
Cluster Comput (2015) 18:963–977
DOI 10.1007/s10586-015-0421-4

An empirical study of redundant array of independent solid-state
drives (RAIS)

Youngjae Kim

Received: 25 October 2013 / Revised: 22 September 2014 / Accepted: 2 January 2015 / Published online: 31 January 2015
© Springer Science+Business Media New York 2015

Abstract Solid-state drives (SSD) are popular storage
media devices alongside magnetic hard disk drives (HDD).
SSD flash chips are packaged in HDD form factors and SSDs
are compatible with regular HDD device drivers and I/O
buses. This compatibility allows easy replacement of individ-
ual HDDs with SSDs in existing storage systems. However,
under certain circumstances, SSD write performance can be
significantly slowed by garbage collection (GC) processes.
The frequency of GC activity is directly correlated with the
frequency of inside-SSD write operations and the amount
of data written to it. GC scheduling is locally controlled
by an internal SSD logic. This paper studies the feasibil-
ity of Redundant Arrays of Independent Flash-based Solid-
state drives (RAIS).We empirically analyze theRAIS perfor-
mance using commercially-off-the-shelf (COTS) SSDs. We
investigate the performance of various RAIS configurations
under a variety of I/O access patterns. Finally, we present
our performance and cost comparisons of RAIS with a fast,
PCIe-based COTS SSD, in terms of performance and cost.

Keywords Storage systems · Performance measurement
and analysis · Flash memory · SSD · RAID

1 Introduction

Hard disk drives (HDD) are the leading media in stor-
age systems. HDDs are widely deployed from embedded to
enterprise-scale systems for the last several decades. HDD
manufacturers were successful in providing a continuous

Y. Kim (B)
Department of Information and Computer Engineering,
Ajou University, Suwon 443-749, South Korea
e-mail: youkim@gmail.com

improvement in total disk capacity by increasing the stor-
age density while bringing down the price-per-byte using
mass production. Perpendicular recording [35] has contin-
ued this trend but further advances will require new tech-
nologies such as patterned media [3] that present significant
manufacturing challenges. On the other hand, HDD I/O per-
formance increased at a slower pace compared to the stor-
age density. Increasing the platter rotational speed (rotations
per minute—RPM) was a key to this progress. A recent sin-
gle enterprise-class magnetic disk today can provide up to
204 MB/s at 15,000 RPMs [45]. However, we are now at a
point where HDD designers conclude it is extremely hard
to increase platter RPM beyond its current state, because of
power consumption and thermal dissipation issues [11].

Flash memory-based solid state disks (SSD), especially
NAND Flash, are another leading storage media in stor-
age systems. Unlike magnetic rotational disks, NAND Flash
based SSDs have no mechanical moving parts, such as spin-
dles and voice-coil motors. Therefore, NANDFlashmemory
technology offers a number of benefits over the conventional
hard disk drives, such as lower power consumption, lighter
weight, higher resilience to external shocks, ability to sus-
tain hotter operating regimes, and smaller I/O access times.
Additionally, since Flash chips are packaged in HDD form
factors and SSDs are compatible with HDD device drivers
and I/O buses, one-to-one replacement of HDDs with SSDs
is possible.

Although Redundant Arrays of Inexpensive (or Indepen-
dent) Disks (RAID) [42,50] can provide high I/O throughput
by exploiting parallelism across disks, the mechanical move-
ment involved in the operation of HDDs (seek operations in
HDDs,moving the heads back and forth) can limit the perfor-
mance that anHDD-based systemcanoffer toworkloadswith
significantly high non-sequential I/O patterns. We envision
that SSDs can overcome such key shortcomings of HDDs

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10586-015-0421-4&domain=pdf

964 Cluster Comput (2015) 18:963–977

with faster access to non-sequential data, and are investigat-
ing this area for future storage systems.

Despite these benefits of SSDs overHDDs, storage system
designer need to carefully consider the use cases of SSDs. In
addition to limited lifetime issues (10K-1M erase cycles per
block) on Flash [4], the high price of SSDs ($/GB) is of sig-
nificant concern. Since SSDs are much more expensive per
gigabyte than HDDs, replacing HDDs with SSDs in large-
scale storage systems is not a cost-effective approach under
current market prices [36]. Thus, conventional wisdom sug-
gests using SSDs in existing large-scale storage systems to
partially replace HDDs using SSDs or augmenting the HDDs
with SSDs as a caching area [24].

There are several possible design approaches to employ
SSDs in a HDD in high performance storage systems:

– We can use SSDs as an I/O accelerator to boost the over-
all I/O bandwidth, especially for workloads with signifi-
cantly high randomness or less locality.

– SSDs can be used as a fast write caching tier that can
absorb bulk sequential I/O traffic such as checkpointing.
(iii) In previous work [38] we examined the efficacy of
SSDs as file system journal targets.

In our study, we focus on RAID configurations built using
COTS SSDs.1 Here are the salient contributions of our work:

– We investigated the feasibility of RAIS levels in terms
of their performance behavior. One of the main short-
comings of SSDs is the slowdown during the garbage
collection (GC) process that is hastened by small, ran-
domwrites [5,28,30,41]. This slowdowncan even further
impact future incoming requests, We term this “patho-
logical behavior” of an SSD by delaying I/O request ser-
vices.

– We further studied the pathological behavior of the arrays
of SSDs by extending the Microsoft SSD simulator,
which we expect to see more interesting results with real-
istic workloads. Also we studied the effect of GC coordi-
nation for the aggregate performance of the SSD arrays.
Our results show that the GC coordination can offer a sig-
nificant performance improvement over the SSD arrays
without the GC coordination.

– We conducted aRAIS efficiency analysis.WeusedCOTS
components (SSDs and RAID controllers) in our experi-
ments. We measured the I/O performance of each RAIS
configuration under various I/O access patterns such as,
small or large, random or sequential writes or reads. We
investigated each configuration in terms of:

1 In the rest of this paper, we will use the term, Redundant Array of
Independent SSDs (RAIS) for describing the SSD-based RAID sets.
We present our analysis results on comparing RAIS-0, 5, and 6 con-
figurations in our study, analogous to conventional RAID-0, 5, and 6
sets.

1. I/O operations performed per second per dollar
2. Bytes per second per dollar
3. Capacity (gigabytes) per dollar.

We also compared our RAIS configurations with a PCIe-
interfaced SSD, in terms of performance, capacity, and
cost.

The rest of this paper is organized as follows. We first
present an overview of the Flash memory technology and its
applications in storage devices in Sect. 2. Section 3.1 pro-
vides a brief of overview of the RAIS configurations used
in this paper. Our experimental methodology is described in
Sect. 3.2. We provide a performance analysis of SSDs and
RAIS in Sects. 4.1 and 4.2. SSD pathological behavior due
to GC processes and its effects on aggregate RAIS perfor-
mance is discussed in Sect. 4.3. In Sect. 4.4, we present pre-
liminary simulation results of improvement by a GC coor-
dination technique across SSDs in the array. We present a
cost-based efficiency analysis of RAIS in Sect. 4.5. Related
works are discussed in Sect. 5, and we conclude in Sect. 6.

2 Background

2.1 Flash memory technology

Flash memory-based storage devices require an erase oper-
ation [37], and page granularity based read and write oper-
ations, unlike rotating media and volatile memories. Char-
acteristics of these operations include: Erase operations are
performed at the granularity of a block which is composed
of multiple pages. A page is the granularity at which reads
and writes are performed. Each page on Flash can be in
one of three different states: (i) valid, (ii) invalid and (iii)
free/erased [9]. When no data has been written to a page, it
is in the erased state. A write can be done only to an erased
page, changing its state to valid. Erase operations (on aver-
age 1.5ms) are significantly slower than reads/writes. There-
fore, out-of-place writes (as different from in-place writes
in HDDs) are performed to existing free pages along with
marking the page storing the previous version invalid. Addi-
tionally, write latency can be higher than the read latency by
up to a factor of 4–5. The lifetime of Flash memory is limited
by the number of erase operations on its cells. Each memory
cell typically has a lifetime of 103–109 erase operations [9].
Wear-leveling techniques [4,17,20,33] are used to delay the
wear-out of the first Flash block by spreading erases evenly
across the blocks.

SSDs are priced according to their Flash type (single-
level cell (SLC) and multi-level cell (MLC) Flash chips),
host interface (SATA and PCIe), and packaging technolo-
gies. SLC Flash chips store one bit of data per memory cell,

123

Cluster Comput (2015) 18:963–977 965

Fig. 1 A block diagram of flash
based solid state disk drive [46]

whileMLCFlash chips storemultiple bits of data permemory
cell [2]. SLCFlash chips provide faster read andwrite latency
than MLC Flash chips [2]. MLC-based SSDs tend to have
lower lifetimes when compared to SLC-based SSDs. SLC
Flash chips can achieve lower access latency and high I/O
throughput, but are more expensive than MLC Flash chips.

