
based on the number of digits used torepresentk; ;. Using
a single digit, up to nine different cell populations can be
simulated with each population having its own division
and migratory parameters.

2. Migrationindexm j(m; € {0,1,2,3,4,5,6,7}):1fm; =
1, 2, ..., 6, then the cell is migrating in one of
the six directions (east, north, west, south, up and
down). If m; = 0, the cell is stationary. If m; =
7, the cell is in the aggregation state.

3. Division counter ky ;: The time that must elapse before
the cell dividesisequal toty = kg, j At. Foreachiteration,
this counter is decremented by one and the cell divides
when kg ; = 0.

4. Persistence counter k), ;: The time that must elapse before
the cell changes its direction of movementis equaltoz, =
kp, jAt. For each iteration, this counter is decremented
by one and the cell turns when k, ; = 0.

For every automaton j(1 < j < N 3), the application of
these rules defines a local transition function specifying the
state x j (r + 1) of the automaton at ¢ 1 as a function of the
states of its neighbors at #,, that is

xj(r+ D= fi(x;(r), xj41(r), xj42(r), ... xjp6(r), (D)

where x;1(r), xj42(r), ..., and xj16(r) are the states of
the six neighbors of automaton j. The application of
the local transition functions, f;(...), to all the automata
in a cellular space transforms a configuration X (r) =
[x1(r), x2(r), ..., xpy3(r)] of the cellular automaton to
another one X (r 4 1) according to Eq. 1. Thus, a global tran-
sition function F acting on the entire array can be defined as
follows:

Xr+1)=FX@), r=0,1,2,... 2)
As a result, starting from an initial configuration X (0), the
cellular automaton follows a trajectory of configurations
X(),X@2),...,X(r),... defined by the global transition

function F. At each time level, the states of all the cells of
an automaton are updated in parallel.

5 Sequential algorithm
5.1 Initial condition

The sites that will be occupied by cells at time #(are selected.
The assignment of seed cells to the grid sites may be done

@ Springer

1566

Cluster Comput (2015) 18:1561-1579

\\,\:\ . . ‘
54 =. @

-, ¢ e
o~ . ;e ki
l)‘:~ ..‘ .. ‘ \,',_
X M e . o
ls"."\ ‘ .
LU ' ,,1"0
Y 0 9 X

Fig. 3 An example of a uniform cell-seeding distribution displaying
three cell types in a mixed seeding mode. A total of 40 cells in a
20 x 20 x 20 cellular array are seeded, yielding a 0.5 % cell-seeding
density

either randomly (using, for example, a uniform distribution
like the one depicted in Fig. 3) or according to rules that emu-
late special cases of tissue regeneration like wound healing
[8]. Afterwards, an initial state x;(0), at time fg, is assigned
to each occupied site j based on the population character-
istics of that cell type. The migration index m ; is randomly
selected, the value of the persistence counter k, ; is properly
chosen, and the cell division counter k4, ; is set according to
the experimentally determined distribution of cell division
times. As stated previously, the integer counters k, ; and
kq,j will be decremented at every iteration and the cell will
change its direction of movement or divide when k), ; =0 or
kq,j = 0, respectively.

5.2 Iterative operations
Ateachtime step t, =t—1) + At,r =1,2,...

1. Randomly select a computational site.

2. If this site contains a cell that is ready to divide, execute
the division routine and go to step 5.

3. If this site contains a cell that is ready to change its direc-
tion of movement, execute the direction change routine
and go to step 5.

4. Otherwise, try to move the cell to a neighboring site in the
direction indicated by the migration index of its current
state:

@ Springer

a. If this site is free, mark it as the site that will con-
tain the cell at the next time step and decrement the
persistence and cell phase counters by one.

b. If this site is occupied by a cell from a different
cell type, we have a cell-cell collision. The cell will
remain at the present site by entering the stationary
state and will execute the direction change routine
after a pre-specified number of iterations. Its cell
phase counter is decremented by one.

c. If this site is occupied by a cell from the same cell
type, we have a cell-cell aggregation. The cell will
remain at the present site by entering the aggregation
state and will execute the direction change routine
after a pre-specified number of iterations. Its cell
phase counter is decremented by one.

5. Select another site and repeat steps 2—4 until all sites have
been examined.

6. Update the states of all sites so that the locations of all
cells are set for the next time step.

5.3 Division routine

1. Scan the neighborhood of the current site to determine if
there are any free adjacent sites. If all adjacent sites are
occupied, the cell will not divide. The cell phase counter
gets a new value.

2. If there are free sites in the neighborhood, select one of
these sites to place the second daughter cell. The other
daughter cell will occupy the current location. The selec-
tion algorithm may assign either the same probability to
each of the free neighbors of a cell or “bias” the divi-
sion process by assigning higher probabilities to some
neighbors.

3. Mark the selected site that will contain one of the daughter
cells in the next time step. Once a site has been marked,
no other cell can move in it during this iteration. Set the
state of this site x;(r) by defining the migration index as
well as the persistence and cell division counters.

5.4 Direction change routine

1. Scan the neighborhood of the current site to determine if
there are any free adjacent sites. If all adjacent sites are
occupied, the cell remains at the present site. The cell is
also assigned a new persistence counter.

2. If there are free sites in the neighborhood, select one
of these sites by using a random algorithm based on
the experimentally determined state-transition probabil-
ities.

Cluster Comput (2015) 18:1561-1579

1567

3. Mark the selected site that will contain the cell in the
next time step to prevent other cells from occupying it.
Set the persistence counter to its appropriate initial value
and decrement the cell phase counter by one.

6 Parallelization steps

The parallel algorithm we designed to simulate the dynam-
ics of multicellular tissue growth was implemented on a
distributed-memory cluster machine using the Message Pass-
ing Interface (MPI) [42,43]. Our discussion here will focus
on the main issues we faced during the different steps com-
prising the parallelization task.

6.1 Application architecture

We begin by looking at the architecture of the application
at hand. Our application falls in the category of loosely syn-
chronous applications as categorized by Pancake [44]. Such
applications exhibit certain characteristics where the amount
of computation could vary from one partition and time step
to another because it depends on the amount of useful data,
which is proportional to the number of occupied sites in our
case [44]. A single processor experiences different work-
loads from the early time steps to the later ones as cells divide
and proliferate. The need to exchange data among processors
necessitates that each processor be able to determine when
the other nodes are ready for this exchange so that data not
yet used are not overwritten. Between these exchange points,
the different nodes proceed at their own rates.

6.2 Load balancing

Since the workload now varies both temporally and spatially,
much effort must be spent to evenly distribute it among the
nodes. In order to minimize overhead, we used a static and
cell distribution-dependent load-balancing strategy whereby
each node stays responsible for a fixed part of the cellular
space. This is known as the Eulerian method [45]. Static
methods are uncomplicated, but can have difficulty handling
subsequent load imbalances. The major advantage of using
static load balancing is that the entire overhead of the load-
balancing process is incurred at compile time. This represents
a one-time and fixed cost that results in more efficiency.
Our choice of a static load-balancing strategy was based
on the fact that the behaviour of cells (their division and
migration) is random. Since the seed cells were evenly and
uniformly distributed throughout the global cellular array, we
observed that the computational load fluctuations between
neighboring sub-domains tend to average out, thus maintain-
ing aload-balanced computation. This means that the number
of cells leaving a sub-domain is counterbalanced by a nearly

equal number of cells entering it. Moreover, the choice of
a cell distribution-dependent load-balancing technique ful-
filled the dual objective of not only conserving the required
load balancing but also that of maintaining the efficiency of
the parallel computation. Further, this choice helps us achieve
solutions which are scalable, that is, solutions that should be
efficient for a wide range of number of processors, with the
goal of minimizing the overall execution time of the program,
while minimizing the communication delays.

