Cluster Comput (2015) 18:919-932
DOI 10.1007/s10586-015-0449-5

@ CrossMark

Multi-agent based dynamic resource provisioning and monitoring
for cloud computing systems infrastructure

Mahmoud Al-Ayyoub! - Yaser Jararweh! . Mustafa Daraghmeh! -

Qutaibah Althebyan!

Received: 18 July 2014 / Revised: 10 December 2014 / Accepted: 13 March 2015 / Published online: 24 March 2015

© Springer Science+Business Media New York 2015

Abstract The cloud computing paradigm provides a shared
pool of resources and services with different models deliv-
ered to the customers through the Internet via an on-demand
dynamically-scalable form charged using a pay-per-use
model. The main problem we tackle in this paper is to
optimize the resource provisioning task by shortening the
completion time for the customers’ tasks while minimiz-
ing the associated cost. This study presents the dynamic
resources provisioning and monitoring (DRPM) system, a
multi-agent system to manage the cloud provider’s resources
while taking into account the customers’ quality of service
requirements as determined by the service-level agreement
(SLA). Moreover, DRPM includes a new virtual machine
selection algorithm called the host fault detection algorithm.
The proposed DRPM system is evaluated using the CloudSim
tool. The results show that using the DRPM system increases
resource utilization and decreases power consumption while
avoiding SLA violations.

Keywords Cloud computing - Multi-agent system -
Resource provisioning - Regression analysis

B<I Mahmoud Al-Ayyoub
maalshbool @just.edu.jo

Yaser Jararweh
yijararweh @just.edu.jo

Mustata Daraghmeh
mustafa.daraghmeh @ gmail.com

Qutaibah Althebyan
qaalthebyan @just.edu.jo

Jordan University of Science and Technology, Irbid, Jordan

1 Introduction

The world witnesses rapid advancements in the software used
daily. With the emergence of new online services, the users
have a continuously increasing need for more resources (such
as computational power, memory, permanent storage, net-
work bandwidth, etc.). Thus, the challenge of maintaining
a high quality of service lies at the heart of the competi-
tion between companies. New technologies especially cloud
computing offer companies a chance to provide high-quality
online services with minimal cost.

The customers under the cloud computing paradigm are
relieved from the burden of owning and operating the phys-
ical infrastructure required for their businesses. This means
that they do not have to worry about developers and program-
ming teams. Moreover, the customers need not worry about
how or where the required tasks are performed; they only
care about the cost of using the resources, the services they
can get from the cloud providers and the quality of services
guarantees. The cloud providers are the ones worrying about
achieving efficient utilization and provisioning of resources
(be it hardware or software resources), using intelligent ways
to monitor and manage the resources, and applying different
methods to get the best quality of service guarantees without
causing any violation in the service-level agreement (SLA).
These are some of the important challenges facing the cloud
providers.

1.1 Dynamic resource provisioning

In cloud computing, elasticity refers to the degree of auto-
matic adaptation in resource provisioning in response to
the continuous changes in the customer’s workload and
demands. This is basically achieved by automatically, scal-
ing up or scaling down the resources assigned to a certain

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-015-0449-5&domain=pdf

920

Cluster Comput (2015) 18:919-932

>
>

A

Resources
Resources

1 2 3 1
Time (days)

(a) Provisioning for peak load

Fig. 1 The overprovisioning and underprovisioning problems [1]

Capacity

Resources

Demand

1 2 3
Time (days)

Fig. 2 Dynamic resource provisioning for the current customers
demands over time [1]

customer. Such mechanism matches as closely as possible
the available resources with the current demands of the cus-
tomers [8]. So, elasticity can be simply put as avoiding both
the overprovisioning and the underprovisioning problems
leading to good dynamic resource provisioning [1].

The overprovisioning problem can occur when the
reserved resources for a certain customer exceed its demands
as shown in the left part of Fig. 1. In the figure, the red line rep-
resents the allocated resources based on the peak load, which
is correctly estimated leading to zero SLA violations. How-
ever, without elasticity through non-peak times, resources
are wasted (the shaded area represents the wasted resources).
On the other hand, the underprovisioning problem can occur
when the reserved resources are not suitable to the current
customer’s demands. This problem causes SLA violations
leading to losing revenue and customers. The underprovi-
sioning problem can have multiple cases as shown in the
middle and right parts of Fig. 1, respectively. In these fig-
ures, the shaded areas represent the SLA violations, which
can vary over time depending the customer’s demands [1].

To address the resource provisioning problems discussed
in the previous paragraph, dynamic resource provisioning is
utilized [1]. The resource capacities are scaled up or down
over time depending on the customer’s demands as shown in
Fig. 2. Such policies are already employed in several systems
[11,13]. One famous example is Amazon’s Web Services
(AWS) used on Amazon’s EC2 system.1

! http://aws.amazon.com/autoscaling.

@ Springer

A A A
VAVAAVAA

- ; 2
Time (days).
(b) Underprovisioning 1

pacity § '\ L\ packy
3
°
: / \./ \/\
[
emand Demand
Time (days)
(C) Underprovisioning 2

1.2 Cloud resource monitoring

Resource and application monitoring in cloud computing is
very important for both the cloud customers and providers.
The cloud customers need to monitor their applications and
the reserved resources for them to make sure their tasks are
working without any problem and to be able to make more
accurate future requests for resources and thus avoid pay-
ing for resources that will not be used. On the other hand,
the cloud providers need to monitor the resource utilization
and collect information about it to make better provisioning
decisions and prevent any violation in the SLA. Moreover,
the resource monitoring encompasses collecting information
about resources and using this information to make decisions
related to other components in the cloud environment [9].