2.2 Characteristics of flash memory operations

2.2.1 In-place versus out-of-place updates

In flash memory, in-place update operations are very costly.
Since an erase occurs at the block granularity whereas writes
are done to pages, an in-place update to a page entails (i)
reading all valid pages of the block into a buffer, (ii) updating
the required page, (iii) erasing the entire block and (iv) then
writing back all the valid pages to the block. Instead, faster
out-of-place updates are employed that work as follows: An
out-of-place update invalidates the current version of the page
being updated and writes the new version to a free page. This
introduces the need to keep track of the current page version
location on flash itself, which is maintained by implementing
an address translation layer (FTL). The OOB area of invalid
pages are marked to indicate their changed states.

2.2.2 Garbage collection

Out-of-place updates result in the creation of invalid pages
on flash. A garbage collector is employed to reclaim invalid
pages and create new erased blocks. It first selects a victim
block based on a policy such as choosing a block with max-
imum invalid pages. All valid data within the block is first
copied into an erased block. This data-rewrite operation can
be quickly and efficiently processed by the special support
of a Copy-Back Program operation where an entire page is
moved into the internal data buffer first and then written [1].
Then the victim block is erased. The efficiency of garbage
collector is one of the dominant factors affecting flash mem-
ory performance.

2.3 NAND Flash based SSDs

Figure 1 describes the organization of internal components
in a flash-based SSD. It possesses a host interface (such as
Fiber-Channel, SATA, PATA, and SCSI etc.) to appear as
block I/O device to the host computer. The main controller
is composed of two units—processing unit (such as ARM7
processor) and fast access memory (such as SRAM). The
virtual-to-physical mappings are processed by the processor
and the data-structures related to themapping table are stored
in SRAM in themain controller. The softwaremodule related
to this mapping process is called FTL. A part of SRAM can
be also used for caching data.

A storage pool in a SSD is composed of multiple flash
memory Planes. The Planes are implemented in multiple
Dies. For example, Samsung 4 GB flash memory has two
Dies. A Die is composed of four planes, each of size is
512MB [1]. A Plane consists of a set of blocks. The block
size can be 64, 128, 256KB etc. depending on the mem-
ory manufacturer. The SSD can be implemented multiple
Planes. SSD performance can be enhanced by interleaving
requests across the planes, which is achieved by the multi-
plexer and de-multiplexer between SRAM buffer and flash
memories [1].

2.4 Flash translation layer

The FTL is a software layer in an SSD that translates logical
addresses from the file system into physical addresses on a
Flash device. The FTL helps in emulating Flash as a normal
block device by performing out-of-place updates which in
turn helps to hide the erase operations in the Flashmedia. The
mapping table is stored in a small, fast SRAM. These FTLs
can be implemented at different granularities in terms of how
large an address space a single entry in themapping table cap-
tures. Many FTL schemes [6,7,19,22,31,32,44] and their
improvement by write-buffering [21] have been studied. A
recent page-based FTL scheme called DFTL [10,23] utilizes
temporal locality in workloads to overcome the shortcom-
ings of the regular page-based scheme by storing only a sub-

123

966 Cluster Comput (2015) 18:963–977

set of mappings (those likely to be accessed) on the limited
SRAM and storing the remainder on the Flash device itself.
Also, there are several works in progress on the optimiza-
tion of buffer management in NAND Flash based environ-
ments [16,39].

3 Experimental methodology

In this section, we present our experimental methodology
for the performance analysis of individual SSD and various
RAID configurations of SSDs.

3.1 Redundant array of independent SSDs

Redundant arrays of inexpensive disks (RAID) [42] were
introduced to increase the performance and reliability of
disk drive systems. RAID provides parallelism of I/O oper-
ations by combining multiple inexpensive disks, thereby
achieving higher performance and robustness than a single
drive. RAID has become the de facto standard for build-
ing high-performance and robust HDD-based storage sys-
tems. Hypothesizing that RAID could provide similar bene-
fits for SSDs, we investigate the performance behavior of
SSD-based RAID systems for a variety of I/O workload
patterns. As we will observe in Sect. 4, our comprehen-
sive evaluation reveals that SSD-based RAID configurations
exhibit serious bandwidth variability due toGCsof individual
SSDs.

In our study, we have focused on a RAID storage using
SSDs (RAIS), instead of HDDs. We defined RAIS-0, 5, and
6 analogous to RAID-0, 5, and 6 as follows:

– RAIS-0 A request is striped across multiple SSDs. As
there is no redundancy in the storage, data loss will occur
if an SSD fails.

– RAIS-5 A request is striped across multiple SSDs with
parity data across multiple SSDs. In RAIS-5, there is no
dedicated parity SSD. Instead, the parity is distributed
over all SSDs in a round-robin fashion, enabling writing
data and parity blocks all the SSD in the array, protecting
from a single SSD failure.

– RAIS-6 Different than RAIS-5, a request is striped with
dual parity blocks over all SSDs. It is logically a combi-
nation of n − 2 data SSDs and 2 additional parity SSDs
among n number of SSDs. It can protect data against any
two SSD failures.

3.2 Experimental setup

All experiments are performed on a single server with 24 GB
of RAM and an Intel Xeon Quad Core 2.93 GHz CPU [13],

Table 1 Storage device characteristics

Label SSD(A) SSD(B) SSD(C)

Company Super-talent Intel Fusion-io

Model FTM28GX25H SSDSA2SH064G101 ioDrive Duo

Type MLC SLC MLC

Interface SATA-II SATA-II PCIe x8

Capacity (GB) 120 64 640

Price ($) 415 799 13,990

Erase (#) 10–100K 100K-1M 10–100K

Power (W) 1–2 1–2 –

Table 2 Default settings of a LSI MegaRAID controller

RAIS scheme 0, 5, 6

Write cache Write through

Read ahead No

Direct I/O Yes

Stripe size 64KB

running Lustre-patched 2.6.18-128 kernel. The noop I/O
scheduler that implements FIFO queue was used [43]. The
test-bed has seven 8x PCIe slots and two of these are
installed with PCIe RAID controller cards. We use two LSI
MegaRAID SAS 9260-8i KIT RAID Adapters [34], each of
which can support up to 8 SATA drives.

We use three representative SSDs in our evaluation. We
select Super Talent 128 GB SSD [47] as a representative
of MLC-based SSDs and Intel 64 GB SSD [14] as a rep-
resentative of SLC-based SSDs. We use Fusion-io 640 GB
ioDrive Duo [8] as a representative of PCIe-based SSDs. We
denote SuperTalentMLC, Intel SLC, and the Fusion-ioMLC
devices as SSD(A), SSD(B), and SSD(C) respectively. Their
details are presented in Table 1.

To compare the performance of RAISs of SSD(A)s and
SSD(B)s2 with SSD(C), we use two PCIe interfaced hard-
ware RAID controllers for each configuration. Each RAID
controller can be equipped with up to 8 SATA-II interfaced
SSDs. The default settings of the RAID controller are given
in Table 2. In particular, we only allow write-through cache
and disable read-ahead in the RAID controller. This cache
setting is intended to keep our evaluation setting the same as
used in our production systems. Oak Ridge Leadership Com-
puting facility hosts a peta-scale storage system, Spider-II
for the fastest supercomputer Titan in US [49]. In the Spider
storage system, all storage controllers are set to allow only
write-through cache to not lose data in a power-failure and
provide high data integrity in the storage system. They also

2 Hereafter, we call RAIS(A) and RAIS(B) for RAIS configurations
using SSD(A)s and SSD(B)s respectively.

123

Cluster Comput (2015) 18:963–977 967

disable read cache, because of an unexpected performance
by the read cache.

In order to minimize the skew in our measurements due
to start-up effects, we “warm-up” each SSD device prior to
collecting data, which means SSDs are all filled so that they
will start to trigger GCswhenwe run I/Oworkloads on them.
At the beginning of each evaluation, all SSDs are exercised
with an I/O pattern identical to that of the experiment. We
repeat every experiment five times for all test cases.

To measure the I/O performance, we develop a bench-
mark tool that uses the libaio asynchronous I/O library
on Linux. libaio provides an interface that can submit
one or more I/O requests in one system call without waiting
for I/O completion (io_submit()). It also can perform
reads and writes on raw block devices. We use the direct
I/O interface to bypass the operating system I/O buffer cache
by setting the O_DIRECT and O_SYNC flags in the file open
call—open().Wemeasure the performance of our test con-
figurations with random and sequential I/O access patterns
by varying the amount of reads in the workloads. Although
the definition of a “sequential” I/O access can be debated, our
definition is simple: If a request starts at the logical address
immediately following the last address accessed by the previ-
ously generated request, we consider it a sequential request.
Otherwise, we classify it as a random request.

