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Abstract Performance is an open issue in data intensive
applications (e.g. data mining tasks). Parallel and distributed
computing systems (e.g. multicore computing, grid comput-
ing, cloud computing,etc.), along with hybrid programming
models (e.g. MapReduce, MPI, etc.), is seen a sought-after
solution for accelerating data-intensive applications. One of
main challenges is how to exploit these advanced technolo-
gies effectively in facilitating fundamental science discover-
ies such as those in Biomedical Sciences. This paper explores
how MapReduce and Cloud computing can accelerate per-
formance of data intensive applications through a real data
mining use case in the Biomedical Sciences. We have first
adapted the data mining task using MapReduce model and
then deployed it onto the Cloud. We have built an analytic
model based on the MapReduce computations to evaluate
the efficiency and performance of the prototype. The results,
from both experiments and the evaluation model, show the
performance and scalability can be enhanced through these
advanced technologies.
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1 Introduction

Data keeps on growing. According to the report from IDC
(sponsored by EMC) [20], the size of all digital data, gen-
erated by social networks, sensor networks, and simulation
devices, will reach 35 zettabytes by 2020. We have now
entered an era of data-intensive science. Data intensive sci-
ence represents a new paradigm of science discovery [19].
It interacts with“ big” data to identify patterns and lead to
scientific breakthroughs.

Data-intensive applications are usually viewed as I/O
bound or with a need to access and manipulate the large
volumes of data [14,15] because they spend most of time on
I/O operations.

In data-intensive computing, processing requirements
normally scale super-linearly according to data size [15].
Large-size data needs to be decomposed into small chunks
and spread across many computing resources to achieve I/O
in parallel.

Parallel and distributed computing systems (e.g., mul-
ticore computing, grid computing, cloud computing, etc.),
along with hybrid programming models (e.g., MapReduce,
MPI, etc.,), have played important parts in accelerating data-
intensive applications. Examples of systems that support
data-intensive applications include Google MapReduce [29],
Swift [38], DataCutter [5], DryadLINQ/Dryad [25,26], and
Parallel databases such as Vertica [36], Teradata [35], IBM
DB2 [9], etc. With the rapid growth of data, more compute
resources are required to access large amounts of data and
perform many calculations across multiple machines concur-
rently. However, incorporating data and compute resources
into parallel infrastructures amenable to data exploration
is not an easy task. One has to take into account scalabil-
ity, reliability, fault-tolerance and cost-reduction. To remove
the burden of building, operating and maintaining expensive
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physical resources and infrastructures (e.g., hardware, clus-
ters etc.), Cloud computing, a type of distributed computing
paradigm augmented with a business model via a Service
Level Agreement between providers and consumers [16], is
emerging as a cost-effective solution to address the increased
demand for distributed data, computing resources and ser-
vices without large upfront investment.

One of main challenges is how to exploit these frontier
technologies effectively to support fundamental science dis-
coveries such as those in Biomedical Sciences. This paper
attempts to use a real data mining study in the Biomedical
Sciences and conduct an experimental evaluation to better
understand how well the parallel approach (i.e., MapReduce
in this paper) and Cloud computing support data-intensive
applications in real life. Note the data mining use case here
is a typical exemplar of a generic image-processing analysis
pipeline that could be applied to many datasets. This type
of intensive data-analysis task is increasingly common in the
physical, life and social sciences (e.g., scatterometer/satellite
image data for climate study). It is vital for researchers in
these areas that they have access to the methodologies that
can automatically transform data into knowledge, and that are
also dynamic scalable in conjunction with the steady increase
in available raw storage and computational resources, and
corresponding improved capability to increase the opera-
tional, cost, and environmental efficiency. The contributions
of this paper include:

• Adapting the data mining use case using the MapReduce
Model;

• Constructing an analytic model based on MapReduce
computations for assessing the efficiency of the proto-
type and providing the possible optimisation strategies
based on the model;

• Deploying the application to the Cloud and evaluating
the performance on the Cloud computing platform;

• Providing a best practice in supporting a class of similar
data-intensive applications in the cloud.