6.3 Domain decomposition and mapping

We used a seeding mode where cells were uniformly and
randomly distributed in the cellular array as shown in Fig. 3.
This is widely known as the most common seeding mode in
tissue engineering applications [46]. This type of distribution
is amenable to a slab decomposition that can be achieved by
dividing the cellular array into equal partitions along the z
dimension. As displayed in Fig. 4, the area of the boundary
between any two sub-domains is equal to Ny x N, sites.
Hence, the maximum amount of data communicated from a
sub-domain to its neighbors is 2 x N, x N, data elements at
any given instant. To implement the slab decomposition, the
sub-domains were logically mapped onto a one-dimensional
processor grid representing a topology of a linear array. In
our application, this topology reflects the logical commu-
nication pattern of the parallel processes. It also preserves
the locality property of the algorithm, thus guaranteeing that
all neighbors of a cell in the cellular space are stored either
on the same processor or on a processor that is logically an
immediate neighbor to it.

6.4 Handling cell movement and division

Performing cell movement and division in one step will lead
to correctness problems. The solution is to use a “splitting”
technique that consists of two aggregate steps: the first com-
putes the next position of a cell or its daughter cell, while
the second step is the one that actually moves/divides the
cell and updates the cell state information [47]. The sequen-
tial implementation inherently uses this splitting technique
so that there is no possibility of conflicts. To preserve the
semantics of the serial algorithm, the parallel algorithm must
communicate with the neighboring processors between the
first and second step. If we do not communicate then, we
lose correctness since this leads to having more than one cell
occupy a given site, which is a violation of one of the rules
of our cellular automaton.

6.5 Ensuring determinism

In the context of determinism, our objective is to obtain repro-
ducible results for the same input data. This is not necessarily

@ Springer

1568

Cluster Comput (2015) 18:1561-1579

Fig. 4 The domain a
decomposition of the cellular
grid on a cluster with P =4 I
nodes (processors). The
mapping shows how each node /
is assigned a fixed partition of 7
the cellular space in the shape of ia
a slab. The dotted lines denote Nk
shared boundaries with 2/
. ol >
neighboring processors Node 4 \ Sub-domain 4 P/ A)
\f—|/ 7/ 7 A
/ & /
I 7
7 L 7
Node 3 { \ Sub-domain 3 7 p
________ S § / A 7
i /7 / 74
/ 7
Node 2 C:> Sub-domain 2
Node 1 C::) Sub-domain 1

fulfilled for a given algorithm, even if this algorithm is correct
[48]. Deterministic results are paramount for the following
reasons:

e Verification Results are often only useful if we have a
way to verify them with different means. To get the same
results whether they are obtained by a single processor,
four processors, or by 32 processors is a strong argument
for the verifiability of these results. Thus, determinism in
this case supports correctness.

e Comparison We may want to compare the performance
of different systems. Ensuring that similar results are
obtained on these systems is needed to achieve this task.
Thus, determinism in this case is an important condition
that supports system evaluation.

The key to determinism is to define precise procedures for
making decisions and to define a precise order to perform
these procedures. We have to make decisions whenever there
are several possible actions and we must choose one of these.
In our application, for example, we have to decide where to
move a cell or where to place a daughter cell after division,
in case the cell in question has several empty sites in its
neighborhood.

In a parallel algorithm, there are at least two factors that
make determinism hard to ensure:

1. The decomposition of the problem domain This may
depend on the number of nodes or the kind of load balanc-

@ Springer

ing done. Dynamic load-balancing strategies introduce
significant complications in this regard that are due to
the needed rebalancing of the workload on processors at
run time.

2. The hardware SIMD architectures may have a central
clock, making the hardware completely deterministic.
However, this is usually not the case for high performance
clusters. Every processing node in a cluster has its own
clock, and there are always slight speed differences. For
instance, if two nodes want to communicate with a third
node at the same time, we cannot predict which node will
be serviced first.

Because of such problems, it is hard to produce a stable paral-
lel code that will always give the same results. To overcome
these issues, we used a static load-balancing strategy that
is dependent on the initial cell distribution topology as dis-
cussed previously. In addition, in our algorithm, initially cells
are randomly seeded. When simulation starts, cells are then
randomly chosen to perform predefined procedures and to
reset the state of a site occupied by a living cell. Our ser-
ial algorithm uses often a pseudo-random number generator
(PRNG) to effect these computations and allow the simu-
lation of tissue growth to proceed according to the cellular
automaton rules for cell division, migration, collision, and
aggregation. In essence, the PRNG plays a key role in keep-
ing the computations deterministic.

A parallel implementation of the PRNG on one node
would be very inefficient and would constitute a bottleneck.

Cluster Comput (2015) 18:1561-1579

Instead, we parallelized the random number generator in a
way that keeps our computations reproducible and deter-
ministic, even if the order of the generation of the parallel
subsequences by the different nodes is not fixed. The key
for this is the parallelization strategy and, consequently,
the seeds used. We employed the leaping strategy which
interleaves the generation of the parallel subsequences of
random numbers [49]. This interleaving allows us to obtain
in a deterministic way unique parallel seeds for each of the
parallel simulation runs based on a given seed for a ser-
ial simulation run. We discuss next how this approach was
implemented.

6.5.1 Parallelization of random number generation on a
cluster

Based on its randomness quality, its amenability to be paral-
lelized in a way that ensures the reproducibility of simulation
results, and the provision of parallel streams of random num-
bers that are adequately independent from one another, we
chose to implement the multiplicative linear congruential
method, first presented by D. H. Lehmer, with carefully cho-
sen parameters [50]. The generator is defined as x,,+1 = ax;,
mod m,where x, is the nth member of the sequence of
random numbers before normalization, m is a large prime
number (m = 23! — 1), and « is an integer ranging from
2 to m — 1, with the specific property that it is a primitive
root of m to ensure a full length period (@ = 62, 089, 911)
[51]. This sequence must be initialized by choosing an ini-
tial integer value, x; € {1,2,...,m — 1}, called the seed.
By a simple manipulation of the generating equation, we can
compute the (n + k)th member of the sequence in terms of
the nth as follows:

k

Xn4k = Ax, mod m, whereA = a". 3)

We assume that our high performance cluster consists
of P processors, or nodes, interconnected by some com-
munication network. The idea is to have each processor
compute its random numbers using the previous equation
with k = P. Since the value of P is known for each par-
allel simulation run, the quantity A can be computed once
and stored. We start this process by giving the processors a
staggered start to prevent their respective subsequences from
overlapping.

Let y; denote the seed of the sequential algorithm (y; =
x1 = 123). We set the seeds in each processor of the cluster
in the following way, where a subscript denotes the position
in the random number sequence and a superscript denotes a
processing node,

1569
[(1
)Cl() =)V
x{z) =ay; mod m =y,
x1(3) =ay, mod m=a%y; modm = y3
xl(P) = aP_1y1 mod m = yp.