4 Performance analysis of RAIS

We present our performance analysis results for individual
SSDs and various RAIS configurations with a variety of I/O
access patterns.

4.1 Individual SSD performance analysis

In this subsection, we present experimental results on indi-
vidual SSDs using sequential I/O requests by varying the
request size and number of outstanding requests in the I/O
queue.

4.1.1 Sequential I/O performance

In Fig. 2a, b, we present the read performance character-
istics of SSD(A) and (B). As can be seen, read bandwidth
for each device increases with queue depth and request size.
Maximum read performance is around 235 and 260MB/s for
SSD(A) and SSD(B), respectively. For large requests, both
devices scalewell.However, SSD(A)does not scale aswell as
SSD(B) with respect to queue depth when the request size is
small (refer to Fig. 2a, b). For reads, we observe that SSD(B)
performs better than SSD(A). This can be explained by the
fact that SSD(B) uses SLC Flash chips while SSD(A) uses
MLC Flash chips. Read access time on SLC Flash is lower

than on MLC Flash [29,40]. For sequential writes, as shown
in Fig. 2d, e, we see that SSD(A) has a maximum throughput
of 140 MB/s while SSD(B) performs at 175 MB/s. These
write values are smaller than read values of both devices.
Flash writes are slower than reads in part because writes can
cause garbage collection (GC) events. Similar to reads, we
see that SSD(A) does not scale well compared to SSD(B) for
small write requests.

Figure 2c, f show the results of PCIe SSDs, we observe
from the figure that SSD(C) achieves a maximum read band-
width of 1.38 GB/s and its maximum write bandwidth is
around 1 GB/s. These two values are much higher than their
SSD(A) and (B) counterparts.

Interestingly, we observe high variances at several mea-
surement points for read performance measurements. We
conjecture the reasons for such high variance in measure-
ments as follows:

– Devices might have different internal fragmentation lev-
els of data blocks, which can directly impact the schedul-
ing of GC processes [5].

– Garbage collection processes (GCs) canbe triggered even
in read-dominant workloads (possibly because of past
write-dominant workloads and internal scrubbing opera-
tions in the SSDs). GCs can increase the queueing delay
(the time a request waits in an I/O queue) of incoming
requests, resulting in high request service latencies.

Compared to read performance, we do not see high vari-
ance from write performance measurements. It is because
individual SSDs can use internal write buffers to minimize
the write performance degradation due to GC.

Lessons learned SSD’s read performance can vary much
higher than its write performance. SSD can use its internal
write buffer to mitigate write performance degradation due
to GC. Among SSDs with the same interface (e.g., SATA),
their SSD performance behaviors can be different by manu-
facturers.

4.1.2 Random I/O performance

Figure 3 shows the performance characteristics of SSD(A),
(B), and (C) for 4KB random I/O access patternswith respect
to varying queue depth. These 4 KB I/O performance mea-
surements are important because small I/O requests would
happen by file system meta-data operations, which is critical
for the file system performance. We use IOPs as a metric
to comparing random I/O performance. IOPs is one of the
widely used metrics in benchmarking storage systems for
random I/O access patterns.

In Fig. 3a, b, we see that SSD(B) outperforms SSD(A)
for both random reads and writes. For 4 KB random reads
on both devices, we see that I/O throughput increases by the

123

968 Cluster Comput (2015) 18:963–977

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240
 260
 280
 300

1 2 4 8 16

SSD(A)
4KB

16KB
64KB

256KB
1MB

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240
 260
 280
 300

1 2 4 8 16

S
eq

ue
nt

ia
l R

ea
d

(M
B

/s
)

Queue Depth

SSD(A)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240
 260
 280
 300

1 2 4 8 16

SSD(B)

4KB
16KB
64KB

256KB
1MB 0

 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220
 240
 260
 280
 300

1 2 4 8 16

S
eq

ue
nt

ia
l R

ea
d

(M
B

/s
)

Queue Depth

SSD(B)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 2 4 8 16

SSD(C)

4KB
16KB
64KB

256KB
1MB 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

1 2 4 8 16

S
eq

ue
nt

ia
l R

ea
d

(M
B

/s
)

Queue Depth

SSD(C)

(a) SSD(A) (b) SSD(B) (c) SSD(C)
Sequential Read Performance

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 2 4 8 16

SSD(A)

4KB
16KB
64KB

256KB
1MB 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 2 4 8 16

S
eq

ue
nt

ia
l W

rit
e

(M
B

/s
)

Queue Depth

SSD(A)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 2 4 8 16

SSD(B)

4KB
16KB
64KB

256KB
1MB 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 2 4 8 16

S
eq

ue
nt

ia
l W

rit
e

(M
B

/s
)

Queue Depth

SSD(B)

 0

 200

 400

 600

 800

 1000

 1200

1 2 4 8 16

SSD(C)

4KB
16KB
64KB

256KB
1MB 0

 200

 400

 600

 800

 1000

 1200

1 2 4 8 16

S
eq

ue
nt

ia
l W

rit
e

(M
B

/s
)

Queue Depth

SSD(C)

(d) SSD(A) (e) SSD(B) (f) SSD(C)
Sequential Write Performance

Fig. 2 Observed sequential I/O throughputs of single, individual SSD(A), (B), and (C) devices, using the libio benchmark. ‘Queue Depth’ (QD)
denotes the number of outstanding requests in an I/O queue. The error bars show 95% confidence intervals. Note that some intervals are too narrow
to be apparent

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

SSD(A) SSD(B)

Random Read

QD=1
QD=2
QD=4
QD=8

QD=16

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

SSD(A) SSD(B)

IO
P

s

Device

Random Read

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

SSD(A) SSD(B)

Random Write

QD=1
QD=2
QD=4
QD=8

QD=16

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

SSD(A) SSD(B)

IO
P

s

Device

Random Write

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

SSD(C)

Random Read

QD=1
QD=2
QD=4
QD=8

QD=16

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

SSD(C)

IO
P

s

Device

Random Read

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

SSD(C)

Random Write

QD=1
QD=2
QD=4
QD=8

QD=16

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

SSD(C)

IO
P

s

Device

Random Write

(a)SSD(A)&(B) (b)SSD(A)&(B) (c) SSD(C) (d)SSD(C)

Fig. 3 Observed random I/O throughputs of single, individual of SSD(A), (B), and (C) devices. Error bars show 95% confidence intervals. I/O
Operations Per Second (IOPS) were measured by generating 4 KB read and write requests that were random in a 1 GB logical address space

123

Cluster Comput (2015) 18:963–977 969

increase of queue depth. On 4 KB random writes, surpris-
ingly, we see that SSD(A) does not scale at all with respect
to queue depth. This behavior was not observed for SSD(B).
We also see that SSD(B) significantly performs better than
SSD(A) in terms of IOPs, even thoughweobserve a high vari-
ance in SSD(B) results. This high variance on random writes
can be explained by the following reasons. First, we used
a simple definition for sequential/random requests in work-
loads in our experiments, however, random requests can be
further divided by a distance of successive requests, which
can differently impact the internal fragmentation level of an
SSD and its scheduling of GCs. Second, we believe internal
caching policies (prefetching orwrite-buffering) can perform
differently based on manufacturers’ design choices.

Interestingly, SSD(B) and SSD(C) (Fig. 3b, d) perform
better in terms of IOPs under a randomwrite heavy workload
compared to a random read heavy workload, while SSD(A)
exhibits lower throughput on random writes than on ran-
dom reads. Poor random writes have been one of the biggest
problems to overcome in SSDs [10,23,30]. We suspect that
SSD(B) and (C) must have been designed to providing a
better performance on random writes. The manufacturer of
SSD(B) and (C) might have employed an enhanced write-
buffering scheme [21] or employed an enhanced FTL scheme
optimized for random writes [10,23].

Lessons learned SSDs can be tuned to present differ-
ent performance. How the internal write cache is designed
and implemented will determine the performance. SSD can
poorly perform for the bursty workloads (referring to high
queue depth), thus, system designers should consider these
performance characteristics, when they purchase SSDs.

4.2 RAIS performance analysis

We present our results of performance testing on RAIS(A)
and RAIS(B) with respect to a variety of I/O access patterns
and I/O queue depths.

For experiments, we use 4 SSDs for the RAIS-0 configu-
ration. Since RAIS-5 and 6 configurations need extra parity
drives, we use 5 SSDs (4 data drives and 1 parity drive) for
RAIS-5 and 6 SSDs (4 data drives and 2 parity drives) for
RAIS-6. All SSDs were connected to the RAID controller
via SATA-II interfaces. Settings for the RAID controller are
presented in Table 2.