The rest of this paper is organised as follows: Sect. 2
overviews related technologies that support data-intensive
applications; Sect. 3 presents a prototype of data mining case
in the Biomedical Sciences using the MapReduce model; in
Sect. 4, we have constructed an analytic model based on the
MapReduce computations for performance evaluation and
conducted experiments in the cloud; Sect. 5 discusses the
experimental results, experiences and possible optimisation
strategies; Sect. 6 concludes the proposed approach and high-
lights our future work.

2 Related work

Parallel computing is a typical way to improve the perfor-
mance of data-intensive applications. Parallelisation can take

place at either hardware or software levels or both (e.g., sig-
nal, circuit, component and system levels) [6]. Hardware par-
allelism focuses on signal and circuit levels and normally is
constrained by manufacturers. Software parallelism at com-
ponent and system levels can be classified into two types:
automatic parallelisation of applications without modifying
existing sequential applications and construction of paral-
lel programming models using various software technolo-
gies to describe parallel algorithms and then match appli-
cations with the underlying hardware platforms. Since the
nature of auto-parallelisation is to recompile a sequential
program without the need for modification, it has a lim-
ited capability of parallelisation on the sequential algorithm
itself. In most cases, it is hard to directly transform a sequen-
tial algorithm into a parallel one. While parallel program-
ming models try to address how to develop parallel applica-
tions and therefore how to maximally utilise the parallelisa-
tion to obtain high performance, it does need more develop-
ment effort on parallelisation of specific applications. In gen-
eral, three considerations when parallelising an application
include:

• How to distribute workloads or decompose an algorithm
into parts as tasks?

• How to map the tasks onto various computing nodes and
execute the subtasks in parallel?

• How to coordinate and communicate subtasks on those
computing nodes?

There are mainly two common methods for answering
the first two questions: data parallelism and task parallelism.
Data parallelism represents workloads are distributed into
different computing nodes and the same task can be exe-
cuted on different subsets of the data simultaneously. Task
parallelism represents the tasks are independent and can be
executed purely in parallel. There is another special kind of
the task parallelism is called pipelining. It represents an iter-
ation of a task consisting of many stages, where each stage
in the task is chained and executed in order and the output
of one stage is the input of the next one. Pipelining can be
implemented with streaming and without using streaming.
In the pipeline streaming mode, multiple stages of a task are
connected and executed in series. One stage can start com-
puting with partial input data without waiting for the whole
input data. Similarly, the successor of a stage can process the
partially processed result and so on. The extent of paralleli-
sation is determined by the dependencies of each individual
part of the algorithms and tasks. As for the coordination and
communication among tasks or processes on various nodes, it
depends on different memory architectures (shared memory
or distributed memory). A number of communication mod-
els have been developed [28,30], for example, the Message
Passing Interface (MPI).
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Much effort has been devoted to developing frameworks
using parallel approaches to support data-intensive applica-
tions.

Google MapReduce framework [10,29] focuses on data
parallelism. It provides a simple interface of two functions
and allows developers to parallelise data processing tasks.
The Map function performs grouping that produces interme-
diate data sets and the Reduce function performs aggrega-
tion of intermediate data sets into smaller data sets. Hadoop
MapReduce [2] is an open-source MapReduce implementa-
tion that is an attempt to reproduce Google MapReduce. The
simplicity of MapReduce is appealing. It can easily paral-
lelise data over large-scale data centres with thousands of
computing nodes and process data on terabyte and petabyte
scales. The MapReduce restricts its two-stage operations in
order. The developers need adapt their applications to the
MapReduce style by developing their own Map and Reduce
functions. Dryad [25,26] is a general purpose distributed
execution engine for coarse-grained data parallel applica-
tions, designed for scaling from multicore single computers,
through small clusters of computers, to data centres with
thousands of computers. The model of computation of the
Dryad is a data flow framework expressed as a DAG and
inherently specialised for streaming computations. It can
specify arbitrary DAGs. FREERIDE [21,22] mainly focuses
on development of parallel versions of specific and well-
known data mining algorithms. River [3] is a data-flow pro-
gramming environment and I/O substrate for clusters. It uses
data parallelism and limits itself to I/O workloads. Swift [38]
is a system that supports parallel computation on large-scale
data-intensive applications and focuses on data parallelism.
A data diffusion framework [32], built on Falkon [31], has
been proposed for supporting large-scale data exploration
that acquires computing and storage resources dynamically,
replicates data in response to demand, and schedules com-
putations close to data. Grossman et al. [33] have developed
a Cloud-based infrastructure for data mining on large dis-
tributed datasets. The approach moves the processing near to
the data. ADMIRE [4,18] is a data mining and integration
framework that adopts streaming the data flow graph and
supports both data and task parallelisation. Taverna [27] is a
framework for composition and enactment of bioinformatics
workflows. It provides an implicit iteration for processing
data. Taverna can map a high-level task to a single entity
with a minimum amount of implementation information. It
supports both task and data parallelisms. Pegasus [11] and
DAGman [7] are suitable for managing complex scientific
workflows and scheduling large-scale computations in Grid
environments. DAGMan provides a workflow engine that can
organise Condor tasks as DAGs and deal with parallelism
between tasks. Triana [34] offers support for both data and
implicit control flows. Loops and execution branching are
handled by specific components. It supports static data par-