Amazon’s AWS provides to its customers a feature called
CloudWatch.? This feature offers the customers the abil-
ity to monitor their applications on AWS and the resources
assigned to them. Also, this feature provides the system
administrators and developers the ability to track and collect
different performance metrics, react immediately, and gain
insights to maintain their applications and businesses seam-
lessly. CloudWatch can monitor custom metrics produced
by cloud customers for their applications and services and
can also monitor AWS resources such as Amazon Relational
Database Service (RDS) and Amazon EC2.

In this study, we focus on the dynamic resource monitor-
ing and provisioning problems in Infrastructure as a Service
(TaaS) cloud computing. The objective is to get the best
resource utilization and the shortest completion time of the
customers’ tasks while minimizing the cost such as reduc-
ing energy consumption. So, we need some mechanisms to
reduce the number of virtual machines (VMs) migrations
and reduce the number of active physical machines to reduce
the energy consumption. Moreover, we need some mecha-
nisms to manage and formulate cloud customers’ requests to
increase resource utilization.

The rest of this paper is organized as follows. Section 2
presents a literature review. In Sect. 3, we present our system

2 https://aws.amazon.com/cloudwatch.

http://aws.amazon.com/autoscaling
https://aws.amazon.com/cloudwatch

Cluster Comput (2015) 18:919-932

921

model and evaluate it in Sect. 4. Finally, we conclude in
Sect. 4.1.

2 Related works

Asmentioned the previous section, the dynamic resource pro-
visioning mechanism has the ability to adapt in an automatic
manner to the changes occurring on the customers’ workload
and demands at any time. This is achieved by scaling up or
down the resources through a set of algorithms, rules and poli-
cies to match as closely as possible the available resources
with the current workload and demands, thus, avoiding both
the overprovisioning and the under-provisioning problems
[1,8,11,13].

The resource and application monitoring in the cloud com-
puting is very important for both the cloud provider and the
customers. Several mechanisms are suggested for the cus-
tomers to monitor their applications and reserved resources
to make sure their tasks work according to the SLA that has
been agreed upon in advance between the cloud provider and
the customers in addition to being able to make more accurate
future requests for resources. As for the cloud providers, the
monitoring mechanisms allow them to monitor their resource
utilization in order to maintain their customers’ applications
running seamlessly and avoid any SLA violation [9].

There are several cloud computing frameworks that
have specific mechanisms to monitor and provision their
resources. In this section, we will describe some of the most
popular frameworks in the field of cloud computing and their
mechanisms.

The open cloud computing interface (OCCI) Framework
by Venticinque et al. [15] supports provisioning, monitor-
ing and auto configuration for the cloud resources to satisfy
the application requirements at infrastructure level (IaaS
cloud computing service model). The OCCI includes a set
of protocols and API with independent vendor and neutral
platform, which solve different problems in management of
common tasks with satisfaction of integration, portability and
interoperability requirements including autonomic scaling,
deployment and monitoring.

The authors in [15] proposed a new architecture by
re-implementing the OCCI depending on the Cloud Agency
with JADE agent platform as an execution environment
which supports agents’ communication using agent com-
munication channel (ACC) and a set of implementation
protocols. The agents communicate with each other through
the standard agent communication language (ACL) over
HTTP. The OCCI have four abstract interfaces including
resource management, monitoring, reconfiguration and bro-
kering which can be implemented by developers to extend
Cloud Agency with new algorithms for each abstract inter-
face as plug-ins of Cloud Agency to be used automatically

by agents over their general interfaces. The extended OCCI
uses Message Transfer Protocol (MTP) to translate OCCI
HTTP, although the OCCI-MTP permits the communication
among the Cloud Agency. The clients manage two types of
requests: synchronous and asynchronous. The main tasks of
the OCCI-MTP is verifying the request correctness, trans-
lating the REST request to ACL-Message and forwarding
the request from clients to the comprehend agent. For the
experiments part, the authors developed and designed a set
of API thatused to communicate and request handler between
clients and Cloud Agency services (provisioning, monitor-
ing, management and auto configuration), and the result of
experiments is hopeful to continue with suggested improve-
ments and developments for the current implementation.

The CREATE framework architecture by Duong et al. [6],
is an extensible and reusable web service based framework
with a set of resource provisioning algorithms for dynamic
resource provisioning and adaptation on-demand under the
IaaS cloud computing service model. The framework was
built to interact with different local resource managers, and
to manage several sets of resources assimilated from different
cloud providers. The design of their framework is flexible and
easily extensible.

CREATE has three main components including resource
sets (RSS) monitoring and managements service (RMM),
RRSs adaptation service (RA) and Cloud clustering ser-
vice (CC). The first component RMM service is designed
to manage the resources configuration and to collect infor-
mation about the resources and status of RSS workload,
although the RA service is designed to manage at the same
time many of RRSs, the last component CC service is
designed to obtain or release resources from different cloud
providers by flexible REST-based interface. The authors in
CREATE framework present six resource adaptation algo-
rithms: Job-Number-Parallel (JNP), Job-Number-Sequential
(JNS), Job-Time-Parallel (JTP), Job-Time-Sequential (JTS),
Hybrid-Parallel (HP) and Hybrid-Sequential (HS).