4.2.1 Sequential I/O performance

Figure 4a–c shows sequential read bandwidth for RAIS(A).
Overall, we see that bandwidth increases by the increase of
the queue depth and request size for all RAIS configurations.
Surprisingly, we observe that the bandwidth for the RAIS-
5(A) configuration is higher than RAIS-0(A) and the RAIS-
6(A) configuration performs even better than RAIS-5(A).

From the figures, we see RAIS-0(A), RAIS-5(A), and RAIS-
6(A) provide up to 850 MB/s, 985 MB/s, and 1,190 MB/s,
respectively. It is because RAIS-5 and RAIS-6 in our con-
figuration used more disks by one and two respectively than
RAIS-0. RAIS-5 and 6 does not read parity blocks for read
requests and they could take advantage of more parallelism
available over the disk arrays with RAIS-5 and 6 than RAIS-
0. In Fig. 4g, h and j, we see that the bandwidth of RAIS-
5(B) drops slightly down to 917 MB/s, which is lower than
RAIS-0(B) by 144 MB/s, and reaches 1,088 MB/s, which is
slightly beyond the 1,061 MB/s peak of RAIS-0(B). On the
other hand, we have different observations from the experi-
ments with SSA(B). We conducted repetitive tests over and
over, however, we had the same tread. We attributed this to
performance anomaly, which can be caused by amismatched
performance tuning of a HDD based RAID controller with
SSD controllers. As a lesson from this experiment, we report
that SSD array performance should be carefully measured
because their performance expectation can be different from
what can be observed from a HDD array setup.

Figure 4d–f shows the results of the RAIS performance
for sequential write workloads by varying request size. We
observe that there exists an optimal I/O request size where
parity calculation overhead becomes minimal. In our evalu-
ation, we see that when the request size is equal to the full
strip size over data drives (in our experiment, 256KB consid-
ering a stripe size of 64KB), the parity calculation overhead
is minimal. However, the request size is small than 256KB
or greater than that, we observe degraded throughputs. Espe-
cially, we observe that the performance degradation is more
significant for small I/O requests than large I/O requests.
And we observe that there is very little difference in band-
width observed between RAIS-5 and RAIS-6 configuration
for parity calculation overhead. It is because we used a hard-
ware RAID controller for evaluating RAIS, and particularly,
the hardware RAID controller does not increase parity cal-
culation overhead for RAIS-6 (with two parity disks) than
RAIS-5. We see the similar observation from Fig. 4j–l which
are the evaluation results with RAIS(B).

Lessons learned In RAIS-5 and RAIS-6, even if the num-
ber of data drives is the same as in theirRAIS-0 configuration,
the RAIS-5 and 6 configuration can offer a higher sequen-
tial bandwidth using more drives in RAIS-0, in particular for
read workloads. There can exist an optimal request size to
maximizing the write performance of RAIS-5 and 6 config-
urations.

4.2.2 Random I/O performance

For random reads, as shown in Fig. 5a, c, we see both con-
figurations’ IOPs performance increase by the increase on
the queue depth and request size, as we expected, from the
individual SSD performance given in Fig. 3. Among differ-

123

970 Cluster Comput (2015) 18:963–977

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 2 4 8 16

RAIS-0(A)

64KB
256KB

1MB

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 2 4 8 16

S
eq

ue
nt

ia
l R

ea
d

(M
B

/s
)

Queue Depth

RAIS-0(A)

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 2 4 8 16

RAIS-5(A)

64KB
256KB

1MB

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 2 4 8 16

S
eq

ue
nt

ia
l R

ea
d

(M
B

/s
)

Queue Depth

RAIS-5(A)

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 2 4 8 16

RAIS-6(A)

64KB
256KB

1MB

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 2 4 8 16

S
eq

ue
nt

ia
l R

ea
d

(M
B

/s
)

Queue Depth

RAIS-6(A)

(a)RAIS(A)-0 (b)RAIS(A)-5 (c)RAIS(A)-6

Sequential Read Performance for RAIS(A)

 0

 200

 400

 600

 800

 1000

1 2 4 8 16

RAIS-0(A)

64KB
256KB

1MB

 0

 200

 400

 600

 800

 1000

1 2 4 8 16

S
eq

ue
nt

ia
l W

rit
e

(M
B

/s
)

Queue Depth

RAIS-0(A)

 0

 200

 400

 600

 800

 1000

1 2 4 8 16

RAIS-5(A)

64KB
256KB

1MB

 0

 200

 400

 600

 800

 1000

1 2 4 8 16

S
eq

ue
nt

ia
l W

rit
e

(M
B

/s
)

Queue Depth

RAIS-5(A)

 0

 200

 400

 600

 800

 1000

1 2 4 8 16

RAIS-6(A)

64KB
256KB

1MB

 0

 200

 400

 600

 800

 1000

1 2 4 8 16

S
eq

ue
nt

ia
l W

rit
e

(M
B

/s
)

Queue Depth

RAIS-6(A)

(d)RAIS(A)-0 (e)RAIS(A)-5 (f)RAIS(A)-6

Sequential Write Performance for RAIS(A)

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 2 4 8 16

RAIS-0(B)

64KB
256KB

1MB

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 2 4 8 16

S
eq

ue
nt

ia
l R

ea
d

(M
B

/s
)

Queue Depth

RAIS-0(B)

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 2 4 8 16

RAIS-5(B)

64KB
256KB

1MB

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 2 4 8 16

S
eq

ue
nt

ia
l R

ea
d

(M
B

/s
)

Queue Depth

RAIS-5(B)

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 2 4 8 16

RAIS-6(B)

64KB
256KB

1MB

 0

 200

 400

 600

 800

 1000

 1200

 1400

1 2 4 8 16

S
eq

ue
nt

ia
l R

ea
d

(M
B

/s
)

Queue Depth

RAIS-6(B)

(g)RAIS(B)-0 (h)RAIS(B)-5 (i) RAIS(B)-6

Sequential Read Performance for RAIS(B)

 0

 200

 400

 600

 800

 1000

1 2 4 8 16

RAIS-0(B)

64KB
256KB

1MB

 0

 200

 400

 600

 800

 1000

1 2 4 8 16

S
eq

ue
nt

ia
l W

rit
e

(M
B

/s
)

Queue Depth

RAIS-0(B)

 0

 200

 400

 600

 800

 1000

1 2 4 8 16

RAIS-5(B)

64KB
256KB

1MB

 0

 200

 400

 600

 800

 1000

1 2 4 8 16

S
eq

ue
nt

ia
l W

rit
e

(M
B

/s
)

Queue Depth

RAIS-5(B)

 0

 200

 400

 600

 800

 1000

1 2 4 8 16

RAIS-6(B)

64KB
256KB

1MB

 0

 200

 400

 600

 800

 1000

1 2 4 8 16

S
eq

ue
nt

ia
l W

rit
e

(M
B

/s
)

Queue Depth

RAIS-6(B)

(j)RAIS(B)-0 (k)RAIS(B)-5 (l) RAIS(B)-6

Sequential Write Performance for RAIS(B)

Fig. 4 Test results of RAIS(A) and (B) for sequential I/O access pat-
terns. Note that RAIS-0, 5, and 6 are configured with 4 SSDs, 5 SSDs
including 1 parity drive, and 6 SSDs including 2 parity drives, respec-

tively. The error bars show 95% confidence intervals. Note that some
intervals are too narrow to be apparent here

123

Cluster Comput (2015) 18:963–977 971

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

1 2 4 8 16

IO
P

s

Queue Depth

Random Read

RAIS-0
RAIS-5
RAIS-6

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

1 2 4 8 16

IO
P

s

Queue Depth

Random Read

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

1 2 4 8 16

IO
P

s

Queue Depth

Random Write

RAIS-0
RAIS-5
RAIS-6

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

1 2 4 8 16

IO
P

s

Queue Depth

Random Write

)A(SIAR(b))A(SIAR(a)

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

1 2 4 8 16

IO
P

s

Queue Depth

Random Read

RAIS-0
RAIS-5
RAIS-6

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

1 2 4 8 16

IO
P

s

Queue Depth

Random Read

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

1 2 4 8 16

IO
P

s

Queue Depth

Random Write

RAIS-0
RAIS-5
RAIS-6

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000

1 2 4 8 16

IO
P

s

Queue Depth

Random Write

)B(SIAR(d))B(SIAR(c)

Fig. 5 Performance of RAIS(A) and (B) sets under random I/O access
patterns. The error bars show 95% confidence intervals

ent RAIS schemes, we can not see any significant perfor-
mance differences. For random writes, Fig. 5b, d, we see
that RAIS-0(A) performs poorly compared to RAIS-0(B).
We have seen that SSD(A) shows much lower bandwidth
than SSD(B) for random writes dominant workloads. Also,
interestingly, we see that RAIS-0(B) performs much better
compared to RAIS-0(A) with respect to queue depth. These
are congruent with our observations illustrated in Fig. 3.
However, as can be seen in Fig. 5b, d, RAIS-5 and 6 do not
scale aswe increase queue depth.Our knowledge aboutRAIS
schemes coupled with these observations suggests that extra
random writes due to parity block updates may be degrading
performance, however again, as we used a hardware RAID

controller, there is little difference between RAIS-5 and 6 for
parity calculation overhead. Moreover, we observe that there
is a huge performance gap between RAIS-0 and RAIS-5 &
6 with RAIS(B) compared with RAIS(A). We suspect that
SSD(B)’s firmware implementation such as garbage collec-
tion could contribute more the performance degradation in
RAIS(B) than in RAIS(A).