allelisms. Karajan [23,24] extends DAGs for supporting con-
ditional execution, sequential and parallel iterations. It adopts
the underlying Grid tools for job submission.

Cloud computing, a recent advancement, has evolved
from existing parallel processing, grid computing, distrib-
uted computing and utility computing technologies. It pro-
vides dynamic and flexible resource provision and delivers
infrastructure, platforms and software as a service in order
to support data-intensive applications [37].

To enable scientists to gain new insights from large
amounts of data, it is critical to understand how well these
advanced technologies can support data-intensive applica-
tions in practice such as in the Biomedical Sciences.

In this paper, we mainly focus on applying the MapRe-
duce and Cloud computing technologies to a real data mining
use case in the Biomedical Sciences. Two main reasons for
choosing the MapReduce and Cloud computing include:

• The MapReduce framework is designed for parallel
processing large-scale data efficiently and to be run on
non-specialised commodity hardware. It is easy to use,
scalable and fault-tolerant.

• Cloud computing enables on-demand access to comput-
ing resources for scaling up to match the growing data.
The entry level of Cloud computing is lower than opera-
tion of traditional IT infrastructure, e.g., without need of
large capital investment and complex resource provision.

For the purpose of this paper, we have first adapted the data
mining algorithms described in Sect. 3.1 using the MapRe-
duce model. We then used Cloud computing (based on the
IaaS model) as a deployment platform on which the data
mining application is deployed and executed. Namely, we
rent computing infrastructures from a cloud provider (i.e.,
Amazon Elastic Compute Cloud (Amazon EC2 [1]) with full
control of those computing resources and conducted experi-
mental evaluation in the Cloud.

3 Parallel data-intensive application using MapReduce:
a data mining case study

3.1 Background

It is of high biomedical interest to identify gene interactions
and networks that are associated with developmental and
physiological functions in the embryo by using ontological
annotation. The ontological annotation of gene expressions
consists of labelling embryo images produced from RNA in
situ Hybridisation (ISH) with terms from the anatomy ontol-
ogy for mouse development. If an image is tagged with a
term, it means that anatomical component shows expres-
sion of that gene. Currently annotation is done manually
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Fig. 1 An example of annotating image using a term from the anatomy
ontology for the developing mouse embryo

by domain experts. This is both time-consuming and costly,
especially with the rapidly growing volume image data of
gene expression patterns on tissue sections produced by
advanced high-throughput instruments (e.g., ISH). For exam-
ple, the EurExpress-II project [5] curated over 4 Terabytes
large datasets (still continuing growing, an additional further
10 TB) including images for the developing mouse embryo
and the ontological terms for anatomic components of the
mouse embryo. The datasets provide a powerful resource for
discovery of potential mechanisms of embryo organisation.

Our data mining goal is therefore to automate this anno-
tation process. The input is a set of image files (stored in
the file system) and corresponding ontological terms (stored
in the database). The output will be an identification of the
anatomical components that exhibit gene expression patterns
in each image. Figure 1 shows an example of annotating an
image using a term from the anatomy ontology for the devel-
oping mouse embryo. Figure 2 illustrates the processes of the
data mining task involved, for example, the processes in the
training stage include integration of images and annotations,

image processing, feature generation, feature selection and
extraction, and classifier design. The testing stage has three
same subprocesses (image processing, feature generation,
feature selection and extraction) with additional prediction
evaluation process. For the prediction evaluation process, we
adopt 10-fold cross validation to validate the accuracy of the
classifiers, where the dataset is randomly divided into 10 sub-
sets. 9 subsets are formed as a training set and one is viewed
as a test set. This process is then repeated ten times. The
deployment stage contains only the application of the classi-
fiers. We have developed data mining algorithms for each of
the processes that can automatically annotate gene expres-
sion in images [17], programmed these in sequential code,
and have conducted a pilot experiment.