The main objectives of resource adaptation algorithms in
CREATE framework is to minimize the jobs’ completion
time and at the same time reduce the cost and overhead of
resources. The authors in evaluation methodology that used
many different realistic workload scenarios to evaluate and
assess the resource adaptations algorithms, the result of their
evaluation proves the robustness and effectiveness of some
algorithms.

The Aneka system proposed by Vecchiola et al. [14] is
a .NET-based application platform-as-a-Service (PaaS) for
cloud computing, which offers a set of APIs and runtime envi-
ronment applications through multiple programming models,
and deploying them on private and public cloud computing
platforms like Amazon EC2 and GoGrid. The Aneka system
offers a resource provisioning mechanism based on SLA ori-
entation. This mechanism works as if the system receives new

@ Springer

922

Cluster Comput (2015) 18:919-932

tasks from cloud customers. It estimates the time needed to
complete these tasks in order to finish with current available
resource and compare it with SLA deadline time. If the esti-
mation time to complete new tasks is smaller than the SLA
deadline time, then the system continues working, otherwise,
the system scales up the cloud resources and continues work
to avoid any SLA violation.

The Elastic-JADE system, proposed by Siddiqui atal. [12],
has three parts (user, local machine and Amazon EC2 cloud),
which allows it to automatically scale (up or down) Amazon
EC2’s resources through JADE platform when heavily loads
occur in the local platform.

When the resources in local machine exceed a cer-
tain threshold (heavily loads occur), the local resources
(processing and memory) expend through management agent
component in both platform (local machine and Amazon EC2
cloud). The management agent in local machine is respon-
sible for monitoring the complete system in both platforms,
communicate with the management agent in Amazon EC2
cloud and send command messages for scale up or down of
resources depending on system load.

The Amazon Web Services (AWS) provide customers
with an auto-scaling mechanism to scale up or down the
Amazon EC2 virtual machines automatically according to
the workload and demand changes. This mechanism can save
the customers money and improve the performance of Ama-
zon EC2 virtual machines.

Moreover, AWS provides the CloudWatch feature, which
offers the customers the ability to monitor their applications
and assigned resources on AWS, in addition to providing
the system administrators and developers the ability to track
and collect performance metrics, react immediately, and gain
insights to maintain their applications and businesses seam-
lessly. CloudWatch can monitor custom metrics produced by
cloud customers for their applications and services and can
also monitor other resources such as Amazon RDS DB and
Amazon EC2.

The Coasters framework proposed by Hategan et al. in
[7] offers both usability and performance goals by building
a uniform framework that allows multiple services to access
cloud and grid resources. In other word, it is a uniform access
and resources provisioning for cloud and grid computing sys-
tems.

The Coasters system is coupled with the Swift script-
ing language to support parallel execution of different jobs.
One main advantage of the Coasters system is usability as it
does not require users to log into remote systems and pre-
pare services or configure compute nodes. Moreover, since
the coasters system defines a real path between the client
and the service provider, it attains noticeable performance
gains.

Bonvin et al. [3] proposed the scattered autonomic
resources (Scarce) framework, a multi-agent platform to

@ Springer

dynamically manage the resources using an economic-based
approach. The agents run on the server side and are responsi-
ble for managing the resources and continually checking the
systems health.

3 Proposed system

In this section, we present the details of our proposed
dynamic resource provisioning and monitoring (DRPM) sys-
tem. The DRPM system is a multi-agent system that takes
into account several factors such as the limitation of cloud
provider resources, customers satisfaction and power con-
sumption.

The DRPM system has three main phases: monitoring,
analysis and execution. The objective of the first phase is to
monitor the cloud provider’s resources such as computational
power (henceforth referred to as CPU), memory (henceforth
referred to as RAM), permanent storage (henceforth referred
to as storage), network bandwidth (henceforth referred to as
BW), etc., in addition to monitoring the customers’ tasks and
demands. The raw data from this phase are analyzed in the
second phase to improve resource management by generating
optimized decisions regarding the VM’s specification to be
allocated for each customer’s request depending on the SLA.
These decisions are sent to the third phase for execution.

3.1 System architecture

As shown in Fig. 3, the DRPM system consists of two main
layers: the customers’ applications layer and cloud provider’s
resources layer. The provider’s resources include a set of
datacenters each with a large number of physical machines
(hosts). Each host has specific characteristics (in terms of
CPU, RAM, storage and BW) to host multiple VMs. More-
over, it has monitoring sensors to measure the utilization of
its resources and the execution of the customers’ applications
on it. The applications layer consists of a set of customers
having several jobs possibly spanning multiple VMs. Each
job is associated with specific performance goals specified
in the SLA (e.g., time to complete their tasks, number of
requests for specific time periods).

The multi-agent components include a global utility agent
and a set of local utility agents. While the global utility
agent has the classical role of the “central broker” allow-
ing it to manage all of the system resources, the local
agents are assigned to each customer with the objective
of improving the resource utilization without causing SLA
violations. One of the advantages of using multiple agents
is to allow for certain optimizations that can conducted
“locally” (i.e., at the customer level) without burdening
the global agent with the low-level details of these opti-
mizations. Here we discuss one such example where each

Cluster Comput (2015) 18:919-932

923

(

Job 1
Job 2
Job3

Job 2
Job 3

Customer 1
Customer 2

Jobn Jobn

Notification

Notification

Cloud Customers Application

Customer 3

Job 2
Job 3

Job 2
Job 3

Customer n

Jobn Jobn

Notification
Notification

Monitoring

Global Utility Agent

Actions

: Monitoring Sensors
:' VM1, VM2, VM3, ...VMn VM1, VM2, VM3, ... VMn VM1, VM2, VM3, .. VMn VM1, VM2, VM3, ... VMn E
Hypervisor Hypervisor Hypervisor Hypervisor
RAM RAM RAM RAM (
CPU CPU CPU CPU
B.W B.W B.W B.W
Storage Storage Storage Storage

.