Lessons learned RAIS can slightly improve random read
performance over individual SSDs however, their improve-
ment does not linearly increase with respect to the number
of drives in the RAID configuration. Particularly, we advise
storage systems designers and architects should be careful
when they configure the RAID based storage systems with
SSDs, because individual SSDs’ performance can lead dif-
ferent performance in their RAID configurations.

4.3 Pathological behavior

HDDs update data in-place, while SSDs are designed to pro-
vide out-of-place updates to hide the erase operation latency
on their Flash devices. Out-of-place update operations trig-
ger GC processes that can delay the servicing of incoming
requests while invalid pages that are stale are collected and
space is freed for new writes. In this section, we investigate
the slowdowns on SSDs and RAIS performance due to GC
processes. To illustrate this effect, we conducted analyses on
bandwidth patterns in time series.

4.3.1 Performance anomaly on individual SSDs

In Fig. 6a, b, we examine the large sequential I/O bandwidth
responses of individual SSDs in time series. We varied the
percentage of writes in workloads between 20 and 80% in
increasing steps of 20%.We measured I/O bandwidth in one
second intervals.

For write-dominant workloads, we observe that the band-
width fluctuates widely due to excessive GCs . For example,
the SSD(A) I/O throughput drops below 180 MB/s at the

 0

 50

 100

 150

 200

 250

 0 10 20 30 40 50 60

M
B

/s

Time (Sec)

1MB Sequential

80% Write 20% Read
60% Write 40% Read

40% Write 60% Read
20% Write 80% Read

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50 60

M
B

/s

Time (Sec)

1MB Sequential

80% Write 20% Read
60% Write 40% Read

40% Write 60% Read
20% Write 80% Read

SSD(B)(b)SSD(A)(a)

Fig. 6 Pathological behavior of single SSDs

123

972 Cluster Comput (2015) 18:963–977

Table 3 Average and standard deviations of the values in Fig. 6

Type Metric Write (%) in workload

80 60 40 20

SSD(A) Avg 162.6 179.1 205.6 225.9

SD 10.9 7.2 4.2 3.1

SSD(B) Avg 214.3 229.4 249.3 259.6

SD 23.7 16.4 9.6 6.3

6th and 7th s under an 80% write workload. However, I/O
throughput drops below 160 MB/s for the 8th s and then
drops further to 130 MB/s in the next 3 s. Overall SSD(B)
shows higher bandwidth than SSD(A). Also, surprisingly,
SSD(B) has a higher variance than SSD(A) (refer to Table 3).
For instance, SSD B’s I/O throughput reached 240 MB/s at
the peak and dropped to 140 MB/s (at 25th–27th s). As we
increase the amount of reads in the workloads from 20 to
80%, we observe that SSD(A)’s and (B)’s I/O throughput
increase around 50 and 18%, respectively.

4.3.2 Pathological behavior with RAIS

In order to clearly understand the effect of data drives with
parity drives in RAID configuration, wemade the same num-
ber of drives for each RAIS configuration. In other words,
we evaluated RAIS-6 of six SSDs, RAID-5 of five data SSDs
and one parity SSD, and RAID-6 of four data SSDs and two
parity SSDs.

In Fig. 7a, b, we show results for a workload with a mix of
60%writes and 40% reads. Similar to previous observations
from test results on individual SSDs, we see that the band-
width variance of RAIS(B) is higher than RAIS(A) (refer to
Table 4), even though RAIS(B) provides higher bandwidth
than RAIS(A). For example, we see that RAIS-0(B) reaches
1.5 GB/s at the peak and then drops to 1.2 GB/s. RAIS-0(A)

Table 4 Average and standard deviations of the values in Fig. 7

Type Metric RAIS scheme

0 5 6

RAIS(A) Avg 1109.4 609.4 612.5

SD 33.6 60.8 37.6

RAIS(B) Avg 1386.3 837.2 737.6

SD 98.2 92.4 72.6

varies between 1 GB/s and 1.15 GB/s. Also, we see from
the results on RAIS-5 and RAIS-6 that their overall perfor-
mance is much lower than RAIS-0 because of extra opera-
tions for parity block updates. However, we do not observe a
large difference between RAIS-5 and RAIS-6 performance,
specifically for RAIS(A) (refer to the average and standard
deviation values of RAIS(A) for RAIS-5 and 6 in Table 4).
RAIS-5(A) and RAIS-6(A) perform identically as can be
seen in Fig. 7a. Under current RAIS setups, GC scheduling
is controlled locally by an internal SSD logic. In RAIS, a lack
of global GC scheduling mechanisms can cause overall syn-
chronization problems across SSDs, reducing the efficiency
of the RAIS set.

Lessons learned Compared with individual SSD’s time-
series analysis results, we observe that in RAIS, the perfor-
mance can more severely fluctuate. As the hardware RAID
does not incur extra overhead due to parity calculation for
RAIS-6 over RAIS-6, however, we could observe lower
bandwidth on RAIS-6 than RAIS-5 because, two parity
updates can increase variability in bandwidth compared with
one parity update in RAIS-5.

4.4 GC coordination

The overall performance of RAIS is limited by the slowest
drive in the disk array. We suspect the performance fluc-

 0

 200

 400

 600

 800

 1000

 1200

 0 10 20 30 40 50 60

M
B

/s

Time (Sec)

1MB Sequential, 60% Write 40% Read

RAIS-0(A) RAIS-5(A) RAIS-6(A)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60

M
B

/s

Time (Sec)

1MB Sequential, 60% Write 40% Read

RAIS-0(B) RAIS-5(B) RAIS-6(B)

RAIS(B)(b)RAIS(A)(a)

Fig. 7 Pathological behavior of RAIS

123

Cluster Comput (2015) 18:963–977 973

Table 5 Descriptions of enterprise workloads

Workloads Size (KB) Read (%) Arrival (IOP/s)

TPC-C 7.06 20.50 388.32

Openmail 9.49 63.30 846.62

TPC-H 31.62 91.80 172.73

tuation we observed in the preceding sections is due to an
uncoordinated GC process across SSDs in their array. Thus,
we studied the effect of GC coordination between SSDs in
RAID using simulation with realistic workloads.

For this experiment, we have implemented in the simula-
tor, such that all GCs could be triggered at the same time,
minimizing the performance-negative effect by the slowest
disk in RAIS. We extended Microsoft Research SSD simu-
lator [1] to present how much performance can be improved
if the individual GCs are coordinated to be triggered all at
the same time. We configure a RAIS-0 array of eight 32 GB
SSDs. Each SSD simulates 64 flash chip elements, 4 planes
per package, 512 blocks per plane, and 64 4 KB pages. 15%
free blocks are reserved for GCmanagement, and the Greedy
GC algorithm is employed. For fair evaluation, prior to col-
lecting performance data from the simulator, we fill the entire
space on each SSD in the simulator with valid data by mark-
ing the flag that present the status of the page on every out-
of-band (OOB) in the simulator as 1 s.

We evaluate five enterprise-scale workloads, whose char-
acteristics are described in Table 5. We use write-dominant
I/O traces from an online transaction processing application
known TPC-C [48], made available by the Storage Perfor-
mance Council (running at a financial institution). We con-
sider e-mail server workloads referred to as Openmail [12].
We also examine TPC-H [51], which is a disk I/O trace
collected from an online analytical processing application
examining large volumes of data to execute complex data-
base queries.

Figure 8 presents the improvement by coordinatedGCs on
SSDs, compared to the uncoordinated GCs. As clearly seen
from the result, we could alleviate the performance concern
in RAIS, by coordinating individual GC operations. We see
that the performance improvement by the average response
time could be achieved by about 10% but also, the variability
of performance of the SSDs, could be minimized. We further
studied for a variety of experimental scenarios, and those
results can be referred in [25].

