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Abstract Big data is one of the major technology usages
for business operations in today’s competitive market. It pro-
vides organizations a powerful tool to analyze large unstruc-
tured data to make useful decisions. Result quality, time,
and price associated with big data analytics are very impor-
tant aspects for its success. Selection of appropriate cloud
infrastructure at coarse and fine grained level will ensure bet-
ter results. In this paper, a global architecture is proposed for
QoS based scheduling for big data application to distributed
cloud datacenter at two levels which are coarse grained and
fine grained. At coarse grain level, appropriate local datacen-
ter is selected based on network distance between user and
datacenter, network throughput and total available resources
using adaptive K nearest neighbor algorithm. At fine grained
level, probability triplet (C, I, M) is predicted using naïve
Bayes algorithm which provides probability of new applica-
tion to fall in compute intensive (C), input/output intensive
(I) and memory intensive (M) categories. Each datacenter is
transformed into a pool of virtual clusters capable of execut-
ing specific category of jobs with specific (C, I, M) require-
ments using self organized maps. Novelty of study is to rep-
resent whole datacenter resources in a predefined topological
ordering and executing new incoming jobs in their respec-
tive predefined virtual clusters based on their respective QoS
requirements. Proposed architecture is tested on three differ-
ent Amazon EMR datacenters for resource utilization, wait-
ing time, availability, response time and estimated time to
complete the job. Results indicated better QoS achievement
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and 33.15% cost gain of the proposed architecture over tra-
ditional Amazon methods.
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1 Introduction

Cloud computing is most discussed and promising topic of
information technology field in recent times. It is listed in
Gartner top ten technologies list for last three consecutive
years [1]. Organizations that require dynamic information
technology infrastructure are moving to cloud due to its scal-
ability and effective pricing models. Cloud provides a wide
variety of services to its end users such as Infrastructure as
a Service (IaaS), Platform as a Service (PaaS), Software as
a Service (SaaS) and now a days it is called Anything as a
Service (XaaS). Despite achieving the recognition and pop-
ularity, cloud computing faces some of the key challenges
in its complete acceptance by information technology and
communication communities [2]. Providing agreed Quality
of Service (QoS) requirements to end user is one of the major
challenges to cloud service providers. Cloud services pro-
vided to end user executes on third party cloud information
technology infrastructure composed of distributed cloud dat-
acenters which are located at different geographical loca-
tions. Cloud user uses these services using pay as use pricing
model through internet. So, if a cloud user is not getting
desired QoS, his/her work will be delayed which increases
cloud usage cost and affects cloud user faith in future adop-
tion for cloud services.

With the increase in the amount of data and incapability
of traditional databases to process unstructured data, big-
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data analytics have gained new heights in this era. Every
organization wants to process and extract useful informa-
tion from a vast set of accumulated raw data of multiple
formats [3]. Cloud computing can offers an effective envi-
ronment for big data analytics applications. But, timely and
correct information extraction in big-data analytics is very
important. So, cloud computing should provide and main-
tain certainQoS to guarantee user’s desired result in time. For
the same amount of data, different cloud users will observe
different QoS from same cloud service provider due to differ-
ence in their network infrastructure capabilities. QoS para-
meters for big data applications are not only dependent on
the cloud service provider but on cloud user resources also.
For instance, big data requires large data transfer and if any
cloud service provider delivers bandwidth of 5 GB/s but the
cloud user has network capability of 1 GB/s then the cloud
user will not achieve QoS as advertised by cloud service
provider. Cloud consists of large datacenters located at differ-
ent geographical locations around the world. These distrib-
uted datacenters can be used by same cloud service provider
for providing same cloud services to multiple users. So, QoS
based scheduling algorithms for single datacenter are not
efficient for the global perspective of big data and cloud
computing. Single datacenter based algorithms do not con-
sider location and network traffic latencies of different geo-
graphical distributed datacenters. Scheduling big data appli-
cations on multiple datacenters based on QoS parameters is
very important aspect and requires special attention. Many
researchers provided scheduling algorithms based on cloud
service provider’s QoS parameters and for local datacenter
level. However, allocating and managing new incoming job
to specific datacenter at geographical level and at specific
virtual cluster by a single architecture can solve some of
critical issues. So, the aim of study presented in this paper
is to schedule big data application to geographical distrib-
uted cloud datacenters based on QoS parameters at both fine
and coarse grained level which are datacenters and clusters
respectively.