Note this use case here is an exemplar for a wide range
of analysis that can be applied to many other datasets. This
type of large-scale, high-throughput image-based data is now
common across biomedical research and beyond and it will
be a major resource for data mining over many years. The
computations are often compute-intensive as well as being
across a large data-set and users will need the capability to
write their own algorithms to run against the data. This capa-
bility of moving the computation to the data is difficult to
support and unlikely to be within the resources of the data-
providers. The purpose of this paper is therefore to explore
the use of parallel approaches such as the MapReduce in this
case and Cloud computing to enable this capability.

3.2 MapReduce

Google MapReduce is inspired by functional languages and
targeted at data-intensive applications [10,29]. The key ben-
efit given by the MapReduce is that a programmer does not
need to deal with the complicated code parallelism and focus
on the required computation. It emphasised on the data paral-
lelism. The proprietary implementation of Google MapRe-

Fig. 2 Data mining processes
for automatic gene expression
annotation
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Fig. 3 Prototype of automatic
gene expression annotation on
Hadoop

duce framework has prompted the development of similar
implementations [2,12]. Hadoop MapReduce is one of the
most popular open source implementation. It is a reproduc-
tion of Google’s MapReduce, written in Java. It is run on top
of the Hadoop Distributed File System (HDFS), which pro-
vides high throughput access to the reliable storage of very
large files across machines in a large cluster and enables col-
location of data processing and storage.

In Hadoop MapReduce, the format of the input is
application-specific and the output is a set of 〈key, value〉
pairs. The programmer expresses the desired computation as
two primitive functions: Map and Reduce. The Map func-
tion consumes the input and produces a list of intermediate
〈key, value〉 pairs. The Hadoop MapReduce runtime then
shuffles these intermediate 〈key, value〉 pairs and groups
together all the values associated with the same key and par-
titions these groups of 〈key, value〉 pairs based on a hashing
function on keys accordingly. The Reduce function takes the
groups of 〈key, value〉 pairs and performs a merging oper-
ation on the list of intermediate values associated with the
same key and produces zero or more output 〈key, value〉
pairs. There could be multiple instances of the Mapper and
Reducer running on different machines with each processing
a subset of larger data concurrently. In both Map and Reduce
stages, the runtime must dynamically decide the size of data
partitions, the number of computing nodes, the assignment of
data partitions to nodes, and the allocation of memory buffer
space. These decisions can be either implicitly decided by the
runtime based on some default settings or explicitly specified
by the programmer via APIs or configuration files.

In the Hadoop system, a MapReduce job represents a work
unit including input data, Map and Reduce programmes and

corresponding user-specified configurations. It is possible to
create a MapReduce job without a Reduce phase. It is impor-
tant to note that it is difficult to solve any problem with a sin-
gle MapReduce Job and large-scale data-intensive problems
can be handled with a series of interconnected MapReduce
job, called job chaining, which allows to decompose a large
problem to smaller problems.

3.3 Implementation of the data mining task using the
MapReduce

According to Fig. 2, we have implemented processes of
the data mining task using the MapReduce and prototyped
the system using the Hadoop MapReduce (version 0.20.2).
Figure 3 shows system overview of the prototype. Three
main components including MRcontroller, Data Packer and
the data mining workflow consisting of 8 MapReduce jobs.
Figure 4 shows detailed Mappers and Reducers of the
MapReduce job chain.

The MRcontroller, along with a configure file called
mrdia-config.xml, is an interface that allows a user to inter-
act with the system, for example, the user can specify
input/output file locations through MRcontroller. The run-
time properties of the system can be configured through the
MRcontroller reading the mrdia-confi.xml file. Some run-
time properties are the number of computing nodes, the
k value for the k-fold cross validation, and other parameters
that are used in the data mining algorithms.