Lessons learned The overall performance of RAIS can be
bound by the slowest drive. As we identified earlier, when
RAID is built using SSDs, uncoordinated GCs of the indi-
vidual SSDs can hinder theRAIS performance improvement.
Thus, it is important to coordinate those GC operations on
the SSDs to make full use of the RAIS advantages.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

TPC-C Openmail TPC-H
 0

 0.2

 0.4

 0.6

N
or

m
al

iz
ed

 a
ve

ra
ge

 re
sp

on
se

 ti
m

e

S
ta

nd
ar

d
D

ev
ia

tio
n

Uncoordinated GC
Coordinated GC

Uncor-GC(stddev)
Cor-GC(stddev)

Fig. 8 Normalized average response times (left y-axis) and normal-
ized standard deviation (right y-axis) for uncoordinated GCs and coor-
dinated GCs configured RAID arrays under various enterprise-scale
workloads

4.5 RAIS performance-cost efficiency analysis

SSDs, unlike HDDs can expose more flexible design spaces
to manufacturers. As described in Table 1, an SSD can be
designed in different ways—from its internal design (e.g.
internal memory size, firmware, and Flash chips) to external
interface (SATA, PCI, etc.) [1], which is one of the reasons
that SSDs show differences in market prices.

For fair comparisons, performance (i.e. MB/s, IOP/s) and
capacity (GB) are not sufficient metrics. We need additional
efficiency metrics including performance and capacity per
dollar. Performance should be measured as IOPs per second
per dollar or bytes per second per dollar. Systems can also be
compared based on total cost, total formatted capacity, and
performance. Also, the primary metric for comparing differ-
ent systems should be dependent on applications. In trans-
action processing applications, more requests are small and
random. The right metric for this type of applications should
be IOPs per second per dollar. On the other hand, media
servers process sequential I/O requests to provide stream-
ing services where bytes per second per dollar might be the
correct metric.

We conduct experiments to answer the question, “can
RAIS built on COTS SATA SSDs be competitive against
a large, fast, PCIe SSD, such as the Fusion-io device?”
To answer this question, we experiment by configuring 6
SSD(A) and 6 SSD(B) devices in RAIS-0(A) and RAIS-
0(B) configurations, respectively. Then we analyze their per-
formance and storage efficiency against a single Fusion-io
device (denoted as SSD(C)). Unlike SSD(C), RAIS-0(A)
and (B) configurations require an additional RAID con-
troller to configure the array. We also include the cost of
this extra RAID controller in our calculations and met-

123

974 Cluster Comput (2015) 18:963–977

rics. The details of the test configurations are described in
Table 7

Figure 9a, b compares the efficiency of performance and
storage capacity for our test configurations. Performance val-
ues that we consider are shown in Table 6. Since writes
can be slower than reads for SSDs, we varied the amount
of reads in the workload. In Fig. 9a, IOP/s per dollar are
used as a metric to compare the performance efficiency
for workloads where small random requests are dominant.
On write-dominant access patterns (e.g. 0–20% reads), we
observe that SSD(C) outperforms RAIS-0(A) by 300% and
RAIS-0(B) by 30%. However, we see that the performance
efficiency of SSD(C) decreases while that of RAIS-0(A)
increases as the mix of reads in the workload increases.
Interestingly, we see that RAIS-0(A) and SSD(C) perform
similarly around 60% reads and RAIS-0(A) is more eco-
nomically efficient than SSD(C). Moreover, SSD(C) is less
efficient than RAIS-0(B) as reads in workload exceed 40%.
On read-dominant access patterns, RAIS-0(A) has twice the
efficiency of SSD(C).

Figure 9b presents our comparisons on throughput effi-
ciency of our storage configurations for large sequential
access patterns. We use MB per second per dollar as a met-
ric for estimating throughput efficiency. Unlike our previ-
ous observation, we see that the throughput efficiency does
not change regardless of percentage of reads in the work-
load. Surprisingly, SSD(C) showsmuch lower efficiency than
bothRAIS configurations.We also observe that the efficiency
of RAIS-0(A) increases by 10–20% as reads become more
dominant in the workload. Overall, we observe that RAIS
configurations are more efficient than SSD(C) for workloads
with large sequential I/O access patterns.

In Fig. 9c, we compare the storage capacity efficiency
based on current market prices shown in Table 1. We see
that RAIS-0(A) is the most efficient storage configuration,
irrespective of I/O access patterns.

Table 6 Average performance values used in Fig. 9a, b

Read (%) in workload

0 20 40 60 80 100

IOPs

RAIS-0(A) 9,472 13,827 12,614 11,146 17,844 28,416

RAIS-0(B) 40,960 34,059 29,787 25,918 31,656 32,256

SSD(C) 140,544 111,050 65,509 58,571 56,499 51,456

MB/s

RAIS-0(A) 792 1,085 1,099 1,104 1,231 1,259

RAIS-0(B) 1,165 1,445 1,412 1,449 1,518 1,557

SSD(C) 983 998 1,040 1,256 1,445 1,506

The price of the additional RAID controller is $579

Table 7 Test configurations

Type RAIS RAIS Cap. Device RAID
Scheme (GB) (#) Ctrl (#)

RAIS-0(A) (Striping) 768 6 1

RAIS-0(B) (Striping) 384 6 1

SSD(C) – 640 1 0

The price of the additional RAID controller is $579

Lessons learned RAIS arrays built using multi-level cell
(MLC) SSDs can be cost-effective solutions and perform
reasonably well compared to fast, PCIe-based SSDs.

5 Related work

There are several empirical studies that test SSDperformance
and power consumption with respect to different access pat-
terns [5,46]. However, these studies are limited by the analy-
sis of single devices, and did not extend to RAID config-

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

0 20 40 60 80 100

N
or

m
al

iz
ed

 E
ffi

ci
en

cy

Read (%)

RAIS-0(A)
RAIS-0(B)

SSD(C)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

0 20 40 60 80 100

N
or

m
al

iz
ed

 E
ffi

ci
en

cy

Read (%)

RAIS-0(A)
RAIS-0(B)

SSD(C)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

N
or

m
al

iz
ed

 E
ffi

ci
en

cy

RAIS-0(A)
RAIS-0(B)

SSD(C)

(a) IOP/s per dollar (b) MB/s per dollar (c) GB per dollar

Fig. 9 Storage efficiency comparison in terms of performance (in
IOP/s per $ and MB/s per $) and storage capacity (in GB per $). SSD
prices are presented in Table 1. In addition, we also included the RAID

controller card price in RAIS configurations for a fair comparison. All
values in the graphs were normalized with respect to RAIS-0(B)

123

Cluster Comput (2015) 18:963–977 975

urations. There is a recent work from Microsoft [18] that
addresses the reliability concern in RAIS that every SSD
could wear out simultaneously when configured in RAID-4
or 5. They proposed a newRAIDvariant, called “Diff-RAID”
that maintains differential ages among devices, reducing the
probability of correlated failures. However, their work is dif-
ferent from ourwork in that their work is not only based on an
analytical modeling and simulation approach, but also con-
cerned about reliability issues in an SSD array. We identified
a lack of research on the empirical studies with the arrays of
SSDs.

Several recent studies have performed on the design of
the arrays of SSDs [15,25–27], and their performance opti-
mization for various workloads. Kim et. al. [26] explored
the way of improving the performance when SSDs are con-
figured in RAID using a technique to coordinate individual
SSD’s GC operations. Jian et. al. [15] proposed an optimized
RAM buffer management on individual SSDs to improve
the overall performance of their RAID configuration. Lee
et. al. [27] enhanced the performance of RAID of SSDs by
enhancing the buffer management algorithm on the RAID
controller. All of these efforts have focused on improving
the RAID performance of SSDs, however little has been
done to thoroughly evaluate the performance of SSD RAIDs
for the workloads with various I/O access patterns. There
are several key different contributions compared to prior
works.

First, we comprehensively characterized the performance
of individual SSDs and their RAID configuration. Even if
single SSD performance with respect to I/O access patterns
have been already revealed, there are little performance study
on SSD RAID. Our study will help understand better the
results of performance of the RAID of SSDs, specifically
about how they will scale, or to identify the performance
bottleneck. Second, we address the challenges on building
the RAID of SSDs, and open the opportunities to communi-
ties, to bring the ideas to solve the issues inherent when SSDs
are configured in RAIDs. Finally, we have a cost-efficiency
analysis with the sets of RAID of SSDs and the expensive yet
powerful SSDs (PCIe Fusion-io SSD). Narayanan et. al., [36]
explored the cost-benefit trade-offs of various SSD and HDD
configurations and concluded that SSDs cannot replace the
existing HDDs because of current prices of SSDs. On the
other hand, our work is more focused on conducting a cost
efficiency analysis of COTS SSDs-based RAIS configura-
tions against COTS PCIe-based SSDs. Our study reveals an
idea of what kinds of products will be cost-effective to cus-
tomers. All of these studies have been motivated to exploring
the effectiveness of SSDs when they replace HDDs in our
large-scale storage systems only populated with SSDs. From
this study, we learned that variable performance from SSDs
is a serious problem to building large-scale storage sytsems
with SSDs.