To achieve the suggested aim, an architecture is pro-
posed to schedule big data application requests to appro-
priate datacenter at a coarse grained level and to efficient
virtual cluster at a fine grained level using the global sched-
uler and local scheduler respectively. Adaptive K-nearest
neighbor (AKNN) algorithm in global scheduler is used to
find appropriate local datacenter depending on user loca-
tion and requirements. Big data request are classified into
general purpose, computational intensive, memory intensive
and input/output intensive based on their QoS requirements
using naïve Bayes algorithm. Self Organizing Maps (SOM)
technique in local datacenter is used to create virtual clus-
ters for specific type of big data request. SOM creates a
topological ordering of virtual clusters so that virtual clus-
ters near in topological ordering are more related to each

other. Each incoming big data request is allocated to its spe-
cific virtual cluster for its better performance and efficient
resource scheduling. Proposed architecture is implemented
on Amazon Elastic Map Reduce (EMR) and compared
to traditional Amazon techniques. It provides better QoS
requirements and 33.15% cost gain over traditional Amazon
methods.

Organization of rest of the paper is as follows. Section 2
investigates work related to scheduling of cloud computing
resources based on QoS parameters. Section 3 proposes an
architecture for scheduling of the big data request to cloud
datacenters based on QoS parameters. Section 4 provides
experimental setup, results and discussion. Lastly, Sect. 5
concludes the paper and provides future work.

2 Related work

This section investigates work done in the field of QoS based
cloud resource scheduling for different cloud applications
such as cloud ranking, cloud multimedia streaming, mobile
cloud processing and cloud gaming.

In 2013, Zhang et al. [4] proposed a framework for rank-
ing of cloud service providers on the basis of QoS provided
by them. They considered that same cloud service provider
will provide different QoS to different cloud users depend-
ing on particular cloud user’s resources capabilities. Two
ranking algorithms which are CloudRank1 and CloudRank2
are described which uses QoS parameters to rank different
cloud service providers. In 2013, Rao et al. [5] developed a
two layer QoS provisioning framework known as DynaQoS
based on Self-Tuning Fuzzy Control (STFC). They classified
cloud service providers in basic and premium class based
on their QoS parameters. They implemented it on the Xen
based cloud testbed. In 2013, Wang et al. [6] proposed an
adaptive scheduling algorithm for scheduling jobs over a
hybrid cloud by maintaining desired QoS. They argued that
to maintain QoS in a hybrid cloud, private cloud resources
should be maximally utilized which will also reduce cost
for public cloud usage. They cut the number of tasks exe-
cuting on public cloud by shifting them to private cloud
according to required QoS parameters. They showed that
their algorithm achieved better private cloud resource uti-
lization and had a higher QoS satisfaction rate as com-
pared with FIFO and FAIR scheduler inbuilt in CloudSim
2.1.1.

In 2013, Zhu et al. [7] provided a strategy to increase
QoS of video streaming over the heterogeneous cloud sys-
tems and termed it as cloud assisted Scalable Video Cod-
ing (SVC) streaming. They proposed to adapt cloud net-
work resources at network level to maintain standard qual-
ity of video streaming. Similarly, in 2014, Hsu and Lo [8]
mapped QoS parameters of cloud network to Quality of
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Experience (QoE) parameters of users for multimedia appli-
cations. They provided a QoE function using eight differ-
ent QoE parameters. Every video streaming is relayed with
guaranteed bandwidth to every user. After the video, a QoE
score is calculated. If QoE score goes below a threshold
value, it is assumed that QoS parameters are not achieved by
cloud.

In 2013, Lin et al. [9] proposed two separate algorithms
for efficient data replication for data intensive applications. A
greedyhighQoSfirst replication algorithmprovides effective
data replication, but the cost of replication was very high.
Second algorithm which was based on minimum cost and
maximum flow produces an optimal solution in polynomial
time but require high computation power. They argued to
perform effective tradeoff between both the algorithms.