The above set of formulae achieves the previously mentioned
staggered start and results in unique seeds for each parallel
subsequence. Each node in the cluster then uses Eq. 3 to
calculate the next member of its sequence, where k is now
replaced with P. This process is repeated for the subsequent
random number calculations and is exemplified below for
nodei,1 <i < P:

xg) =Yyit+p =Ay; modm = (a” mod m)xl(i) mod m

xgi) = Yitop = aPyH_p mod m = (a¥ mod m)xéi) mod m

x;l):yH_(j_l)p:aPyH_(j_z)p mod m:(aP mod m)x((;.)q) mod m.

The adoption of a single PRNG allows us to have a single
copy residing in the local memory of each processing node.
The parallel generation of random numbers then proceeds in
an interleaved fashion to avoid any memory conflicts. Based
on the asynchronous processing of computational sites in the
cellular space, each node locally controls the rate of produc-
tion and consumption of random numbers in its subsequence.
This has the effect of nodes jumping ahead one another while
computing their respective next random numbers in their sub-
sequences [49].

The new multiplier for the parallel generation of these
subsequences is now given by a” mod m. Computing this
multiplier efficiently may be achieved by exploiting the asso-
ciativity property of the modulo operation with respect to
multiplication using a divide-and-conquer strategy. Further,
we note that choosing a single PRNG gives us the flexibility
to properly select its parameters and to use knowledge gained
thus far in determining and understanding its statistical prop-
erties [52].

7 Parallel algorithm

The goal of the developed parallel algorithm is to reduce
the amount of communication between nodes by exchanging
shared boundaries during a simulation time step only when
a process has calculated the movement/division of all cells
in the sub-domain and not each time a cell attempts to cross
over to a neighboring sub-domain. Thus, for cells attempting

@ Springer

1570

Cluster Comput (2015) 18:1561-1579

to cross over to a neighboring sub-domain, their inquiries
are recorded and sent to the corresponding neighbor, only
after all the cells of the sub-domain have been considered.
The actual movement/division of a cell that crosses over to
a neighboring sub-domain is performed after the exchange
of the shared boundaries. Using the current processor as a
reference point, we define the following terms and nota-
tions that will be used in describing the steps of the parallel
algorithm:

e Myself Identifies the id number of the current processor
(for example, id 7).

e Mypred Identifies the id number of the predecessor
processor using a logical linear array topology (for exam-
ple,idi — 1).

e Mysucc Identifies the id number of the successor proces-
sor using a logical linear array topology (for example, id
i+ 1).

e Volume Coverage Represents the percentage of occu-
pied sites. A value of 99.99 % is usually chosen. This is
also known as the confluence parameter.

e X(Ny, Ny, N;) The global cellular array containing all
cells.

e X(Ny,Ny,0:n;+1) The part of the cellular array owned by
the current processor (local sub-domain) including two
ghost layers to accommodate shared boundaries with the
two neighboring processors, where n, = N,/ P.

® M ossing to_mypreda A 2-D matrix containing the state
information of all cells attempting to cross over from the
bottom layer (layer 1) of current processor to the top layer
(layer n;) of predecessor processor.

® Mrossing_to_mysuce A 2-D matrix containing the state
information of all cells attempting to cross over from the
top layer (layer n;) of current processor to the bottom
layer (layer 1) of successor processor.

® M ossing_from_mypreda A 2-D matrix containing the state
information of all cells attempting to cross over from

@ Springer

the top layer (layer n;) of predecessor processor to the
bottom layer (layer 1) of current processor.

® Mrossing_from_mysuce A 2-D matrix containing the state
information of all cells attempting to cross over from the
bottom layer (layer 1) of successor processor to the top
layer (layer n;) of current processor.

® M, ¢jecred_to_myprea A 2-D matrix containing the posi-
tion and state information of all cells rejected by current
processor and going back to predecessor processor.

® M,¢jecred_ro_mysuce A 2-D matrix containing the posi-
tion and state information of all cells rejected by current
processor and going back to successor processor.

® M, ¢jected_by_mypred A2-D matrix containing the position
and state information of all cells rejected by the prede-
cessor processor and going back to current processor.

® M,¢jecred_by_mysuce A 2-D matrix containing the position
and state information of all cells rejected by the successor
processor and going back to current processor.

e Layer 0 Represents layer n, of the predecessor proces-
SOr.

e Layer n;+ 1 Represents layer 1 of the successor proces-
SOT.

We describe in the parallel algorithm the actions of an
even-numbered process Py; during the k™ simulation time
step. Unless otherwise specified, “send” and “receive” in
the pseudo-code mean “MPI_ISEND” and “MPI_IRECV”,
respectively, which represent a non-blocking mode of inter-
processor communication [43]. The main operations of this
process are performed in the following order:

Calculation of cell movement/division.

Execution of cell movement/division.

Sending a message.

Receiving a message.

Updating the sub-domain according to the information
provided by the received message.

AEE Rl

Cluster Comput (2015) 18:1561-1579 1571

Parallel Algorithm: Pseudo code showing the actions performed by an even-numbered process P»;

during the k" simulation time step.

Inputs: X(N, N, 0:n.+1)atthe end of (k-1)" time step, myself, mypred, mysucc, and volume coverage.

output: X(N, N, 0:n.+I) at the end of k" time step.

0 N O U W N R

10
11
12
13

14

15
16
17
18
19

20
21

22
23
24
25
26

While the specified volume coverage has not been reached Do

EndDo

While not all cells in the sub-domain have been considered Do

Randomly select the next cell in the sub-domain;

Calculate cell movement and division;

If the cell is not crossing over to a neighboring sub-domain Then
| Execute its movement and division;

| Record the cell’s current position and the calculated new cell
| state: 1) in a matriX Mcrossing to myprea TOr cells attempting to cross
| over from layer 1 of myself to layer n, of mypred and 2) in a
| matrix Mcrossing to mysucc TOr cells attempting to cross from layer n, of
| myself to layer 1 of mysucc;
EndIf
Send Mcrossing to myprea TO mypred and Mcrossing_to_mysucc tO mysucc;
Receive Mcrossing_from myprea Trom mypred and Mcrossing_from mysucc Trom mysucc;
For each cell recorded in Mcrossing from myprea @aNd Mcrossing_from mysucc DO
Decide whether a cell that crosses over from a neighbor will be

accepted (into an empty site of the sub-domain) or rejected due to

I
|
| having more than one cell moving to a given site;
| Record the position of a rejected cell in a matrix Mrejected to myprea TOI
| cells going back to mypred and in a matrix Mrejected to mysucc TOr cells

| going back to mysucc;

EndDo

Send Mrejected_to_mypred to mypl"ed and Mrejected_to_mysucc to mysucc;

Receive Mrejected by myprea Trom mypred and Mrejected by mysucc Trom mysucc;

For each cell recorded in Mrejected by mypred @Nd Mrejected by mysucc DO

| Recalculate cell movement and division from the cell’s original

| position;
| Execute cell movement and division;
EndDo

EndDo

Send layer 1 to mypred and layer n, to mysucc;

Receive layer © from mypred and layer n,+1 from mysucc;

Update the time step of the simulation;

@ Springer

1572

Cluster Comput (2015) 18:1561-1579

In order to avoid deadlock, the odd-numbered and even-
numbered processes would execute these operations in a
different order. Thus, an odd-numbered process P»j;+1 exe-
cutes these operations during the same k™ simulation time
step in the following order:

1. Receiving a message.

2. Updating the sub-domain according to the information
provided by the received message.

Calculation of cell movement/division.

Execution of cell movement/division.