Cloud Provider Datacenter

Fig. 3 Architecture of the multi-agent based dynamic resource provisioning and monitoring (DRPM) system

customer is assigned a local agent responsible for refor-
mulating each of its requests in order to better match its
actual usage of the assigned resources. This can be achieved
using any prediction technique. Here, for simplicity pur-
poses, we show that even the simplest of techniques can be
very useful. Based on a regression analysis of its history,
the local agent can estimate the amount of resources that
will actually be used (thus, avoiding the over-provisioning
problem) without causing an SLA violation (thus, avoiding
the under-provisioning problem). The component responsi-
ble for this task is called the Request Reformulation (RR)
algorithm. We show in the experiments in Sect. 4.2 that the
introduction of the RR significantly enhance the system’s
performance.

After reformulating the requests, the local agent sends the
new requests to the global agent, which is responsible for
the actual provisioning of the resources by communicating

with the hypervisors of the physical machines in the differ-
ent datacenters under the cloud provider’s control. The global
utility agent should take into account the limitations on the
provider’s resources in addition to various performance met-
rics such as power consumption. In the following paragraphs,
more detailed discussion of the local utility agents as well as
the global utility agent is presented.

3.2 The local utility agents

The main responsibility for each local utility agent is to per-
form “localized” optimizations on the customer level without
burdening the global agent with the details of such opti-
mizations. In the example we present here, each local agent
monitors the customer assigned to it and builds a history of
its resource utilization, basically, by keeping track of how
much of its requested resources it actually uses. Once a new

@ Springer

924 Cluster Comput (2015) 18:919-932
Fig. 4 Local utility agent OE——
architecture =000 A sessecessceeessesescsesosessmueee N\
Utility Function
22 Monitoring
- N ~ Sensors
Performance Goals:
Response time Q
History Number of request per time =]
S
cucslt‘::::ller - ’ g‘
requests l Q
and (3) Cloud Notifications - ﬁ
behaviors Reformulate the cloud customer Customer & §
request >»| tasksand =
} formulated -
\ N J /
y N request
Cloud customer request
——
|
z o
£ z
= 4

Global Utility Agent

request for a VM with specific characteristics is received
from the customer, the local utility agent utilizes the history
it has built in reformulating the customer’s requests to better
match its actual usage. The objective of such reformulation
is to avoid both the overprovisioning and the underprovision-
ing problems while taking into account other issues such as
the number of request per time unit, response time, etc. The
output of the reformulating step is sent to the global utility
agent which is responsible for the actual provisioning of the
resources. The architecture of a local utility agent is depicted
in Fig. 4 whereas Fig. 5 depicts the flowchart of a local utility
agent.

The local utility agent use simple regression analysis to
reformulate cloud customer requests by predicting the value
of the wasted resources depending on customer request.
Regression analysis [5] can be used to predict the value
of a random variable Y whose value depends on the value
of an independent variable X by using least squares linear
regression equation y = bg + bjx where by is a con-
stant which can be computed as by = y — by X X, by is
the regression coefficient which can be computed as b =
>l —) (yi — M1/ 2 [(xi —X¥)?], and ¥ is the predicted
value of the dependent variable.® In the following, we show
how can these equations be used to estimate the amount of
resources that will actually be used based on the history of
requests made by the same user. For the sake of simplicity,
the discussion below pertains to one specific resource (CPU).
Other resources such as RAM, storage and BW can be esti-
mated similarly.

3 http://stattrek.com/regression/linear-regression.aspx ?Tutorial=AP.

@ Springer

The following equation is used to estimate the value of the
CPU that will actually be used by the customer as a function
of the current as well as the previous requests made by the
same customer.

EC=(RC—-WC)+ B,

where EC, RC and WC represent the estimated, currently
requested and wasted CPU, respectively. As for B, it is a
parameter whose value determines whether to act conser-
vatively or aggressively based on the estimated values of
the resources to be used. Note that, in this work, overesti-
mating the amounts of resources to be used leads to wasted
resources whereas underestimating them leads to SLA vio-
lations. In general, wasting some resources is a price most
cloud providers are willing to pay to avoid SLA violations.
However, this need not be the case all the time. By setting
the value of B properly, the cloud providers are given con-
trol over the trade-off between saving resources and incurring
SLA violations. Large values of B are suitable for conserva-
tive behavior since it inflates the estimated values and leaves
little room for errors in the estimates (SLA violations). On
the other hand, for the scenarios in which the cloud provider
cares more about saving resources than SLA violations, small
values of B are more suitable. Some of the experiments con-
ducted is dedicated to the different potential values of B and
their effect on the performance of the system (See Sect. 4).

Adapted from [5], the following equation is used to com-
pute the wasted CPU.

WC = RC x C; + Cy,

http://stattrek.com/regression/linear-regression.aspx?Tutorial=AP

Cluster Comput (2015) 18:919-932

925

M

Customer Requests

y
Y I # of Request ++]
Reformulate VM Request [€ — Add VM request characteristics
| - 1 No
N | Read previous requests
——————— —{ Customer History [€---
[# of Request ++]
AddReformulate VM raquest characteristics
| e e] 0 2 A2
Z
= g S I Send NotificationTo Customer]
% F: 2 o
g E = K]
2 = £ =
= = > £
2 2 -
@ >| Global Utility Agent |€

Request

>
rd

FFeedbacks

[Cloud Provider Datacenters]

Fig. 5 Flowchart of local utility agent

where C; and Cy are computed as follows.