In 2013, Misra et al. [10] studied the issue of maintaining
QoS in mobile cloud environment due to mobility of mobile
user. They achieved the desired QoS for each mobile user by
shifting the bandwidth to required mobile user using a mod-
ified bid auction algorithm termed it as Auction-based QoS-
guaranteed Utility Maximization (AQUM). They showed
that by using their algorithm, mobile device achieved Nash
equilibrium.

In 2014, Chen et al. [11] discussed the importance of
QoS in the cloud gaming environment. They established a
measurement technique for evaluating different cloud gam-
ing systems provided by separate organizations based on
user expected QoS. They compared two cloud gaming sys-
temsOnLive and StreamMyGame by using themeasurement
technique and suggested that OnLive provides better QoS to
users.

In 2014, Kaur and Chana [12] proposed a framework for
multi-user aware execution of multi-tier web applications
hosted on the cloud. They studied the behavior of the web
application and predict the amount of resources required to
attain scalability as well as achieve desired QoS parameters.
QoS mapper is used to analyze web application as well as

resource utilization data. They implemented it on Amazon
EC2 for a cloud health application.

3 Proposed framework

Scheduling of cloud resources according to QoS parameters
is very important for big data applications. Figure 1 shows the
proposed framework for the scheduling of big data applica-
tions over geographically distributed cloud datacenters. Two
different schedulers are used for efficient scheduling of cloud
resources. Global scheduler is used at a coarse grain level and
local scheduler is used at a fine grained level. These sched-
ulers are responsible for selecting appropriate datacenter and
cluster for a big data application request. Further sub sections
describe both schedulers in detail.

3.1 Global scheduler

Multiple functional and quality attributes are associated with
any cloud datacenter and big data processing request from
any user. As the amount of data in big data applications
is very large, so the datacenter selection decision at coarse
grained level should consider parameters such as physical
distance, average resources required by application, and net-
work throughput (GB/s). Selection of very high datacenter
network throughput is not useful if it is not compatible with
user’s network. For big data applications, three parameters
are considered to select local datacenter. These three parame-
ters are physical distance, network throughput, and available
resources. Due to involvement of large amount of transferred
data, physical distance and network throughput are consid-
ered in the selection of local datacenter. Even if physical dis-
tance and network throughput are desirable, local datacenter
with no free resource will not provide desired QoS require-
ments. So, total required resources by user’s application and
total free resources in local datacenter are also compared.

Fig. 1 Proposed framework
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User’s request provides parameters to global scheduler
which uses AKNN algorithm to find suitable datacenter.
AKNN algorithm represents each datacenter as a point in
n-dimensional space where n is the number of attribute used
to find the nearest neighbor. Each new incoming big data
request is also represented as a point in KNN dimensional
space and its distance is calculated from all other points
using Euclidean distance. Physical distance and network
throughput provided by any datacenter are fixed but cur-
rent available resources are dynamic and vary rapidly. Sim-
ple KNN algorithm just compares static points in n dimen-
sional space, which will be not suited for proposed archi-
tecture. Load of datacenter is dynamic in nature so it can-
not be represented as a point in KNN dimensional space.
To make KNN adaptive with varying load of local data-
center, AKNN compares load of big data user request with
current load of selected datacenter at any kth level for each
cycle. If the current load of the datacenter is smaller than big
data user request, then that particular datacenter is allocated
to big data user otherwise new nearest neighbor is identi-
fied by increasing the value of k, as shown in Algorithm 1.
This will help in achieving QoS in big data applications at
global level. This algorithm is adaptive in the sense that it
compares current load of datacenter along with other func-
tionality and QoS parameters. Algorithm 1 below explains
AKNN.

U is a vector which stores two parameter values which are
physical distance and network throughput.

V is a vector containing two values for a datacenter
which are physical distance from requested user and network
throughput provided.

D is a scalar quantitywhich represents selected datacenter.
k is the sequence number of nearest neighbor to user

request in two dimensional space.
current_free is the amount of free resources in local data-

center at the moment of selection.
user_load is the amount of resources that big data request

will consume.