5. Sending a message.

W

We note, from the above, that the even-numbered processes
have an advantage over the odd-numbered processes when
they compete with them for an empty site in the shared bound-
aries, as they can execute cell movement/division first. To
counterbalance the effect of this computational artifact, the
previously described order of the main operations for the even
and odd-numbered processes is switched during the next time
step, i.e., during the (k + 1) simulation time step the even-
numbered processes will execute these main operations in
the order that the odd-numbered processes executed them
during the k™ simulation time step. This process is repeated
until the desired confluence value is reached.

7.1 Sample of simulation results

We present here only a sample of the sequential and paral-
lel simulation results. These results were obtained using a
200 x 200 x 200 cellular array having a uniform cell distri-
bution with an initial cell-seeding density of 0.5 % using a
mixed mode and a confluence parameter of 99.99 %. Two cell
populations were employed in these runs, one moving at a
speed of 10 wm/h while the other at a slower pace of 1 wm/h.
We define the cell heterogeneity measure, H, as the ratio of
the number of seed cells from population 1 to that from pop-
ulation 2, where cell population 1 contains all cells moving
at the faster speed (10 wm/h). For the parallel simulations,
the slab decomposition technique with eight processors was
utilized in this case. The simulation results display the effect
of varying the ratio H on volume coverage, shown here as the
cell volume fraction, k(r), which is equal to the number of
occupied sites divided by the size of the cellular space at time
step . Both Figs. 5 and 6 show that increasing the value of H
yields a decrease in the time to reach complete volume cov-
erage. This is because for larger values of H, the population
of faster moving cells dominates the proliferation process.
In a mixed mode, such faster moving cells use their speed
to spread out in the cellular space while seeking available
empty sites, thus preventing the formation of cell colonies
while allowing for confluence to be reached sooner. We fur-
ther observe that for larger values of H(H > 5), the results

@ Springer

Uniform Topology, Mixed Distribution, Seeding Density = 0.5%

Cell Volume Fraction, k (%)
O i A A R -
w S w (=} ~ =] K=l
N
N
N
S
~ S
=~ o
~ s
=~ N
2

<
v
Y

[=

%
I'TE:FII
NN

o

[=]
(S
w
-~
[
=
N
®

Time, Days

Fig. 5 Sequential simulation results showing the effect of varying the
cell heterogeneity ratio, H, on the cell volume fraction

Number of Processors P = 8
Uniform Topology, Mixed Distribution, Seeding Density = 0.5%

°© o o
~N %0 O
-
TN
SRUnN
\\

14
=N
=,

S
=

Cell Volume Fraction, k (%)
=) o
o O

=3
o
N
N

\

W\

\:
josfe sfe e o« of
I aun
O W —

(=]

o
[N)
w
IS
v
o
N
o

Time, Days

Fig. 6 Parallel simulation results showing the effect of varying the cell
heterogeneity ratio, H, on the cell volume fraction

of the temporal evolution of cell volume fraction become
indistinguishable from one another. This may suggest that
scientists should limit their experimentations in this context
to values of H < 5. These two figures also show how close
the parallel simulation results are to the sequential ones.

8 Parallel performance
8.1 Computing platform and experimental conditions

The computing platform used to implement the parallel
algorithm is a high-performance computing cluster, under
the name of Nebula, located in the InfoNet Media Cen-
tre at Simon Fraser University. The cluster consists of 128
interconnected nodes using Gigabit Ethernet. Each node is
comprised of an Intel P4 3.0-GHz processor with 2 GB of
RAM. These nodes run the Gentoo Linux operating system
with a GCC compiler version 4.4.3 and a LAM-MPI version

Cluster Comput (2015) 18:1561-1579

1573

7.1.4. MPI is becoming a de facto standard to implement
message passing on distributed-memory machines while
employing the Single Program Multiple Data (SPMD) pro-
gramming model [53].

Our performance results were obtained by running both
the sequential and parallel algorithms on the cluster. The fol-
lowing experimental conditions were observed in order to
generate consistent timing results for our simulation experi-
ments:

e Use the best available resources While access to the clus-
ter is allowed uninterrupted for researchers, particular
care was taken to run our simulations when the load on
the cluster was the smallest (most experiments were run
between 2:00am and 8:00am). The Portable Batch Sys-
tem (PBS) server handles the task of job management by
allocating nodes to the various jobs in the queue, thereby
freeing the user from processor management issues.

e Use the best compiler options We compiled our programs

usingmpic++-02 -march=pentiumd parallel_

program.cpp—for the parallel program, and g++
-02 —-march=pentium4 serial_program.
cpp—for the serial program. The -O2 option provides
the highest optimization level in the g ++ compiler with-
out introducing errors while the -march option instructs
the compiler to produce processor-efficient code.

e Use high-level, portable C++ code Except for the stan-
dard I/0O, timer libraries, and MPI, no other libraries or
assembly code were used. We also did not rely on the
system libraries to generate pseudo-random numbers.
Instead, we implemented our own PRNG based on the
multiplicative linear congruential method with properly
chosen parameters, both sequentially and in parallel, as
discussed previously [54].

e Measure both execution and communication times We
measured the execution time of the sequential program
using the clock() function, which is monitored at a resolu-
tion of one microsecond. This represents the fastest total
execution time (in seconds) of the sequential program
running on one node of the cluster. For parallel runs, we
measured both the execution and communication times
using the MPI function MPI_Wtime(). To ensure con-
sistent performance results, each program was executed
twelve times, and the best time result was reported. This is
because it corresponds to the simulation run experiencing
the least interference from the operating system. Further,
particular care was taken to run these simulations when
the load on the system is the smallest to minimize inter-
ference from other user tasks. For this purpose, we define
the parallel execution time to be the fastest total execution
time, in seconds, of the parallel program running on P
nodes, including communication time. The latter metric
is defined as the total time spent by the parallel program

running on P nodes performing communication opera-
tions. Such operations include point-to-point, collective,
and aggregated communications [43].

8.2 Performance results and discussion

The time complexity of our implementation of the sequential
algorithm is of the order of O(N?). In addition, our imple-
mentation of the parallel algorithm based on the slab decom-
position has a time complexity of the order of O(N3/P),
using P processors. As mentioned above, the sequential exe-
cution time is obtained by running the serial algorithm on
a single processor. During our simulation experiments, we
were limited by the available memory capacity per node.
For instance, the largest cellular array size for the sequential
runs was 330 x 330 x 330. We present herein performance
results that were obtained for a uniform cell distribution
with an initial cell-seeding density of 0.5 % using a mixed
mode. Two cell populations with equal initial numbers were
employed in these runs (that is, H = 1), one moving at
a speed of 10 wm/h while the other at a slower pace of 1
pm/h. For each cellular array size, we varied the number
of processors P from 2 to 50 and for each selected number
of processors in this range, we varied the size of the cel-
lular array such that N € {150, 200, 250, 300, 330}, with
N = Ny = Ny = N;. The measured execution times for
different cellular array sizes and numbers of processors are
shown in Table 2.

8.2.1 Parallel speedup and efficiency

Parallel speedup and efficiency, denoted by S and E respec-
tively, are two of the most commonly accepted performance
measures of an application running on a parallel computer
system. The speedup is equal to the sequential time divided
by the parallel execution time, for specific values of P and N.
In turn, the efficiency is set equal to the speedup divided by
the number of processors [55]. Using the execution time data
provided in Table 2, the speedup and efficiency values were
computed and then plotted. They are presented in Figs. 7, 8,
9, and 10 to show their comparison for various numbers of
processors and cellular array sizes.