The Data Packer is responsible for packing the raw data
in the desired file format and storing them in the HDFS
(Hadoop Distributed File System) for the MapReduce jobs.
In Hadoop, there are two kinds of file formats: TextFile and
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Fig. 4 MapReduce job chain in detail

SequenceFile. TextFile format is for unformatted data or line-
based records like log files. SequenceFile is a persistent data
structure used in Hadoop for storing binary. The Sequence-
FileInputFormat reads special binary files that are specific
to Hadoop, allowing data to be rapidly read into Hadoop
Mappers. It is commonly used as containers for smaller files
in Hadoop to achieve the effect of large input files to any
MapReduce job. The added advantage of using Sequence-
File is that it can be easily compressed and decompressed
within the Hadoop framework and provides direct serialisa-
tion and deserialisation of several data types (such as byte
array). It can be generated as the output of other MapReduce
tasks and are an efficient intermediate representation for data
that is passing from one MapReduce job to another. Binary
files are stored using SequenceFile format in this case. Data
packer also acts as an initial workload distributor, produces
the number of smaller files that match with the number of
computing node as instructed by the MRcontroller (which
reads the value from the configuration file, mirdia.xml).

Another key component of the prototype system is the data
mining workflow. The data mining process kicks off with the
Data Packer module where the gathering and distribution of
the raw data is performed. In this case, the raw data comprises
image files of the mouse embryo and a text file containing
the annotations or labels. The processed raw data are served
as distributed inputs to the data mining workflow. The entire
data mining workflow is modelled as a chain of 8 MapReduce
jobs. The following subsection discusses the details MapRe-
duce implementation for these MapReduce jobs.

3.3.1 Image preprocessing

The image preprocessing deals with de-noise and standard-
isation of images due to different dimensions and varia-
tions. It reads an image and the corresponding annotation
and processes with rescale and denoise algorithms (please
refer to [17] for algorithm details). Given a large dataset,
the algorithms can have multiple instances running on par-

titioned subsets without any internal status to be maintained
between these instances. This nature makes the algorithms
and this process be easily adapted to the MapReduce style. It
is thus implemented as a Mapper class in Hadoop and there
is no need for a Reducer at this stage. In this case, the individ-
ual image binaries and its annotations are stored into a java
object together with a generated identifier. The list of java
objects that represents all the images are then written into
an optimised format known as SequenceFile in Hadoop. The
Mapper takes the SequenceFile containing a list of image
binaries as input and applies the denoise and rescale algo-
rithms on every image. The output after applying denoise
and rescale algorithms is a java object binary with a 2-D
array (the matrix representation of an image) and associated
with the unique image identifier to form the 〈key, value〉 pair
in the output SequenceFile.

Mapper (for image preprocessing):

Input:
SequenceFileInput (key(imageId), ImageBinarydata);
Output:
SequenceFileOutput (key(imageId), 2-D Byte array)

3.3.2 Feature generation using wavelet transform

The feature generation includes three MapReduce jobs:
wavelet transformation of an image to produce the features,
feature for training set, and feature for testing set. We have
used wavelet transform method to generate the features. This
task is suitable for data parallelism because the instances
can be running on different machines without communica-
tions between machines. It is implemented as a Mapper class.
There is no need for Reduce class. The Map function will be
invoked for every 〈key, value〉 pairs in the output Sequence-
File produced by image preprocessing and performs 2-D dis-
crete wavelet transformation on it (the key is the unique image
identifier and the value is a java object binaries with a 2-D
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array, image representation using Matrix). The output is a
java object binaries stored in output SequenceFile.

Mapper (for wavelet transform):

Input:
SequenceFileInput (key(imageID),
value(Matrix representation:2-D ByteArray));
Output:
SequenceFileOutput ( key(imageID),
value(feature vector:1-D ByteArray))

3.3.3 Training and testing set features

Since 10-cross validation is used in this case for validat-
ing data mining algorithms, we need split the data into the
training set and the testing set and thus have the training set
features and the testing set features.

The 10-cross validation in the system is implemented as a
for-loop iteration, which is used to facilitate the input mech-
anism used in Hadoop MapReduce. A Hadoop MapReduce
job can accept a directory as input and pick up all the files
within the directory as the real inputs for the job. The testing
and training sets are generated dynamically in each iteration
based on simple hashing of the unique identifier assigned to
the data item through the data packer. The testing and train-
ing sets are stored in different directories in the HDFS in
SequenceFile format.