3.2 Local scheduler

After the selection of local datacenter by global scheduler,
big data application arrives at local scheduler. Every new
big data application has different architecture so it requires
different set of computational hardware. For example, com-
putational requirement of TeraSort and MRBench Hadoop
applications are different from each other. TeraSort requires
morememorywhereasMRBench requiresmore CPU cycles.
So, each new big data requests arrived in proposed architec-
ture are categories into four main categories which are gen-
eral purpose, computational intensive, input/output intensive
and memory intensive. Table 1 shows different cluster types
and their requirements.

Each local datacenter has clusters dedicated for each cat-
egory of big data request. Creating physical clusters are dif-
ficult and will reduce utilization of whole datacenter. In pro-
posed architecture, virtual clusters are proposed which are
created dynamically using a self-organizing maps algorithm.
Before submitting new big data request to virtual cluster, its
category will be identified. Naïve Bayes algorithm is used to
probabilistically categories new request to a specified cate-
gory.

3.2.1 Naïve Bayes algorithm

Category of big data application is not known to end user but
he/she is roughly aware of some important functionality and
QoS requirements of application. Users just have to mention
some important functionality andQoS parameters associated
with their application. These parameters can also be captured
form SLA signed between cloud service provider and end
user. Naïve Bayes algorithm used in proposed architecture is
responsible for predicting category of user’s big data appli-
cation. Naïve Bayes predicts the probabilities using Bayes
theorem which provides conditional probability formula
as

123



Cluster Comput (2015) 18:817–828 821

Table 1 Different cluster type requirements and applications

Cluster type CPU performance level Memory size level Storage size level Applications

General Purpose Normal Normal Normal Development environment

Code repository

Low traffic web application

Small databases

Compute Intensive High Normal Normal High performance application

Large traffic web applications

Large analytics

Batch processing

Video encoding

Memory Intensive Normal High Normal High performance database

Distributed memory cache

In-memory data analytics

Large genome assembly

Deployment of SAP

SharePoint

Storage Intensive Normal Normal High Very large transactional database

Data warehousing

Cluster file systems

Distributed file system web applications

Fig. 2 Selection of category using functionality and QoS parameters

P(Ci |Y ) = P(Y |Ci )P(Ci )

P(Y )

where, Ci is the ith output class andY is the attribute tuple.
Category of incoming request cannot be fixed to a certain

category. New incoming request may require combination of
both memory and CPU cycles. So, a probabilistic association
of incoming requests to categories is required in proposed
architecture. Naïve Bayes classifier finds the probability of
each user request to fall in any of four specified categories
of big data and creates a triplet (C, I, M) where C, I and M
shows the probability of incoming request to fall in computa-
tional intensive, input/output intensive or memory intensive
respectively. By default, the job is assumed to fall in general
purpose cluster of big data datacenter. Figure 2 shows func-

tionality and QoS parameter linking with categories and gen-
eration of (C, I,M) triplet using naïveBayes algorithm.Train-
ing data is collected from different configurations of Ama-
zon EMR [13], Rackspace [14] servers. Table 2 shows a set
of different attributes collected for Amazon and Rackspace
cloud service providers for training and testingof naïveBayes
algorithm.

The tenfold cross validation training and testing process
is done on data collected for predicting the accuracy of naïve
Bayes classification in proposed architecture. Weka 3.7 [15]
is used to test the use of naïve Bayes algorithm to find appro-
priate category of big data jobs. Table 3 shows summary
of naïve Bayes in weka 3.7. On training data, naïve Bayes
algorithm predicts 144 instances correctly out of 150 which
provides accuracy rate of 96%. It also provides low mean
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Table 2 Set of training data for
Naïve Bayes algorithm S. No. RAM (GB) vCPU System disk (GB) Bandwidth (MB/s) Cluster type

1 1 1 20 200 General purpose

2 7.5 4 40 400 Compute intensive

3 30.5 4 40 400 Memory intensive

4 30.5 4 400 750 Storage intensive

5 30.5 4 200 5000 Input/output intensive

Table 3 Summary of tenfold cross validation training of Naïve Bayes
in Weka 3.7

Stratified cross-validation
Summary

Correctly classified instances 144 96%

Incorrectly classified instances 6 4%

Kappa statistic 0.91

K&B relative info score 12832.1098

K&B information score 219.5694 bits 1.4637 bits/instance

Class complexity | Order 0 227.7424 bits 1.5182 bits/instance

Class complexity | Scheme 27.5169 bits 0.1834 bits/instance

Complexity improvement (Sf) 206.1376 bits 1.3742 bits/instance

Mean absolute error 0.0332

Root mean squared error 0.165

Relative absolute error 7.8947 %

Root relative squared error 33.8754 %

Total number of instances 150

absolute error rate and high kappa statistic, which shows the
reliability of using naïve Bayes algorithm in proposed archi-
tecture.