> [(PRC; — PRC) x (WC; — WC)]
> ¢ [(PRC; — PRC)?]
Co ZW—Cl x PRC.

C =

In the above equations, X represents the average of X and
PRC is an array containing the latest C requests made by
the same customer.

3.3 The global utility agent

The main responsibility for the global utility agent is to man-
age the reformulated requests coming from the local utility
agents. This constitutes communicating with the hypervi-
sors of the physical machines to provision the requested
resources, notifying the local utility agents of the details of
the provisioned resources and notifying the hypervisors of
the physical machines upon the completion of a customer’s
job to reclaim the allocated resources. While determining
how to allocate resource, the global utility agent must take
into account several performance goals such as reducing the
number of active physical machines, reducing the number of

VM migrations, etc. Figure 6 depicts the architecture of the
global utility agent.

3.4 The host fault detection (HFD) algorithm

In general, a VM migration occurs when its hosting physical
machine is facing an overloading problem or an under-
loading problem. If a physical machine is being largely
underutilized, the VM placement algorithm [such as inter
quartile range (IQR), local regression (LR), local regres-
sion robust (LRR), median absolute deviation (MAD) and
static threshold (THR)] migrates all hosted VMs from the
underloaded host to another one so that the underloaded
hosts can be turned off to save on electricity. On the
other hand, if a physical machine is being overloaded, the
VM placement algorithm calls one of VM selection algo-
rithms (such as Maximum Correlation (MC), Minimum
Utilization (MU), Random Selection (RS) and Minimum
Migration Time (MMT) to determines which VMs to migrate
[2].

In this study, the global utility agent uses a novel VM
selection algorithm called Host Fault Detection (HFD). This
algorithm determines which VMs to migrate when the hosted

@ Springer

926 Cluster Comput (2015) 18:919-932
Fig. 6 Global utility agent SEm—
architecture / . \
4 Utility Function N
f/ 3 \ Monitoring a
() Sensors < -y
Performance Goals: I =
Reduce number of active physical machines =
Reduce the number of VMs migration :E
Power consumption =)
\ J S
(=3
&
(-) o
e
g
Generate appropriate actions and decisions <)
Actions and decisions g
> -
|) / Cloud customers tasks 2
—_—

Request

Notifications

<&
<

Local Utility Agents

physical machine is being overloaded depending on the cause
of the overload. It then chooses the VM with the maximum
effect on the cause of the overload. For e.g., if the RAM is
the cause of the overload, then HFD selects the VM with
the max allocated RAM to be migrated. It uses the power-
aware best fit decreasing (PABFD) VM placement algorithm
to determine where to migrate VMs. Despite its simplicity,
the HFD algorithm outperforms other selection algorithm as
shown in the following section.

4 Experiments and results

To evaluate the performance of the proposed DRPM sys-
tem (along with its novel RR and HFD algorithms), an
extended version of CloudSim [4] called CloudExp [10] is
employed. CloudSim is one of the earliest and most widely
accepted simulation environments for the cloud computing
paradigm.

The first part of the experiment is concerned with the RR
algorithm and its performance. For this part, we customers
who are conservative with respect to the way they make their
requests. Such customers always request resources exceed-
ing their expected needs to avoid resorting to the generally
expensive task of requesting additional resources during the
execution of the job. We evaluate the effect of the RR algo-
rithm by measuring SLA violations in addition to free and
wasted capacities. Similar to the discussion in last section,
the focus here is on one specific resource, CPU (measured in
MIPS), to simplify the presentation of ideas and results.

@ Springer

Table 1 VMs characteristics

Number of VMs 50

VMs types 4

MIPS of CPU [2500, 2000, 1000, 500]
Number of PEs 1

RAM capacity [870, 1740, 613]
Bandwidth 100 Mbit/s

Storage capacity 2.5GB

The second part of the experiments is concerned with the
HFD VMs selection policy. We compare its performance with
other VMs selection polices like MC, MU, RS and MMT and
evaluate it on several aspects such as energy consumption,
number of VM migrations, number of host shutdowns, and
SLA violations.

4.1 Experiments setup

We use for each experiment the same settings used in [2].
We use four types of virtual machines and two types of
physical machine deployed in a single datacenter. All exper-
iments are carried out under the dynamic workload with 50
cloudlets for a simulation period of 24 hours in which the
scheduling interval (new resource usage time) is 300 seconds.
Tables 1, 2, 3 and 4 show the characteristics of the VMs, the
physical machines, the datacenter and the cloudlets, respec-
tively.