In particular, the performance results displayed in Figs. 7
and 8 show that for a fixed cellular array size and as the
number of processors increases, the speedup values mostly
increase while efficiency decreases throughout. There are
two observed exceptions in regards to this outcome whereby
speedup starts to decrease at some intermediate numbers of
processors. The first exception is in the case of N = 150 and
P > 20 processors while the second one became manifest
for N = 200 and P > 25 processors. Overall, this increase
in speedup values is due to the fact that increasing the num-
ber of processors yields, for most cases, smaller execution

@ Springer

1574

Cluster Comput (2015) 18:1561-1579

Table 2 Execution times, in

Grid size Number of processors

seconds, of the parallel (N x N x N)

algorithm on a cluster for 1 2 4 8 10 20 25 50

various cellular array sizes and

different numbers of processors 150 x 150 x 150 2124 1441 861 570 538 539 571 637
200 x 200 x 200 5413 3568 1942 1181 1047 838 816 872
250 x 250 x 250 11,382 7389 3911 2292 1925 1361 1255 1124
300 x 300 x 300 21,211 13,199 6884 3838 3291 2029 1833 1497
330 x 330 x 330 29,156 17,873 9255 5072 4266 2615 2298 1765

The values shown in bold type indicate a shift from an increase to a decrease in performance of the parallel

algorithm
;
—+—N =150 4
18] - % —N =200 -7
B+ N =250 I
—o— N =300 -7
1all= 8 -N=330 - i
7 ,"”
121 o g 1
[gPhe
S oae
—~ £
@ 10F 7 4
Q e
% avs =3
@ ,// o
2 s S 1
%) nd
ﬁ/
4 —_—— - = - —
. % T T T
6 e - 1
/@/ -7
7 P
48
o
s L 1
‘o
9// T
#
2t]
.
5 10 15 20 25 30 35 40 45 50

Number of Processors (P)

Fig. 7 Comparison of speedup curves for various cellular array sizes,
N, as a function of the number of processors (P)

0.9]
—+—N =150
0.8 — % —N =200]
_‘\&\ B -- N=250
a8, - - =9—-N =300
07F \ XV g - ©-N=330 b
M Nl S 100% Efficiency
— =N P i
@ osf \ a <>~ 50% Efficiency |
) T TN
& 0.5-—————7\3\7!;7_77\9\7(:12\7:\ ,,,,,,,,,,,,,,,,
;‘(:_) S . & _ -~
w > ‘B, R T~
0.4f S ~ T 1
N B o ~_
03k \x\) . T~ - 9
' Sx e =3
0.2f T~ 4
04 1
0
5 10 15 20 25 30 35 40 45 50

Number of Processors (P)

Fig. 8 Comparison of efficiency curves for various cellular array sizes,
N, as a function of the number of processors (P)

times. On the other hand, the decrease in efficiency is due to
the fact that increasing the number of processors increases

@ Springer

——P=2 A
16 H-—%-P=4 - 7
-—B—-P=8 e
—6—P=10 -
-
14 H-e-P=20 A]

Speedup (S)

! ! ! ! ! ! ! L
160 180 200 220 240 260 280 300 320
Size of Cellular Array (N)

Fig. 9 Comparison of speedup curves for various numbers of proces-
sors, P, as a function of the size of the cellular array (N)

the communication time for a fixed problem size (N) and,
thus increases its related overhead.

In addition, the results exhibited in Figs. 9 and 10 show
that for a given number of processors and as the cellular
array size increases, both the speedup and efficiency values
increase. This is due to the fact that as the size of the cellular
array increases, more computational sites in each sub-domain
are available for processing, thus resulting in more data par-
allelism being available in each node. This also means that
more useful computational work is being accomplished by
each processor yielding a larger ratio of execution time over
communication time and leading to a coarser granularity of
communication.

8.2.2 Communication overhead

The incurred communication overhead by our simulation
model can be mostly attributed to the communication require-
ments of the parallel algorithm. Such requirements are often
proportional to the amount of work a node has to perform
near the boundaries of its sub-domain. This is related to the
work the node must communicate to its neighbors. Hence,

Cluster Comput (2015) 18:1561-1579

1575

—+—P=2
1 1|-»-P=4
—E— P=8
—6—P=10
-©e-P=20
—y—P=25
-=A— P =50
100% Efficiency
— — —50% Efficiency

09

Efficiency (E)

160 180 200 220 240 260 280 300 320
Size of Cellular Array (N)

Fig. 10 Comparison of efficiency curves for various numbers of
processors, P, as a function of the size of the cellular array (N)

a node’s communication needs are proportional to the prod-
uct of the work density and the surface of its slice of the
sub-domain. In our tissue growth simulation model, the com-
munication needs are determined by the way we process and
update cells in the shared boundaries between neighboring
sub-domains. This requires both an exchange of boundary
sites and an exchange of computed cell divisions and move-
ments to shared sites after all cells in a particular sub-domain
are considered. Such exchanges between neighboring nodes
are decomposed into two phases: communication with the
top neighbor followed by communication with the one to the
bottom. We use an algorithm where all boundary sites from
a neighbor are brought in one message. Coalescing of com-
munication in this manner reduces the number of messages
and improves performance [53].

There are three types of MPI communication opera-
tions that account for the total communication time. They
include point-to-point communication, collective communi-
cation, and aggregated computation. Examples of primitives
that implement these operations include: send and receive,
reduction, and barrier, respectively. In a point-to-point com-
munication, only two nodes, the sender and the receiver,
are involved. In a collective communication operation, tasks
in a group send messages to one another, and the time is
a function of both the message length and the number of
nodes. For instance, in a broadcast operation, a single node
sends an m-byte message to the remaining P — 1 nodes.
In an aggregated computation, tasks in a group synchro-
nize with one another or aggregate partial results. The time
for such an operation is a function of the group size, but
not of the message length, as the latter is fixed. For exam-
ple, in a barrier operation, a group of tasks synchronize
with one another, by waiting until all tasks execute their
respective barrier operation. In our performance measure-

ments, we have divided the total communication time into
two main parts. The first part is comprised of all point-
to-point communications using MPI_ISEND, MPI_IRECYV,
and MPI_WAITALL primitives in the parallel code and is
denoted by PtoP_Comm. These communications represent
all the shared-boundary exchanges between nodes in the clus-
ter that are needed to update such boundaries, as specified in
the parallel algorithm. The second part groups both collective
communication operations and aggregated computations. It
is denoted by Collective_Comm and contains barrier and
reduction operations, with the latter being implemented using
the MPI_ALLREDUCE primitive. Collective_Comm repre-
sents the cost of synchronization between all nodes at the
end of every simulation step and the calculation of impor-
tant global output parameters using local values from each
processor including volume coverage, tissue growth rate,
average speed of multiple cell populations, and average num-
ber of cell collisions and aggregations.

We present in Fig. 11 the parallel execution time and the
total communication time for P = 20 processors and N €
{150, 200, 250, 300, 330}. We also show in the same figure
how the two components of communication time vary in this
case. We observe the large increase in point-to-point commu-
nication time as the size of the cellular array is increased. This
is due to the corresponding quadratic increase in the size of
each shared boundary that needs to be exchanged with neigh-
boring processors (every node in the cluster has two shared
boundaries, each with a total of N computational sites). In
contrast, the collective communication time component only
shows a small increase due mostly to system overhead since
the related MPI routines are mainly unaffected with P being
set equal to a constant value.