We have implemented Mappers for the training and testing
set feature extraction in order to perform parallel execution in
parallel. Technically, the testing and training feature extrac-
tion can be performed in a single task, but they are imple-
mented as two separated Map classes. The reason is that
Hadoop MapReduce job produces a single list of output. The
Mapper for the training set features is shown below(similarly,
we have the same Mapper function for the testing set fea-
tures). The input to the Mapper includes SequenceFileInput
embedded with key and the corresponding value and the con-
figuration file containing numbers of folds.

Mapper (for Training set/or Testing set):

Input:
SequenceFileInput (key(imageID),
value(feature vector:1-D ByteArray)); and
ConfigurationFile for getting numbers of fold(i.e. k);
Output:
SequenceFileOutput ( key(imageID),
value(feature vector:1-D ByteArray))

3.3.4 Feature selection using Fisher’s ratio

The nature of the Fishers Ratio algorithm [13] for feature
selection is to calculate Mean and Variance of image sam-

ples for two classes (C1 and C2), as shown in the following
Eq. (1).

Fisher Ratio = (m1,i − m2,i )
2

(v2
1,i + v2

2,i )
(1)

where m1,i represents the mean of samples at the i th feature
in C1, m2,i represents the mean of samples at the i th feature in
C2. v1,i represents the variance of samples at the i th feature
in C1. Similarly, v2,i represents the variance of samples at
the i th feature in C2.

We parallelise Fisher’s Ratio algorithm by decomposing
it into three parts: calculation of mean and variance, Fisher’s
ratio calculation and Top N feature index Selection. The input
to this step is the training set extracted in the feature gener-
ation step. We thus implemented these three parts as three
MapReduce jobs.

(1) MapReduce job for calculation of mean and variance
In the first step of the Fisher’s Ration algorithm, we need
compute the mean and variance of features of the two
classes respectively (images labelled as “1” represent one
class and images labelled “0” represent the other class).
This computation can be fully parallelised by calculating
the means and variance of all image features belonging
to the same class. This job has a Map class and a Reduce
class. The Mapper maps images according to the classi-
fication using the classification labels (i.e., “1” or “0”)
as the key for its output 〈key, value〉. The value is the
vector containing the features of images ( from feature
generation step). The Mapper class input and output can
be represented as:

Mapper (for calculation of Mean and Variance):

Input:
SequenceFileInput (key(imageID),
value(feature vector:1-D ByteArray));
Output:
SequenceFileOutput ( key (classLabel),
value(feature vector:1-D ByteArray))

The Reducer receives the list of features of each image
belonging to the same class and performs the calculation
of mean and variance of the features across the list using
Eqs. (2) and (3).

mmean =
∑n

i=1 xi

n
(2)

vvariance
2 =

∑n
i=1(xi − mmean)

2

n
(3)

The calculation of both mean and variance is highly par-
allelisable. There are only two Reducers needed since
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there are only two distinct keys at this stage, i.e., the
classification label “1” and “0”. The Reducer class input
and output can be represented as:

Reducer (for calculation of Mean and Variance):

Input:
SequenceFileInput ( key (ClassLabel),
value(feature vector:1-D ByteArray));
Output:
SequenceFileOutput ( key (ClassLabel),
value(feature vector:1-D ByteArray))

(2) MapReduce job for Fisher’s Ratio
The next MapReduce job is to calculate the Fiher’s Ratio
between the two classes for every feature of an image
in a class. The job comprises a Mapper and a Reducer.
The Mapper “rearranges” the data as 〈key, value〉 pairs
using the index of the feature as the key and the value
consists of the classification label, the feature mean and
the feature variance. This is to facilitate parallel calcula-
tion of the Fisher’s Ratio of all features since the internal
shuffling will hash the key (which is the feature index
now) and distribute the workload across all the available
Reducers. The Reducers perform the actual calculation
of the Fisher’s Ratio described in Eq. (1).