Cluster Comput (2015) 18:919-932

927

Table 2 Physical machines characteristics

Number of Hosts 50

VMs types 2

MIPS of CPU [1860, 2660]
Number of PEs 2

RAM capacity [4096]
Bandwidth 1 Gbit/s
Storage capacity 50 GB
Table 3 Datacenter characteristics

System architecture x86
Operating system Linux
Virtual machine monitor (VMM) Xen

Time zone 10.0

Cost per processing 0.03 cents
Cost per memory 0.05 cents
Cost per storage 0.001 cents
Cost per bandwidth 0.01 cents
Table 4 Cloudlets characteristics

Number of cloudlets 50
Cloudlet length 216000000
File size 300
Output size 300
Number of PEs 1

4.2 Request reformulation (RR) algorithm experiments

As mentioned in Sect. 3, the RR algorithm uses regression
analysis to estimate the amount of resources a customer
would actually use based on the current and past resource
requests from the same customer and how much of them were
actually used. This section shows several experimentation

Fig. 7 The percentages of 60%
MIPS savings for different

values of B 50%

result on the RR algorithm. We assume that the customers
are conservative in their requests. This means that a customer
always requests more resources than it will actually use to
avoid resorting to the generally expensive task of requesting
additional resources for a customer’s job during the execu-
tion of the job. All experiments are conducted under dynamic
workload with different values for B ranging from —15 to
15 %. In each one of these experiments, the value of B is set
at the beginning and it remains fixed throughout the exper-
iment. However, B is not necessarily a fixed parameter; it
can be set dynamically. We perform an additional experi-
ment with adaptive value of B computed as the average of
previous MIPS violations normalized against the range of
requested MIPS.

The results of this experiment are shown in Figs. 7, 8 and
9 highlighting the advantages and disadvantages of using
the proposed system for different values of B (including the
adaptive one). Figure 7 shows the advantages of the proposed
system manifested in MIPS savings. Figures 9 and 8§, on the
other hand, show the cost of the proposed system manifested
in the total wasted MIPS (Fig. 9) as well as the SLA viola-
tions (Fig. 8). Specifically, the figure shows the percentage of
requests for which an SLA violations related to insufficient
MIPS occur (henceforth referred to as MIPS violations).

To study the gains from using the DRPM system, con-
sider Fig. 7, which shows the percentages of MIPS savings
for different values of B. These percentages are computed
by dividing the amount of saved MIPS over the difference
between the amount of requested MIPS and the amount
of actually used MIPS. For example, consider a customer
requesting a virtual machine with 2000 MIPS and the RR
algorithm reformulates the request to become 1900 MIPS, if
the customer actually uses 1800 MIPS, then it can be viewed
that RR reformulated the request to attain % =50 %
of the potential savings. The figure shows that the proposed
system steadily achieves high percentages of possible savings
with large variations in the value of B having minimal impact.
The figure also shows that the best savings are achieved for

“a

o

40% -

30% -

20% -

Percentage of MIPS Savings

10% -

0%

N
S N
* S o
2 S o N . X v“.?'\ §
£ “ & & o S N L 7
S i S g < = &
¥ » Q QS 8 G o
— — >
-
< N
S
o\o o\o ol° ol°
s ;\f? > S

B Values

@ Springer

928

Cluster Comput (2015) 18:919-932

G
B Values v~°

Fig. 8 The percentages of 30%
MIPS violations for different
values of B g 25%
s
3
°
£ 20%
xR
=
2 15% -
S
=]
Q
oL
8 10%
2 5%
0%
Fig. 9 The percentages of 13%
wasted MIPS for different
values of B 12%

11%

10%

9% -

8% -

Percentage of Wasted MIPS

7% -

6% -

B =5 % with an average of about 50 % MIPS savings in each
request. This is a huge percentage compared with allocation
algorithms that do not employ RR or any similar algorithm
to reformulate the customers requests to better match their
actual usage.

To build confidence in our results, we performed a t-test to
test the null hypothesis that the average wasted CPU without
using the RR algorithm is the same as the average wasted
CPU with using the RR algorithm.

The average improvement (u=214.12,0 =1.918and N =
41,637) was significantly greater than zero, #(7) = 111.6,
two-tail p = 0, providing evidence that the RR algorithm is
in fact effective in reducing wasted CPU. A 95 % C.I. about
the average improvement is (210.37, 217.89).

For this test, we focus on the experiments with the adaptive
way of computing the value of B. Similar results are obtained
for other values of B.

After taking a look at the advantages of the proposed sys-
tem, it is time to look into the price at which these gains come
by considering Figs. 8 and 9. Figure 8 shows the percentage
of MIPS violations, which is the main cost metric (disad-
vantage) of using the DRPM system. It can be clearly seen
that with the increase of the value of B, the percentage of

@ Springer

Ny

B Values

MIPS violations decreases, which is in accordance with the
arguments of Sect. 3. Following the same argument, having
a conservatively large value of B will definitely increase the
amount of wasted resources (see Fig. 9).

Figures 7, 8 and 9 show the trade-off between the saved
resources and the SLA violations in an evident way. Now,
it is up to the cloud provider to balance these two factors to
serve its bestinterest. Note that, from these figures, adaptively
setting the value of B gives a similar behavior to statically
setting it to around 7.5 %, which represents a very good bal-
ance between the gains (in terms of saved MIPS) and the
losses (in terms of SLA violations).

4.3 Host fault detection (HFD) policy experiments

The experiments in this section are dedicated to study the
performance of the Host Fault Detection (HFD) VM selec-
tion policy and compare it with other policies. HFD as well
as the other policies are tested under dynamic workload and
different VM allocation polices. Figure 10 shows the result of
comparisons between HFD and other VMs selection polices.
Specifically, we consider the following four selection poli-
cies: the Maximum Correlation (MC) policy, the Minimum

Cluster Comput (2015) 18:919-932 929
Fig. 10 Comparison of the VM 60
selection policies in terms of
energy consumption (kWh)
50
=
E 40
s
2 B HFD
E 30 - Mmc
2
c uMMT
8 B MU
§ 20 -
g = RS
w
10 -
0
IQR LR LRR MAD THR
VM Allocation Policy
Fig. 11 Comparison of the VM 7000
selection policies in terms of
VM migrations
6000
5000 -
(%]
s
4000 B HFD
) Mc
; P = MMT
MU
2000 - 5 RS
1000 -
0 -

IR

Migration Time (MMT) policy, the Minimum Utilization
(MU) policy and the Random Selection (RS). We compare
the different selection policies under consideration with five
different allocation policies: Inter Quartile Range (IQR),
Local Regression (LR), Local Regression Robust (LRR),
Median Absolute Deviation (MAD) and Static Threshold
(THR). The performance of the selection policies is evalu-
ated from different aspects. Specifically, we consider energy
consumption, VM migrations, SLA violations and host shut-
downs.