We display next, in Fig. 12, the parallel execution time and
the total communication time for a 150 x 150 x 150 cellular
grid (N = 150) and P € {2,4,8, 10, 20, 25, 50}. In addi-
tion, the two components of communication time are also
shown in the same figure. We observe the large increase in
collective communication time as the number of processors
is increased. This is due to the corresponding increase in the
time needed to communicate with more processors in order
to coordinate and collect the results of the computations of
many global output parameters as well as the synchronization
necessary among a larger pool of nodes to yield up-to-date
copies of all sub-domains at the end of each simulation step.
In this situation, synchronizing all the nodes is required since
the results of the next simulation step depend on the activi-
ties and processing occurring at the borders during the current
simulation step. In contrast, we notice that the point-to-point
communication component shows mainly small increases
due to system related overhead. In essence, this is nearly
a reversal of the behaviour observed in Fig. 11. However,
more pronounced increases in point-to-point communica-
tion time are especially evident when there is a doubling

@ Springer

1576

Cluster Comput (2015) 18:1561-1579

Fig. 11 (Left) Parallel
execution time and total

Number of Processors, P = 20

Communication Time Components, P = 20

3000 : : : : : 1000 T T T T
communication time versus I Parallel Execution Time I Collective_Comm
cellular array size, N, for P = [—] Total Communication Time ook [JPtoP_Comm i
20 processors. (Right)
S 2500 | .
Components of communication 800k 4
time, Collective_Comm and
PtoP_Comm, versus cellular 700k i
array size, N, for P =20 2000 - :
rocessors —
p) @ 600} .
© °
= e
15 Q
] 5]
¢ 15001 . 3 500
<] ()
£ £
= = 400
1000 |- .
300
200
500 |- .
100
o

150 200 250
Size of Cellular Array (N)

of processor count (for instance, from P = 25 to 50). This
can be explained by the fact that the increase in P might
yield additional time delays in the completion of point-to-
point communications even though the size of the messages
are unchanged (N = 150).

8.2.3 Characterization of performance sweet spot

It is interesting to note that for the cellular array of size150 x
150 % 150, the speedup reaches its maximum value of approx-
imately 3.94 when P is in the range from 10 to 20 processors
and then starts to decrease for larger values of P due to the
impact of Amdahl’s law [55]. In this particular instance, and
according to our performance data, we observe that the com-
munication time dominates the parallel execution time and
accounts for most of it (approximately 83 % when P = 25
and over 90 % when P = 50). This can be attributed to the
large increase in the collective communication component.
Consequently, the parallel execution time at P = 25 and
P = 50 starts to increase and is greater than the parallel
execution time at P = 20, as illustrated in Table 2 in bold
type. We also observe the same outcome for the cellular array
of size 200 x 200 x 200, where the maximum speedup in
this case is reached when P = 25 at an approximate value
of 6.63.

Using Kuck’s classification of performance levels and
ranges, the minimum high-performance level of a parallel
algorithm is defined by having a speedup equal to at least
§[56]. In addition, Amdahl’s law may be broadly inter-
preted to mean the existence of a point of diminishing returns
that represents a number of processors beyond which adding

@ Springer

300 330 150 200 250 300 330
Size of Cellular Array (N)

more processors to a computation produces so little perfor-
mance gain that they are of questionable value [55]. This
point can be used as some performance threshold to deter-
mine the appropriate processor count for a parallel machine
configuration that would return fast performance results. To
visualize this, imagine looking at the (S, P, N) performance
space of a parallel algorithm and sweeping across the (P, N)
plane while observing intervals of good performance. This
process defines some region in the (P, N) plane that engen-
ders a sweet spot of performance [56]. Therefore, based on
the obtained speedup and efficiency results of our parallel
algorithm, we could conjecture the following:

e For 150 < N < 330, our parallel algorithm using the slab
decomposition has a performance sweet spot defined by
P €[2,28).

The above statement may point to a weak scalability of the
algorithm, especially in terms of the sizes of today’s multi-
core and hybrid parallel systems. We believe that this might
be explained by the choice of domain decomposition used
and the well-known surface effect problem [49]. This effect
generally deals with the surface-to-volume ratio of a domain
decomposition technique. It is defined as the ratio of the total
surface of a sub-domain to its total volume. A domain decom-
position, with a high surface-to-volume ratio, would result in
increased communication costs for its corresponding paral-
lel algorithm. For the slab decomposition, we calculated its
surface-to-volume ratio to be equal to %. This value can be
interpreted as high when compared to other regular decom-
positions that use a similar block-wise distribution of the
cellular grid along two or all three dimensions. We believe

Cluster Comput (2015) 18:1561-1579

1577

Fig. 12 (Left) Parallel

150 x 150 x 150 Cellular Array

Communication Time Components, N = 150

execution time and total 1500

700 T T

communication time versus

T : : : : : :
I Parallel Execution Time
[_1Total Communication Time

I PtoP_Comm
[Collective_Comm

number of processors, P, for a
150 x 150 x 150 cellular array.
(Right) Components of
communication time,
Collective_Comm and
PtoP_Comm, versus number of 1000
processors, P, for a 150 x150x
150 cellular array (N = 150)

Time (Seconds)

500

2 4 8 10
Number of Processors (P)

that this is a key point that merits further study as part of our
future work.

9 Conclusion and future work

We have presented in this article the parallelization of our
three-dimensional computational model for the simulation
of multicellular tissue growth, including a description of
the main issues dealt with during this task as well as the
computational techniques employed to generate determin-
istic simulation results. Performance results obtained on a
cluster machine were good in terms of speedup and effi-
ciency. The delivered performance can be mainly attributed
to the fact that the parallel algorithm delays the exchange
of cell movements and divisions across shared boundaries
until all such cellular events are accounted for within a
particular sub-domain. As a result of this strategy, the
amount of communication between neighboring processors
is reduced. Further, the exchanged messages were imple-
mented using the non-blocking communication primitives
of MPI (MPI_ISEND and MPI_IRECV), which allow for
the overlapping of communication and computation. A feed-
back mechanismis used to handle any violation of the cellular
automata rules, such as when more than one cell decides to
move or divide into the same site.

To address the issue of scalability of the current parallel
algorithm, we plan, as part of our future work, to implement
various domain decomposition strategies and evaluate their
performance using much larger cellular grids and processor
counts. We will focus also on extending this model to include
cell differentiation and cell death as well as its implementa-

600 |- 1

500 - 1

400} .

300

Time (Seconds)

200

100

25 50 2 4 8

10 20 25 50
Number of Processors (P)

tion on other parallel systems such as shared-memory and
heterogeneous architectures, including multi-core CPU and
GPU machines [57,58]. Moreover, we will work on inte-
grating a visualization solution with the extended simulation
model to assist researchers to explore the spatial and tempo-
ral domains of tissue growth in real time and to provide them
with useful means to interpret and analyze simulation data
and, potentially, to compare them with experimental results.
This latter component of our research program is already
underway and we have recently developed a visualization
prototype for the base computational model using a single
cell type [59,60].

Acknowledgments The author would like to gratefully acknowledge
the continued support for this research work provided by the Research
Center in the College of Computer & Information Sciences (under
Project Number: RC121231) as well as the Deanship of Scientific
Research, both at King Saud University. Further, we would like to thank
the anonymous reviewers for their valuable comments on the manuscript
as well as acknowledge the support of Simon Fraser University, Canada,
for providing us with access to its HPC Cluster.