3.2.2 Modified self-organizing maps (SOM)

The Kohonen Self-Organizing Maps (SOM) [16] is a pro-
totype clustering technique based on neural network. SOM
creates different reference vectors (also known as centroids)
and assign data objects to a particular reference vector. It
visualizes high dimensional data by mapping it graphically
to lower dimensions and defining a pre-defined topological
ordering relationship between all reference vectors. Dimen-
sion reduction by SOM helps artificial systems as well as
users to visualize data effectively. SOM generates topolog-
ical ordering using a competitive learning algorithm over
unsupervised neural networks. During the training process,
SOM uses winning neuron strategy to update and create a
topological ordering between reference vectors. So, refer-
ence vectors that are close in topological ordering are more
related to each other than others.

SOM is explained using simple color topological order-
ing. Every color is composed of different combination of

Fig. 3 Color topology using SOM

three colors which are Red, Green and Black represented as
(R, G, B). Figure 3 shows color topology reference vectors of
different combination of red, green, and blue colors. Initially
all three values of (R, G, B) are set equal to zero and color
generated is black, left topmost corner of Figure 3. Value of
(R, G, B) is change to generate new colors. All boxes near
to blue box have more shade of blue than other boxes, sim-
ilar for green and red box also. Boxes in the middle have
some different values of (R, G, B). In this way, color boxes
that are closer to each other are more related to each other
according to (R, G, B) schema. User can select desired color
based on his/her requirement of (R, G, B) combination. SOM
topological ordering provides more efficient choices than a
static model. Using same concept, all machines available in
datacenter are arranged in topological order using SOM tech-
nology.

Creating physically distinguished and static clusters for
each category of big data request in any datacenter is inef-
ficient process because it is not suitable for mixed type of
load and it provides low resource utilization. If any request
has mixed requirement for computational as well as mem-
ory than allocating it to physically distinguish static cluster
will not achieve desiredQoS requirements. SOMprovides an
efficient method to arrange all available hardware resources
in datacenter in a topological ordering. Proposed architec-
ture uses SOM for creating virtual clusters of four types
which are General Purpose, Compute Intensive, Input/output
Intensive and Memory Intensive in any local datacenter. Vir-
tual clusters are arranged in a topological ordering so that
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Fig. 4 Two dimensional
reference vector in SOM

any type of load can be allocated to its specific virtual clus-
ter. It makes system more dynamic in nature and adaptable
to any type of request that arrives at system. Algorithm 2
explains the process of creating virtual clusters. Figure 4
shows topological ordering of any datacenter based on types
of jobs classified by a triplet (C, I, M) which is predicted by
naïveBayes algorithm at local scheduler. Left topmost corner
shows triplet as (0, 0, 0)which represents that naïveBayes has
predicted a zero probability of new job to fall in any of com-
pute intensive, input/output intensive, or memory intensive
category so it is a general purpose job. Right topmost corner
shows triplet as (1, 0, 0) which represents that naïve Bayes
predicted with certain probability that it is compute intensive
job. Similarly, topological ordering is created for input/out
intensive andmemory intensive jobs at left lowermost corner
and right lowermost corner respectively. Each created vir-
tual cluster specification and QoS parameters will be stored
at local scheduler. Every incoming request is assigned to
a specific virtual cluster depending upon probability triplet
generated by naïve Bayes algorithm. If specific cluster is
over loaded, it can share resources from free virtual cluster
closest in the topological ordering as explained in Algorithm
3. Using this approach, big data application request waiting
time will be reduced, the datacenter will be fully utilized
and QoS parameters will be achieved. SOM algorithm can
be implemented for larger systems using MATLAB library
SOMToolbox [16] and different functions available inWeka
3.7 [15] classification tool. In this paper, Weka 3.7 is used to
form cluster for different cluster types. Figure 5 shows the
setting used to perform the clustering process.

category_list[] is a list of big data application categories
created on the based of functionality and QoS requirements.

server_list[][] is a list containing all server machines
installed in the datacenter with their specifications.