Figure 10 shows the total energy consumption of the five
selection policies under consideration. The five parts of the
figure (parts (a) through (e)) are generated considering the
IQR, LR, LRR, MAD and THR allocation policies, respec-
tively.

LR LRR
VM Allocation Policy

MAD THR

From these figures, it can be seen that HFD always outper-
forms all other selection policies under all settings with MC
and RS being the closest to HFD. However, the advantage of
using HFD over the other policies is sometimes small as it
does not exceed 2 % for MC, 4 % for MMT, 9 % for MU and
2% for RS.

Figure 11 shows the number of VM migrations of
the five selection policies and the five allocation policies
under consideration. Similar to the energy consumption
comparison, HFD outperforms all other selection poli-
cies under all settings with MC and RS being the clos-
est to HFD. However, the advantage of using HFD over
the other policies is more obvious here as it reaches
9% for MC, 25% for MMT, 23 % for MU and 8% for
RS.

@ Springer

930 Cluster Comput (2015) 18:919-932
Fig. 12 Comparison of the VM 4.00% -
selection policies in terms of
SLA violations 3.50% -
» 3.00% -
S
=
©
E 2.50%
< B HFD
% 2.00% MC
g, " MMT
g 1.50% - B MU
d
5 uRS
& 1.00%
0.50% -
0.00% :
IQR LR LRR MAD THR
VM Allocation Policy
Fig. 13 Comparison of the VM 1800 -
selection policies in terms of
hosts shutdowns 1600
1400
1200 -
w
:
3 1000 - B HFD
E McC
v
800 " MMT
S
= MU
600
uRS

400 -

200

IQR

Figure 12 shows the percentage of SLA violations of the
five selection policies and the five allocation policies under
consideration. Unlike the previous comparisons, HFD out-
performs all other selection policies under only the MAD
allocation policy. On the other hand, HFD is being outper-
formed by all other selection policies under the LR and THR
allocation policies. As for the remaining allocation policies
(IQR and LRR), HFD outperforms some of the selection
policies under consideration while being outperformed by
others.

Figure 13 shows the number of host shutdowns of the five
selection policies and the five allocation policies under con-
sideration. Similar to the energy consumption and number of
migrations comparisons, HFD outperforms all other selec-
tion policies under all settings with MC and RS being the
closest to HFD. Specifically, the advantage of using HFD

@ Springer

MAD THR

LR LRR
VM Allocation Policy

over the other policies reaches 6 % for MC, 17 % for MMT,
18 % for MU and 6 % for RS.

Finally, it is worth mentioning the noticeable gain of LR
and LRR over the other allocation policies regardless of the
selection policy. This is true for three of the four metrics
under consideration. The only exception is the percentage of
SLA violations for which IQR and MAD produce the lowest
percentages.

5 Conclusion

This study presented the Dynamic Resources Provisioning
and Monitoring (DRPM) system, a multi-agent system to
manage the cloud provider’s resources while taking into
account the customers’ quality of service (QoS) requirements

Cluster Comput (2015) 18:919-932

931

as determined by the service-level agreement (SLA). More-
over, DRPM includes a new Virtual Machine (VM) selection
algorithm called the Host Fault Detection (HFD) algorithm.
The proposed DRPM system is evaluated using the CloudSim
tool. The results show that the DRPM system allows the
cloud provider to increases resource utilization and decreases
power consumption while avoiding SLA violations.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Kon-
winski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I, et al.: A
view of cloud computing. Commun. ACM 53(4), 50-58 (2010)

2. Beloglazov, A., Buyya, R.: Optimal online deterministic algo-
rithms and adaptive heuristics for energy and performance efficient
dynamic consolidation of virtual machines in cloud data centers.
Concurr. Comput. 24(13), 1397-1420 (2012)

3. Bonvin, N., Papaioannou, T.G., Aberer, K.: Autonomic SLA-driven
provisioning for cloud applications. In: Proceedings of the 2011
11th IEEE/ACM international symposium on cluster, cloud and
grid computing, IEEE Computer Society, pp. 434—443 (2011)

4. Calheiros, R.N.,Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya,
R.: Cloudsim: a toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning
algorithms. Software 41(1), 23-50 (2011)

5. Chatterjee, S., Hadi, A.S.: Regression analysis by example. Wiley,
Hoboken (2013)

6. Duong, T.N.B., Li, X., Goh, R.S.M.: A framework for dynamic
resource provisioning and adaptation in iaas clouds. In: Pro-
ceedings of the IEEE Third International Conference on Cloud
Computing Technology and Science (CloudCom), 2011, pp. 312—
319 (2011). IEEE

7. Hategan, M., Wozniak, J., Maheshwari, K.: Coasters: uniform
resource provisioning and access for clouds and grids. In: Pro-
ceedings of the Fourth IEEE International Conference on Utility
and Cloud Computing (UCC), pp. 114-121 (2011). IEEE