References

1. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quan-
titative Approach, 5th edn. Morgan Kaufmann Publishers, San
Francisco, CA (2012)

2. Brodtkorb, A.R., Dyken, C., Hagen, T.R., Hjelmervik, J.M.,
Storaasli, O.O.: State-of-the-art in heterogeneous computing. Sci.
Prog. 18(1), 1-33 (2010)

3. Wolfram, S.: Cellular Automata and Complexity: Collected Papers.
Addison-Wesley, Reading, MA (1994)

@ Springer

1578

Cluster Comput (2015) 18:1561-1579

4.

11.

12.

13.

14.

15.

16.

17.

18.

20.

21.

22.

23.

24.

Chaudhuri, P.P., Chowdhury, D.R., Nandi, S., Chattopadhyay, S.:
Additive Cellular Automata: Theory and Applications, vol. 1. IEEE
Computer Society Press, Los Alamitos, CA (1997)

Deutsch, A., Dormann, S.: Cellular Automaton Modeling of Bio-
logical Pattern Formation: Characterization, Applications, and
Analysis. Springer-Verlag, Boston (2005)

Lysaght, M.J., Hazlehurst, A.L.: Tissue engineering: the end of the
beginning. Tissue Eng. 10(1-2), 309-320 (2004)

An, G., Mi, Q., Dutta-Moscato, J., Vodovotz, Y.: Agent-based mod-
els in translational systems biology. Wiley Interdiscip. Rev. 1(2),
159-171 (2009)

Majno, G., Joris, I.: Cells, Tissues and Disease: Principles of Gen-
eral Pathology. Oxford University Press, Oxford (2004)

Page, E.H., Nance, R.E.: Parallel discrete event simulation: a mod-
eling methodological perspective. In: Proceedings of the 1994
Workshop on Parallel and Distributed Simulation, pp. 88-93 (1994)
Hwang, M., Garbey, M., Berceli, S.A., Tran-Son-Tay, R.: Rule-
based simulation of multi-cellular biological systems—a review of
modeling techniques. Cell. Mol. Bioeng. 2(3), 285-294 (2009)
Lauftenburger, D.A., Linderman, J.J.: Receptors: Models for Bind-
ing Trafficking and Signaling. Oxford University Press, New York
(1993)

Levin, S.A., Grenfell, B., Hastings, A., Perelson, A.S.: Mathe-
matical and computational challenges in population biology and
ecosystems science. Science 275(5298), 334-343 (1997)

Ben Youssef, B., Tang, L.: Simulation of multiple cell population
dynamics using a 3-D cellular automata model for tissue growth.
Int. J. Nat. Comput. Res. 1(3), 1-18 (2010)

Tang, L., Ben Youssef, B.: A 3-D computational model for mul-
ticellular tissue growth. In: Proceedings of the 3rd International
Symposium on Biomedical Simulation (ISBMS’06). Lecture Notes
in Computer Science, vol. 4072, pp. 29-39 (2006)

Ben Youssef, B.: Simulation of cell population dynamics using 3-D
cellular automata. In: Proceedings of the 6th International Confer-
ence on Cellular Automata for Research and Industry (ACRI’04).
Lecture Notes in Computer Science, vol. 3305, pp. 562-571 (2004)
Frame, K.K., Hu, W.S.: A model for density-dependent growth of
anchorage-dependent mammalian cells. Biotechnol. Bioeng. 32,
1061-1066 (1988)

Cherry, R.S., Papoutsakis, E.T.: Modelling of contact-inhibited ani-
mal cell growth on flat surfaces and spheres. Biotechnol. Bioeng.
33, 300-305 (1989)

Lim, J.H.F.,, Davies, G.A.: A stochastic model to simulate the
growth of anchorage-dependent cells on flat surfaces. Biotechnol.
Bioeng. 36, 547-562 (1990)

Ruaan, R.C., Tsai, G.J., Tsao, G.T.: Monitoring and modeling
density-dependent growth of anchorage-dependent cells. Biotech-
nol. Bioeng. 41, 380-389 (1993)

Zygourakis, K., Bizios, R., Markenscoff, P.: Proliferation of
anchorage-dependent contact-inhibited cells: I. Development of
theoretical models based on cellular automata. Biotechnol. Bio-
eng. 38(5), 459470 (1991)

Hawboldt, K.A., Kalogerakis, N., Behie, L.A.: A cellular automa-
ton model for microcarrier cultures. Biotechnol. Bioeng. 43(1),
90-100 (1994)

Forestell, S.P., Milne, B.J., Behie, L.A.: A cellular automaton
model for the growth of anchorage-dependent mammalian cells
used in vaccine production. Chem. Eng. Sci. 47(9-11), 2381-2386
(1992)

Lee, Y., Markenscoff, P., Mclntire, L.V., Zygourakis, K.: Character-
ization of endothelial cell locomotion using a Markov chain model.
Biochem. Cell Biol. 73, 461-472 (1995)

Lee, Y., Kouvroukoglou, S., Mclntire, L.V., Zygourakis, K.: A
cellular automaton model for the proliferation of migrating contact-
inhibited cells. Biophys. J. 69(10), 1284-1298 (1995)

@ Springer

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

. Chang, L., Gilbert, E.S., Eliashberg, N., Keasling, J.D.: A three-

dimensional, stochastic simulation of biofilm growth and transport-
related factors that affect structure. Microbiology 149(10), 2859—
2871 (2003)

Kansal, A.R., Torquato, S., Harsh IV, G.R., Chiocca, E.A., Deis-
boeck, T.S.: Simulated brain tumor growth dynamics using a
three-dimensional cellular automaton. J. Theor. Biol. 203(4), 367—
382 (2000)

Cickovski, T.M., Huang, C., Chaturvedi, R., Glimm, T., Hentschel,
H.G.E., Alber, M.S., Glazier, J.A., Newman, S.A., [zaguirre, J.A.:
A framework for three-dimensional simulation of morphogen-
esis. IEEE/ACM T. Comput. Biol. Bioinformat. 2(4), 273-288
(2005)

Motta, S., Pappalardo, F.: Mathematical modeling of biological
systems. Brief. Bioinforma. 14(4), 411-422 (2012)

Azuaje, F.: Computational discrete models of tissue growth and
regeneration. Brief. Bioinforma. 12(1), 64—77 (2011)

Drasdo, D., Kree, R., McCaskill, J.S.: Monte Carlo approach to
tissue-cell populations. Phys. Rev. E 52(6), 6635-6657 (1995)
Schaller, G., Meyer-Hermann, M.: Multicellular tumor spheroid in
an off-lattice voronoi-DeLaunay cell model. Phys. Rev. E 71(5 Pt
1), 051910 (2005)

Palsson, E.: A three-dimensional model of cell movement in multi-
cellular systems. Future Gener. Comput. Syst. 17, 835-852 (2001)
Beyer, T., Meyer-Hermann, M.: Delauny object dynamics for tis-
sues involving highly motile cells. In: Chauviere, A., Preziosi, L.,
Verdier, C. (eds.) Cell Mechanics: From Single Scale-Based Mod-
els to Multiscale Modeling, pp. 417-442. CRC Press, Boca Raton,
FL (2010)