6 Concluding remarks

In this paper, we conduct a comprehensive empirical study
on SSDs and RAIS configurations in terms of performance
and cost efficiency. We also study performance anomalies in
SSDs andRAISs, which can be caused by local GCprocesses
of individual SSDs. From I/O throughput analyses in time
series, we identify shortcomings that future RAIS sets should
overcome: RAIS can not provide sustained bandwidth due
to independent and local GC processes of individual SSDs.
Such local processes can causeGCsynchronization problems
in RAIS configurations, degrading the overall I/O through-
put. We also investigated the chance of performance gains
by coordinating GC operations of SSDs in their array sets.
Moreover, we perform a cost efficiency analysis with vari-
ous SATA RAIS configurations against a fast, yet expensive
PCIe SSD. We used the mixes of four different major I/O
access patterns (i.e. large sequential reads and writes, and
small random reads and writes) in our measurements. We
observe that, under the given market prices, a RAIS-0 con-
figuration using MLC based SSDs is the most cost-effective
option for workloads that are dominated by small random
reads or large sequential reads.

Our work is still in progress. Our results are based on
micro-benchmark tests and we performed performance tests
on devices of interest for representative I/O access patterns.
However, a more realistic approach will be to conduct file
system level performance tests and cost efficiency analyses
with higher-level benchmarks and applications. Our future
plan include the effect of secure erase operations on the per-
formance of the SSD arrays.

Acknowledgments I would like to thank Galen Shipman, Sarp Oral,
DavidDillow, and JasonHill for their technical supports and comments.
Also, I am grateful to the anonymous reviewers for their detailed com-
ments which helped us improve the quality of this paper. This research
is sponsored by the Office of Advanced Scientific Computing Research,
U.S. Department of Energy and used resources of the Oak Ridge Lead-
ership Computing Facility, located in the National Center for Computa-
tional Sciences at Oak Ridge National Laboratory, which is supported
by the Office of Science of the Department of Energy under Contract
DE-AC05-00OR22725. Most of this work was done while Youngjae
Kim was with Oak Ridge National Laboratory.

References

1. Agrawal, N., Prabhakaran, V., Wobber, T., Davis, J., Manasse, M.,
Panigrahy, R.: Design tradeoffs for SSD performance. In: Proceed-
ings of theUSENIXAnnual Technical Conference,USENIXAsso-
ciation, Berkeley, CA, pp. 57–70, June (2008)

2. Atwood, G., Fazio, A., Mills, D., Reaves, B.: Intel StrataFlashTM

Memory Technology Overview. Intel Technol. J. 1–8 (1997)
3. Bandic, Z.Z., Litvinov, D., Rooks, M.: Nanostructured materials in

information storage. MRS Bull., 33(9), 831–837 (2008)
4. Chang, Y.-H., Hsieh, J.-W., Kuo, T.-W.: Endurance enhancement

of flash-memory storage systems: an efficient static wear leveling

123

976 Cluster Comput (2015) 18:963–977

design. In: Proceedings of the 44th Annual Conference on Design
Automation, pp. 212–217 (2007). ACM, New York

5. Chen, F., Koufaty, D.A., Zhang, X.: Understanding intrinsic char-
acteristics and system implications of flash memory based solid
state drives. In: Proceedings of the Eleventh International Joint
Conference on Measurement and Modeling of Computer Systems,
(SIGMETRICS ’09) pp. 181–192 (2009). ACM, New York

6. Choudhuri, S., Givargis, T.: Performance improvement of block
based NAND flash translation layer. In: Proceedings of the
Fifth IEEE/ACM International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), pp. 257–262
(2007)

7. Chung, T., Park, D., Park, S., Lee, D., Lee, S., Song, H.: System
software for flash memory: a survey. In: Proceedings of the Inter-
national Conference on Embedded and Ubiquitous Computing, pp.
394–404, August (2006)

8. Fusion-io 640 GB ioDrive Duo. http://www.fusionio.com/
products/iodriveduo/. Accessed 2011

9. Gal, E., Toledo, S.: Algorithms and data structures for flash mem-
ories. ACM Comput. Surv. 37(2), 138–163 (2005)

10. Gupta, A., Kim, Y., Urgaonkar, B.: DFTL: a flash translation layer
employing demand-based selective caching of page-level address
mappings. In: Proceedings of the International Conference on
Architectural Support for Programming Languages and Operating
System (ASPLOS), New York, NY, pp. 229–240, March (2009).
ACM

11. Gurumurthi, S., Sivasubramaniam, A., Natarajan, V.: Disk drive
roadmap from the thermal perspective: a case for dynamic thermal
management. In: Proceedings of the International Symposium on
Computer Architecture (ISCA), Washington, DC, pp. 38–49, June
(2005). IEEE Computer Society

12. HP-Labs. The Openmail Trace. http://tesla.hpl.hp.com/
opensource/openmail/. Accessed 2006

13. Intel. IntelXeonProcessorX5570 (8MCache, 2.93GHz, 6.40GT/s
Intel QPI). http://ark.intel.com/Product.aspx?id=37111. Accessed
2009

14. Intel. Intel, X25-E Extreme 64GB SATA Solid-State Drive
SLC. http://www.intel.com/design/flash/nand/extreme/index.htm.
Accessed 2009

15. Jian, H., Hong, J., Lei, T., Lei, X.: GC-ARM: garbage collection-
aware RAM management for flash based solid state drives. In:
Proceedings of the Networking, Architecture and Storage NAS,
pp. 134–143 (2012)

16. Jo, H., Kang, J., Park, S., Kim, J., Lee, J.: FAB: flash-aware buffer
management policy for portable media players. IEEE Trans. Con-
sum. Electron. 52(2), 485–493 (2006)

17. Jung, D., Chae, Y., Jo, H., Kim, J., Lee, J.: A group-based wear-
leveling algorithm for large-capacity flash memory storage sys-
tems. In: Proceedings of the International Conference on Compil-
ers, Architecture, and Synthesis for Embedded Systems (CASES),
New York, NY, pp. 160–164, September (2007). ACM

18. Kadav, A., Balakrishnan, M., Prabhakaran, V., Malkhi, D.: Differ-
ential RAID: rethinking RAID for SSD reliability. In: Proceedings
of the First Workshop on Hot Topics in Storage and File Systems
(HotStorage) (2009)

19. Kang, J., Jo, H., Kim, J., Lee, J.: A superblock-based flash transla-
tion layer for NAND flash memory. In: Proceedings of the Interna-
tional Conference on Embedded Software (EMSOFT), New York,
NY, pp. 161–170, October (2006). ACM

20. Kawaguchi, A., Nishioka, S., Motoda, H.: A flash-memory based
file system. In: Proceedings of the Winter 1995 USENIX Techni-
cal Conference, USENIX Association, Berkeley, CA, pp. 155–164
(1995)

21. Kim, H., Ahn, S.: BPLRU: a buffer management scheme for
improving random writes in flash storage. In: Proceedings of
the USENIX Conference on File and Storage Technologies

(FAST), USENIX Association, Berkeley, CA, pp. 1–14, Feburary
(2008)

22. Kim, J., Kim, J.M., Noh, S.H., Min, S., Cho, Y.: A space-efficient
flash translation layer for compactflash systems. IEEE Trans. Con-
sum. Electron. 48(2), 366–375 (2002)

23. Kim,Y.,Gupta,A.,Urgaonkar, B.:A temporal locality-aware page-
mapped flash translation layer. J. Comput. Sci. Technol. 28(6),
1025–1044 (2013)

24. Kim, Y., Gupta, A., Urgaonkar, B., Berman, P., Sivasubramaniam,
A.: HybridStore: a cost-efficient, high-performance storage sys-
tem combining SSDs and HDDs. In: Proceedings of the IEEE
International SymposiumonModeling,Analysis and Simulation of
Computer and Telecommunication Systems, MASCOTS’11, July
(2011)

25. Kim, Y., Lee, J., Oral, S., Dillow, D., Wang, F., Shipman, G.: Coor-
dinating garbage collection for arrays of solid-state drives. IEEE
Trans. Comput. (TC) 63(4), 888–901 (2014)