Mapper (for Fisher’s Ratio):

Input:
SequenceFileInput (key (ClassLabel),
value(1-D ByteArray) );
Output:
SequenceFileOutput (key(Featureindex),
value(1-D ByteArray))

Reducer (for Fisher’s Ratio):

Input:
SequenceFileInput (key (Featureindex),
value (ClassLabel, mean and variance) );
Output:
SequenceFileOutput (key(Featureindex),
value (FisherValue))

(3) MapReduce job for Top N feature index selection
The Top N feature index selection is to select the most
significant features to be used in the classification step.
This job has a Map class and a Reduce class. The Mapper
combines all the Fisher’s ratio of the features to a single
list using a common key (which is arbitrarily assigned).
The Reducers accepts the list of (FeatureIndex, Fisher-
Value), sorts the list in descending order according to the

Mapper (for TopN Feature Index):

Input:
SequenceFileInput (key(FeatureIndex),
Value (FisherValue) );
Output:
SequenceFileOutput (key(some-key: arbitrarily assigned),
value(FeatureIndex, FisherValue))

Fisher’s ratio, selects the top N features. The value of N
is specified by the MRController during the job setup.
The MRController reads this value from the configura-
tion file. The selected top N indexes are placed in an
integer array and written to a SequenceFile in HDFS.

Reducer (for TopN Feature Index Selection):

Input:
SequenceFileInput (key(some-key: arbitrarily assigned),
value(FeatureIndex, FisherValue) );
and Configuration file for getting the value of N
Output:
SequenceFileOutput (key(somekey),
value(Indices:integer array)

3.3.5 Classifier construction using K-nearest neighbour

In this case, we have adopted K-Nearest Neighbour (KNN) [8]
algorithm for classification to identify unknown samples into
a class based on the nearest distance with the training sam-
ples. The common distance function is Euclidean distance.
In this case, the samples (images) are represented as vectors
of the values of the selected features based on Top N index
as vectors. The Euclidean distances therefore are calculated
between each training sample in the training set and a testing
sample in the testing set, and then the nearest ones can be
chosen. For all of training samples, the calculation is a typi-
cal iteration task. To exploit parallelisation in this algorithm,
we use a special task parallelism called “pipelining”, inspired
by [6]. We divide an iteration of the KNN task into several
pipeline stages. The sample images can be partitioned into
subsets. The distance calculations between subsets of train-
ing samples and the unclassified testing sample are executed
at different stages. Figure 5 shows the parallel form of the
KNN algorithm using the concept of “pipelining”.

We have implemented this parallel KNN as a MapReduce
job comprising a Mapper, a combiner and a Reducer. Accord-
ing to the parallel form of KNN, it requires three inputs: the
training set, the testing set and Top N indexes for selected
features. However, the Hadoop MapReduce job requires the
input to be a list of 〈key, value〉 pairs with identical for-
mat. Therefore, we use the training set only as the direct
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Fig. 5 A parallel form of KNN

input to the Mapper with the testing set and Top N feature
indexes dynamically distributed to all the computing nodes
using the DistributedCache provided by Hadoop. The test-
ing set and Top N features are retrieved and kept in memory
during the initiation of the Mapper. The in-memory testing
set is a reduced set because the feature is selected based on
the Top N feature indexes. This in-memory test is used exclu-
sively in the Mapper class because we need to compute the
Euclidean distance between each training sample and test-
ing sample. The output is to predict the classification of each
image in testing set and the key for the 〈key, value〉 pair
is the unique identifier of image sample and the image file
name. The value of the 〈key, value〉 pair is a data structure
containing information (such as unique identifier, classifi-
cation label and Euclidean distance from the testing set) of
the “neighbour” found in the training set. The Euclidean dis-
tances are thus calculated concurrently across all computing
nodes in the Map phase.

Mapper (for KNN):

Input:
SequenceFileInput (key(ImageID),
Value (1-D ByteArray) );
Output:
SequenceFileOutput (key(A customised key containing
imageID and fileName),
value(ImageID, ClassLabel, Euclidean Distance))

The Reducer receives every testing image sample and its
neighbours and then sorts all the neighbours in ascending
order according to the distance and picks the K nearest neigh-
bours from the list. The Reducer output is a text file contain-
ing the classification prediction of the entire testing set.

To reduce the amount of communication between the
Mapper and Reducer, a combiner is introduced to extract the

Reducer (for KNN):

Input:
SequenceFileInput (key(A customised key containing
imageID and fileName),
value(ImageID, ClassLabel, Euclidean Distance))
Output:
SequenceFileOutput (key(A customised key containing
imageID and fileName),
value(Prediction of each sample the testing set))

K nearest neighbours from the output of the Mapper. With
a combiner, for each testing image sample, the Reducer will
only receive the K nearest neighbours from each Mapper.