Jiang, Y., Levine, H., Glazier, J.: Possible cooperation of differen-
tial adhesion and chemotaxis in mound formation of Dictyostelium.
Biophys. J. 75(6), 2615-2625 (1998)

Fu, Y.X., Chaplin, D.D.: Development maturation of secondary and
lymphoid tissues. Annu. Rev. Immunol. 17, 399433 (1999)
Beyer, T., Schaller, G., Deutsch, A., Meyer-Hermann, M.: Paral-
lel dynamic and kinetic regular triangulation in three dimensions.
Comput. Phys. Commun. 172(2), 86108 (2005)

Drasdo, D., Jagiella, N., Ramis-Conde, 1., Vignon-Clemental, L.E.,
Weens, W.: Modeling steps from benign tumor to invasive cancer:
examples of intrinsically multiscale problems. In: Chauviere, A.,
Preziosi, L., Verdier, C. (eds.) Cell Mechanics: From Single Scale-
Based Models to Multiscale Modeling, pp. 379-416. CRC Press,
Boca Raton, FL (2010)

Marée, A.F., Hogeweg, P.. How amoeboids self-organize into
a fruiting body: multicellular coordination in Dictyostelium dis-
coideum. Proc. Natl. Acad. Sci. USA 98(7), 3879-3883 (2001)
Tchuente, M.: Computation on automata networks. In: Fogelman-
Soulie, F., Robert, Y., Tchuente, M. (eds.) Automata Networks in
Computer Science: Theory and Applications, pp. 101-132. Prince-
ton University Press, Princeton, NJ (1987)

Lee, Y., Mclntire, L.V., Zygourakis, K.: Analysis of endothelial cell
locomotion: differential effects of motility and contact inhibition.
Biotechnol. Bioeng. 43(7), 622-634 (1994)

Cheng, G., Ben Youssef, B., Markenscoff, P., Zygourakis, K.: Cell
population dynamics modulate the rates of tissue growth processes.
Biophys. J. 90(3), 713-724 (2006)

Fox, G.C., Williams, R.D., Messina, P.C.: Parallel Computing
Works!. Morgan Kaufmann Publishers, Inc, San Fransisco, CA
(1994)

Quinn, M.J.: Parallel Programming in C with MPI and OpenMP.
McGraw-Hill, Dubuque, IA (2004)

Pancake, C.M.: Is parallelism for you? IEEE Comput. Sci. Eng.
3(2), 18-37 (1996)

van Hanxleden, R., Scott, L.R.: Load balancing on message passing
architectures. J. Parallel Distrib. Comput. 13(3), 312-324 (1991)

Cluster Comput (2015) 18:1561-1579

1579

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Chung, C.A., Lin, T.-H., Chen, S.-D., Huang, H.-1.: Hybrid cellular
automaton modeling of nutrient modulated cell growth in tissue
engineering constructs. J. Theor. Biol. 262(2), 267-278 (2010)
Hoshino, T., Hiromoto, R., Sekiguchi, S., Majima, S.: Mapping
schemes of the particle-in-cell method implemented on the PAX
computer. Parallel Comput. 9(1), 53-75 (1989)

van Hanxleden, R., Scott, L.R.: Correctness and determinism of
parallel Monte Carlo processes. Parallel Comput. 18(2), 121-132
(1992)

Fox, G.C., Johnson, M.A., Lyzenga, G.A., Otto, S.W., Salmon,
J.K., Walker, D.W.: Solving Problems on Concurrent Processors:
General Techniques and Regular Problems, vol. 1. Prentice Hall,
Englewood Cliffs, NJ (1988)

Knuth, D.E.: The Art of Computer Programming-Volume 2: Semi-
numerical Algorithms, 2nd edn. Addison-Wesley, Reading, MA
(1981)

Fishmann, G.S., Moore, L.R.: An exhaustive analysis of multiplica-
tive congruential random number generators with modulus 23!-1,
SIAM J. Sci. Stat. Comput. 7(1), 24-45 (1986)

Ben Youssef, B., Sammouda, R.: Pseudorandom number genera-
tion in the context of a 3D simulation model for tissue growth.
In: Proceedings of the 14th International Conference on Compu-
tational Science (ICCS 2014), Procedia-Computer Sciences, 29C,
pp. 2391-2400. Elsevier, Edinburgh (2014)

Levesque, J.: High Performance Computing: Programming and
Applications. Chapman & Hall, Boca Raton, FL (2011)

LEcuyer, P.: Random number generation. In: Gentle, J.E., Haerdle,
W., Mori, Y. (eds.) Handbook of Computational Statistics, 2nd edn,
pp. 35-71. Springer-Verlag, Berlin (2012)

Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to Par-
allel Computing, 2nd edn. Addison-Wesley, New York (2003)
Kuck, D.J.: High Performance Computing: Challenges for Future
Systems. Oxford University Press, New York (1996)

Jin, H., Jespersen, D., Mehrotra, P., Biswas, R., Huang, L., Chap-
man, B.: High performance computing using MPI and OpenMP
on multi-core parallel systems. Parallel Comput. 37(9), 562-575
(2011)

58.

59.

60.

Dematté, L., Prandi, D.: GPU computing for systems biology. Brief.
Bioinforma. 2(3), 323-333 (2010)

Ben Youssef, B.: A visualization tool of 3-D time varying data
for the simulation of tissue growth. Multimed. Tools Appl. 73(3),
1795-1817 (2014)

Ben Youssef, B.: Visualization of spatial patterns of cells using
a 3-D simulation model for multicellular tissue growth. In: Pro-
ceedings of the 4th IEEE International Conference on Multimedia
Computing and Systems (ICMCS’14), pp. 367-374. IEEE Xplore
(2014)

Belgacem Ben Youssef is an
Associate Professor in the Depart-
ment of Computer Engineering,
College of Computer & Informa-
tion Sciences at King Saud Uni-
versity, Riyadh, Saudi Arabia. He
received his PhD from the Depart-
ment of Electrical & Computer
Engineering, Cullen College of
Engineering, University of Hous-
ton, Houston, Texas, USA. He
was previously an Assistant Pro-
fessor in both the School of Inter-
active Arts & Technology and
the TechOne Program at Simon

AR

Fraser University, Vancouver, British Columbia, Canada. His research
interests include parallel/multicore computing, computational tissue
engineering, visualization, digital signal processing, and spatial think-
ing in learning and design. He has two years of industrial experience
in software development and technical project management. He is a
member of the IEEE, IEEE Computer Society, and the ACM.

@ Springer

	A parallel cellular automata algorithm for the deterministic simulation of 3-D multicellular tissue growth
	Abstract
	1 Introduction
	2 Related work
	3 Engineering 3-D bioartificial tissues
	4 Computational model
	5 Sequential algorithm
	5.1 Initial condition
	5.2 Iterative operations
	5.3 Division routine
	5.4 Direction change routine

	6 Parallelization steps
	6.1 Application architecture
	6.2 Load balancing
	6.3 Domain decomposition and mapping
	6.4 Handling cell movement and division
	6.5 Ensuring determinism
	6.5.1 Parallelization of random number generation on a cluster

	7 Parallel algorithm
	7.1 Sample of simulation results

	8 Parallel performance
	8.1 Computing platform and experimental conditions
	8.2 Performance results and discussion
	8.2.1 Parallel speedup and efficiency
	8.2.2 Communication overhead
	8.2.3 Characterization of performance sweet spot

	9 Conclusion and future work
	Acknowledgments
	References