Fig. 5 Setting of Weka 3.7 for clustering of category type based on
SOM

z(t) is the current server machine under consideration at
time t.

m j (t) is the value of closest reference vector to z(t) at
time t.

y j (t) is the neighborhood effect between m j and y at time
t for creating topological ordering.
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resource utilization table ismaintained by the local sched-
uler about the current andpast resource utilizations of clusters
in the datacenter.

cluster_free is the cluster, which is near to the current
cluster in topological ordering and has some free space to
execute new job.

p [] is the sorted list of top three big data applications cat-
egories created based on conditional probabilities generated
by naïve Bayes algorithm.

4 Experimental execution analysis

The proposed framework is tested forHadoop v1.0.3 applica-
tions on Amazon Elastic Map Reduce (EMR) clusters. This
section explains the experimental setup, results, and discus-
sion.

4.1 Experimental setup

Figure 6 shows the experimental setup used to test the pro-
posed framework. Four types of clusters are created at

three different locations of Amazon Elastic Map Reduce
(EMR) datacenters. Amazon EMR [13] are Hadoop clus-
ters developed on Amazon EC2 [17] infrastructure for dif-
ferent map reduce tasks. Types of cluster developed are gen-
eral purpose, compute optimized, input/output optimized and
memory optimized. Input/output intensive cluster is created
by increasing bandwidth of general purpose cluster. A local
server is deployed in our university which is responsible for
scheduling proposed QoS algorithm and monitor different

QoS parameters of all datacenters. Four Hadoop bench-
mark which are TeraDFSIO (input/output intensive), Tera-
Sort (memory intensive), NNBench (General) andMRBench
(compute intensive) are used to evaluate the proposed frame-
work. All four benchmarks send request to local server,
which forward request to appropriate datacenter and clus-
ter according to proposed architecture. Virtual Private Net-
works (VPNs) are used to send requests of Hadoop bench-
marks from United States, Europe and India to local server
located in India. New batch of job is submitted from different
VPNs to local server after every 5min for total experiment
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Fig. 6 Experimental setup for
testing proposed framework

of 3h. Each batch of job submitted contains all types of jobs
according to a fixed percentage which is 30% general pur-
pose, 25% compute intensive, 25% memory intensive and
20% input/output intensive. All benchmark jobs are sched-
uled according to proposed architecture and normal Ama-
zon scheduling policies by local server. Normal Amazon
scheduling policy does not consider network bandwidth and
physical distance between requests and datacenters. It also
does not categorize incoming jobs so that they can allocate to
desired clusters. All incoming batch of jobs by Amazon are
scheduled to only US East datacenter’s general purpose clus-
ters. Proposed architecture technique and Amazon schedul-
ing are compared for different QoS parameters as shown in
Fig. 7.

4.2 Cost analysis

Cost of whole experiment is analyzed for both proposed and
Amazon scheduling policies. Table 4 shows the cost of usage
of per instance of all clusters for each datacenter. Proposed
architecture uses specific clusters for each request whereas
Amazon uses only general purpose cluster for all requests.

Table 5 lists the values of cost for the proposed and Ama-
zon approach. The cost is calculated for every 30min of inter-
val. Total cost is composed of actual usage cost and cost that
will be used for completing all waiting jobs in a particular
interval of time. The total cost for an interval of 30min is
calculated as follows:

Total cost (30min) = Usage cost +
n∑

i=0

TTC ∗ CPH

where, Total cost is the cost of a particular 30min inter-
val. Usage cost is actual usage cost calculated by Amazon
services for 30min interval. n is total number of job waiting
or running after 30min interval ends. Time to complete (TTC)

is the estimated time that a running job will take to complete.
Cost per hour (CPH) is the cost of a particular job running
on the cluster.

After the completion of experiment, total cost of proposed
architecture is $101.15 and traditional method is $151.33, as
shown in Table 5. Proposed method provides 33.15% cost
gain over traditional method in 3h of experiment as calcu-
lated below [18].