26. Kim, Y., Oral, S., Shipman, G., Lee, J., Dillow, D., Wang, F.: Har-
monia: a globally coordinated garbage collector for arrays of solid-
state drives. In: Proceedings of theMass Storage Systems andTech-
nologies (MSST), pp. 1–12 (2011). IEEE

27. Lee, J., Kim,Y., Kim, J., Shipman, G.: Synchronous I/O scheduling
of independent write caches for an array of SSDs. IEEE Comput.
Arch. Lett. (CAL) 13(1) (2015)

28. Lee, J., Kim, Y., Shipman, G., Oral, S., Wang, F., Kim, J.: A semi-
preemptive garbage collector for solid state drives. In: Proceedings
of the IEEE International Symposium on Performance Analysis of
Systems and Software, ISPASS ’11, Washington, DC, pp. 12–21
(2011). IEEE Computer Society

29. Lee, S., Ha, K., Zhang, K., Kim, J., Kim, J.: FlexFS: a flexible flash
file system for MLC NAND flash memory. In: Proceedings of the
USENIX Annual Technical Conference (2009)

30. Lee, S., Moon, B.: Design of flash-based DBMS: an in-page log-
ging approach. In: Proceedings of the International Conference on
Management of Data (SIGMOD), New York, pp. 55–66, August
(2007). ACM

31. Lee, S., Park, D., Chung, T., Lee, D., Park, S., Song, H.: A Log
Buffer based Flash Translation Layer Using Fully Associative Sec-
tor Translation. IEEE Transactions on Embedded Computing Sys-
tems 6(3), 18 (2007)

32. Lee, S., Shin, D., Kim, Y., Kim, J.: LAST: locality-aware sec-
tor translation for NAND flash memory-based storage systems.
In: Proceedings of the International Workshop on Storage and I/O
Virtualization, Performance, Energy, Evaluation and Dependabil-
ity (SPEED2008), New York, pp. 36–42, Feburary (2008). ACM

33. Lofgren, K.M.J., Norman, R.D., Thelin, G.B., Gupta, A.: Wear
Leveling Techniques for Flash EEPROM Systems, US Patent No.
US6230233 B1 (2001)

34. LSI. MegaRAID SAS 9260–8i RAID Card. http://www.lsi.com/
channel/products/megaraid/sassata/9260-8i/index.html. Accessed
2009

35. Mallary, M., Torabi, A., Benakli, M.: One terabit per square inch
perpendicular recording conceptual design. IEEE Trans. Magn.
38(4), 1719–1724 (2002)

36. Narayanan, D., Thereska, E., Donnelly, A., Elnikety, S., Rowstron,
A.: Migrating enterprise storage to SSDs: analysis of tradeoffs.
In: Proceedings of the ACM European Conference on Computer
Systems (Eurosys), pp. 145–158, March (2009)

37. Niijima, H.: Design of a solid-state file using flash EEPROM. IBM
J. Res. Devel. 39(5), 531–545 (1995)

38. Oral, S., Wang, F., Dillow, D., Shipman, G., Miller, R.: Efficient
object storage journaling in a distributed parallel file system. In:
Proceedings of the Annual Conference on File and Storage Tech-
nology (FAST’10), February (2010)

39. Park, S., Jung, D., Kang, J., Kim, J., Lee, J.: CFLRU: a replacement
algorithm for flash memory. In: Proceedings of the International

123

http://www.fusionio.com/products/iodriveduo/
http://www.fusionio.com/products/iodriveduo/
http://tesla.hpl.hp.com/opensource/openmail/
http://tesla.hpl.hp.com/opensource/openmail/
http://ark.intel.com/Product.aspx?id=37111
http://www.intel.com/design/flash/nand/extreme/index.htm
http://www.lsi.com/channel/products/megaraid/sassata/9260-8i/index.html
http://www.lsi.com/channel/products/megaraid/sassata/9260-8i/index.html

Cluster Comput (2015) 18:963–977 977

Conference on Compilers, Architecture and Synthesis for Embed-
ded Systems (CASES), New York, pp. 234–241 (2006). ACM

40. Park, S., Park, J., Jeong, J., Kim, J., Kim, S.: A mixed flash transla-
tion layer structure for SLC-MLC combined flash memory system.
In: Proceedings of the 1th International Workshop on Storage and
I/O Virtualization, Performance, Energy, Evaluation and Depend-
ability (SPEED2008), (2008)

41. Park, S., Shen,K.: A performance evaluation of scientific I/Owork-
loads on flash-based SSDs. In: Proceedings of the 2009 IEEE Inter-
national Conference on Cluster Computing, New Orleans, August
31–September 4, 2009, pp. 1–5 (2009). IEEE

42. Patterson, D., Gibson, G., Katz, R.: Case for redundant arrays of
inexpensive disks (RAID). In: Proceedings ofACMSIGMODCon-
ference on the Management of Data, pp. 109–116, June (1988)

43. Pratt, S., Heger, D.A.: Workload dependent performance evalua-
tion of the linux 2.6 I/O schedulers. In: Proceedings of the Linux
Symposium, July (2004)

44. Rajimwale, A., Prabhakaran, V., Davis, J.D.: Blockmanagement in
solid-state devices. In: Proceedings of the USENIX Annual Tech-
nical Conference (2009)

45. Seagate. Seagate Cheetah, 15K.7 Disc Drive. http://www.seagate.
com/docs/pdf/datasheet/disc/ds_15k_7. Accessed 2009

46. Seo, E., Park, S., Urgaonkar, B.: An empirical analysis of the
energy efficiency of flash-based SSDs. In: Proceedings of the First
Workshop on Power-Aware Computing and Systems (HotPower),
December (2008)

47. Super Talent. Super Talent 128GB UltraDrive ME SATA-
II 25 MLC. http://www.supertalent.com/products/ssd_detail.php?
type=UltraDrive. Accessed 2009

48. Transaction-Procesing-Perforamnce-Council. TPC-C, an OLTP
Benchmark. http://www.tpc.org/tpcc/

49. Xie, B., Chase, J., Dillow, D., Drokin, O., Klasky, S., Oral, S.,
Podhorszki, N.: Characterizing Output Bottlenecks in a Supercom-
puter. In: Proceedings of the International Conference onHigh Per-
formance Computing, Networking, Storage and Analysis, SC ’12,
Los Alamitos, CA, pp. 8:1–8:11 (2012). IEEE Computer Society
Press

50. Youssef, R.: RAID for Mobile Computers. Master’s Thesis.
Carnegie Mellon University Information Networking Institute,
August (1995)

51. Zhang, J., Sivasubramaniam, A., Franke, H., Gautam, N., Zhang,
Y., Nagar, S.: Synthesizing representative I/O workloads for TPC-
H. In: Proceedings of the International Symposium on High Per-
formance Computer Architecture (HPCA), Washington, DC, pp.
142–151 (2004). IEEE Computer Society

Youngjae Kim received the
BS degree in computer science
from Sogang University, Korea
in 2001, the MS degree from
Korea Advanced Institute of Sci-
ence and Technology in 2003,
and the PhD degree in com-
puter science and engineering
from Pennsylvania State Univer-
sity in 2009. He worked at the
Oak Ridge National Laboratory
as a research scientist from 2009
to 2015. His research interests
include operating systems, paral-
lel I/O and file systems, storage

systems, and emerging storage technologies. He is currently an assistant
professor in the department of information and computer engineering
at Ajou University, Suwon, South Korea.

123

http://www.seagate.com/docs/pdf/datasheet/disc/ds_15k_7
http://www.seagate.com/docs/pdf/datasheet/disc/ds_15k_7
http://www.supertalent.com/products/ssd_detail.php?type=UltraDrive
http://www.supertalent.com/products/ssd_detail.php?type=UltraDrive
http://www.tpc.org/tpcc/

	An empirical study of redundant array of independent solid-state drives (RAIS)
	Abstract
	1 Introduction
	2 Background
	2.1 Flash memory technology
	2.2 Characteristics of flash memory operations
	2.2.1 In-place versus out-of-place updates
	2.2.2 Garbage collection

	2.3 NAND Flash based SSDs
	2.4 Flash translation layer

	3 Experimental methodology
	3.1 Redundant array of independent SSDs
	3.2 Experimental setup

	4 Performance analysis of RAIS
	4.1 Individual SSD performance analysis
	4.1.1 Sequential I/O performance
	4.1.2 Random I/O performance

	4.2 RAIS performance analysis
	4.2.1 Sequential I/O performance
	4.2.2 Random I/O performance

	4.3 Pathological behavior
	4.3.1 Performance anomaly on individual SSDs
	4.3.2 Pathological behavior with RAIS

	4.4 GC coordination
	4.5 RAIS performance-cost efficiency analysis

	5 Related work
	6 Concluding remarks
	Acknowledgments
	References