8. Herbst, N.R., Kounev, S., Reussner, R.: Elasticity in cloud com-
puting: what it is, and what it is not. In: Proceedings of the 10th
International Conference on autonomic computing (ICAC 2013),
San Jose, CA (2013)

9. Huang, H., Wang, L.: P&p: a combined push-pull model for
resource monitoring in cloud computing environment. In: Pro-
ceedings of the Cloud Computing (CLOUD), 2010 IEEE 3rd
International Conference on, pp. 260-267 (2010). IEEE

10. Jararweh, Y., Jarrah, M., Kharbutli, M., Alsaleh, M.N., Al-Ayyoub,
M.: CloudExp: a comprehensive cloud computing experimental
framework. Simul. Model. Pract. Theory 49, 180-192 (2014)

11. Marshall, P, Keahey, K., Freeman, T.: Elastic site: using clouds to
elastically extend site resources. In: Proceedings of the 2010 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing, EEE Computer Society, pp. 43-52. 1(2010)

12. Siddiqui, U., Tahir, G.A., Rehman, A.U., Ali, Z., Rasool, R.U.,
Bloodsworth, P.: Elastic jade: dynamically scalable multi agents
using cloud resources. In: Proceedings of the Cloud and Green
Computing (CGC), 2012 Second International Conference on, pp.
167-172 (2012). IEEE

13. Vaquero, L.M., Rodero-Merino, L., Buyya, R.: Dynamically scal-
ing applications in the cloud. ACM SIGCOMM Comput. Commun.
Rev. 41(1), 45-52 (2011)

14. Vecchiola, C., Chu, X., Buyya, R.: Aneka: a software platform
for.net-based cloud computing. High Speed Large Scale Sci. Com-
put. 267-295 (2009)

15. Venticinque, S., Tasquier, L., Di Martino, B.: Agents based cloud
computing interface for resource provisioning and management.
In: Proceedings of the Complex, Intelligent and Software Intensive
Systems (CISIS), 2012 Sixth International Conference on, pp. 249—
256 (2012). IEEE

Mahmoud Al-Ayyoub received his B.S. degree in computer science
from the Jordan University of Science and Technology Irbid, Jordan,
in 2004. He received his M.S. and Ph.D. degrees in computer science
also from the State University of New York at Stony Brook, Stony
Brook, NY, USA, in 2006 and 2010, respectively. He is currently an
assistant professor at the Computer Science Dept at the Jordan Uni-
versity of Science and Technology, Irbid, Jordan. His research interests
include wireless and cellular networks, game theory, artificial intelli-
gence, machine learning and cloud computing.

Yaser Jararweh received his
Ph.D. in Computer Engineering
from University of Arizona in
2010. He is currently an assis-
tant professor of computer sci-
ences at Jordan University of
Science and Technology, Jor-
dan. He has co-authored about
sixty technical papers in estab-
lished journals and conferences
in fields related to cloud com-
puting, HPC, SDS, security and
Big Data. He was one of the
TPC Co-Chair, IEEE Globecom
2013 International Workshop on
Cloud Computing Systems, and Networks, and Applications (CCSNA).
He is a steering committee member for CCSNA 2014 and CCSNA 2015
with ICC. He is the General Co-Chair in IEEE International Workshop
on Software Defined Systems SDS -2014 and SDS 2015. He is also
chairing many IEEE events such as ICICS, SNAMS, BDSN, [oTSMS
and many others. Dr. Jararweh served as a guest editor for many special
issues in different established journals. Also, he is the steering commit-
tee chair of the IBM Cloud Academy Conference.

Mustafa Daraghmeh received
his B.Sc. degree in computer
science from Al-Balqa’ Applied
University, Al-Huson University
College, Irbid, Jordan, in 2009.
He received his M.S. degree
in computer science also from
the Jordan University of Science
and Technology, Irbid, Jordan, in
2014. His main research interests
include cloud computing, operat-
ing systems, multi-agent systems
and software development.

@ Springer

932

Cluster Comput (2015) 18:919-932

Dr. Qutaibah Althebyan is an
Assistant professor in the depart-
ment of Software Engineering
at Jordan University of Science
and Technology (JUST). He has
been there since August of 2008.
Dr. Qutaibah Althebyan finished
his Ph.D. degree in 2008 in
Computer Science from Univer-
sity of Arkansas-Fayetteville and
his Master degree in 2004 in
Computer Information Systems
from the University of Michigan-
Dearborn. Dr. Althebyan pub-
lished several papers in high
ranked journals and conferences.

He is also a reviewer for many journals and conferences. Dr. Althe-
byan main research interests are, but not limited to, in information
security, database security, security in the cloud, big data management,
health information systems, information assurance, software metrics
and quality of open-source systems. Lately, he has been working in
different security, e-health and software engineering projects, namely;
Large Scale Insider Threat Assessments and damage assessment in the
cloud in the area of cloud security. Also, studies of Power laws and their
effects in object oriented metrics in the area of software engineering.

@ Springer

	Multi-agent based dynamic resource provisioning and monitoring for cloud computing systems infrastructure
	Abstract
	1 Introduction
	1.1 Dynamic resource provisioning
	1.2 Cloud resource monitoring

	2 Related works
	3 Proposed system
	3.1 System architecture
	3.2 The local utility agents
	3.3 The global utility agent
	3.4 The host fault detection (HFD) algorithm

	4 Experiments and results
	4.1 Experiments setup
	4.2 Request reformulation (RR) algorithm experiments
	4.3 Host fault detection (HFD) policy experiments

	5 Conclusion
	References