Cost gain = (Amazon − Proposed)

Amazon
∗ 100

⇒ (151.33 − 101.15)

151.33
∗ 100 = 33.15%

4.3 Discussion

Proposed architecture is simple yet effective to schedule big
data jobs to geographically distributed datacenters. It works
on simple method to first schedule job to nearest datacenter
because of large amounts of data has to be transferred. Sec-
ondly, it schedules jobs to specific virtual clusters accord-
ing to their type. Experimental performance evaluation of
proposed architecture is done using Amazon EMR against
different QoS values which are shown graphically in Fig. 7.
Figure 7a represents resource utilization of all datacenters
using both proposed and Amazon approach for scheduling.
Proposed model has slightly higher resource utilization rate.
In Amazon scheduling policy, input/output jobs can be exe-
cuted on general purpose cluster, which reduces resource uti-
lization because a job is waiting for input or output. Proposed
architecture provide resources to input/output requests from
input/output virtual cluster so that other jobs do not suffer
which in turn increases overall resource utilization of data-
center. QoS parameters of proposed architecture are slightly
better than Amazon in the initial hour of the experiment,
but after approximately 110min of experiment, difference
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Fig. 7 Comparison of proposed architecture scheduling and simple
amazon scheduling on QoS parameters of big data jobs. a Resource
utilization of all datacenters, b average waiting time of jobs for start of

execution, c availability of all datacenters, d average estimated time to
complete of all submitted jobs, e average response time of all datacen-
ters after a job start execution

Table 4 Pricing of Amazon EMR clusters [13]

Region Cluster Pricing (per hour)

Virginia General Purpose (GP1) $0.070

Compute Optimized (CO1) $0.053

Memory Optimized (MO1) $0.090

Input/output Optimized $0.079

Singapore General Purpose (GP2) $0.070

Compute Optimized (CO2) $0.053

Memory Optimized (MO2) $0.090

Input/output Optimized $0.079

Ireland General Purpose (GP3) $0.070

Compute Optimized (CO3) $0.053

Memory Optimized (MO3) $0.090

Input/output Optimized $0.079

started to increase linearly. The jobs are starting to com-
plete faster in the proposed architecture as shown in Fig.
7d, it affects all other QoS parameters. There is decrease
in waiting time and availability increases for all clusters as
depicted in Fig. 7b, c respectively. Proposed architecture is
also cost effective from Amazon scheduling policies. Cost
of cloud usage will increase with increase in waiting time
of arrived jobs. Considering both running and waiting jobs,
proposed architecture provides 33.15% cost gain in 3h of
experiment.

5 Conclusion

In this paper, a QoS aware big data scheduling architecture
for geographically distributed cloud datacenter has been pro-
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Table 5 Comparison of cost for
both approaches

DC Datacenter and all costs are
in $

Time (in min) Proposed architecture Amazon scheduling Total

DC1 DC2 DC3 DC1 DC2 DC3 Proposed Amazon

0–30 3.42 4.12 3.13 5.75 6.04 3.92 10.67 15.71

30–60 4.51 5.98 5.12 5.90 6.18 5.68 15.61 17.76

60–90 6.12 7.41 7.99 7.20 8.53 6.66 21.52 22.39

90–120 6.01 6.87 7.11 8.55 9.99 9.26 19.99 27.8

120–150 5.77 5.03 6.53 10.28 10.98 10.49 17.33 31.75

150–180 4.43 5.59 6.01 11.12 12.24 12.56 16.03 35.92

Total 30.26 35.00 35.89 48.80 53.96 48.57 101.15 151.33

posed. It is evaluated using three different geographically
located Amazon EMR datacenters for several QoS parame-
ters such as CPU utilization, waiting time, availability, esti-
mated time to complete and response time. It investigated the
impact of QoS scheduling by comparing it with the tradition
Amazonmodel. In today’smarketplacewhere correct, timely
and efficient data extraction can affect many organizational
decisions. Proposed model helps to reduce data extraction
cost as well as provides desired results timely. Future work
will include development of load balancer at global and local
scheduler level, which will balance the load among datacen-
ters and virtual clusters based on dynamic QoS requirements
of big data application. We will also extend proposed archi-
tecture to different cloud applications such as media stream-
ing and cloud gaming etc.
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