4 Performance evaluation model

4.1 Performance evaluation metrics

We have used Speedup to measure performance. The defini-
tions are described as follows:

Speedup = T (s)

T (m)
(4)

where T (s) represents the execution time of a task on one
single machine; T (m) represents the execution time on m
machines.

4.2 Performance evaluation model

In terms of the system architecture (i.e. MapReduce compu-
tations in this case) in Fig. 3, we have also built an analytic
model to assess the efficiency of the prototype based on the
following assumptions:

• Given m machines, the system in our case is config-
ured as one single master and m-1 multiple workers. The
master consists of a job tracker, task tracker, namenode
and datanode. The worker node consists of a datanode
and task tracker. The master machine processes both the
MapReduce and non-MapReduce jobs such as schedul-
ing. The master node’s time cost includes scheduling
time, communication between the master and work nodes
and MapReduce jobs acting as one worker, while the
worker nodes’ time cost consists of processing time for
MapReduce jobs and communication time between the
master and themselves.

• The data amount represented as D; all other time cost
irrelevant to data amount and the number of work nodes
represented as ci , where i represents a certain task/or
MapReduce job.
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• The processing time on a work node is proportional to
the amount of data (i.e., numbers of images).

• The processing capability per unit (i.e., per image in this
case) is constant.

According to the assumptions above, the master node
has the heaviest load and spent a longer time on both non-
MapReduce jobs (e.g., scheduling, etc.) and MapReduce jobs
while worker nodes only execute MapReduce jobs. Hence,
the relationship between the total execution time of the data
mining task and time cost for both the master and the workers
can be represented as follows:

For a single machine, it is viewed as the sum of the sequen-
tial job of each process of the data mining task in Eq. (5).

Ts(D) = TI P + TW T + TT T + TT R + TM R

+ TF R + TT opN + TK N N + Tdatapack + Cs (5)

In the equation, all other processes can be represented
as ki × D + ci , where i represents a certain process of the
data mining task (e.g., image preprocessing) except for clas-
sification KNN. ki is the proportional coefficient, represent-
ing the processing time per unit. KNN algorithm needs to
calculate Euclidean distance between each testing sample
and each training sample’s distance and requires both train-
ing and testing sets. Therefore, it can be represented as
kknn × Dtraining × Dtesting + cknn . In our case, we used
n-fold cross validation, which means Dtraining is n-1 times
of Dtesting . Therefore, time cost running on a single machine
can be represented as

Ts(D) = A′
1 × D2 + A′

2 × D + A′
3 (6)

For multiple machines running the whole data mining task
(m ≥ 2), time cost (Tm) on the master includes time for
processing non-MapReduce jobs (Tnmr job(D, m)) in rela-
tion to data amount (such as data partition, data transferring)
and the number of workers (such as scheduling, etc.) and
time cost (Cm) for any other tasks that are irrelevant to data
amount and the numbers of workers. To simplify the model,
we only consider time cost related to data amount. Based on
the experimental setup in this case, Tnmr job(D, m) can be
viewed as time Tdatapack(D) for data packing step.

Tm(D, m) = Tmr job(D, m) + Tnmr job(D, m) + Cm (7)

Therefore the performance model can be represented as a
set of equation as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tm(D, m) = Tmr job(D, m) + Tdatapack(D) + Cm

Tmr job(D) = TI Pmr + TFGmr + TF Smr + TC L Amr

TI Pmr = TI Pmap

TFGmr = TW T Map + TT rainMap + TT est Map

TF Smr = TMV Map + TMV Red + TF RMap

+ TF R Red + TT opN Map + TT opN Red

TC L Amr = TC L AMap + TC L ARed

Tdatapack(D) = kdatapack × D + Cdatapack (8)

where Tdatapack(D) represents time for data packer module
in the prototype TI Pmr , TFGmr , TF Smr , TC L Amr represent
MapReduce jobs for image preprocessing, feature genera-
tion, feature selection and classification respectively. We will
describe the time cost for each of MapReduce jobs below.

(1) Image preprocessing
This process is implemented as a MapReduce job (a Map-
per for image rescaling and filtering, no Reducer). The
execution time can be represented as follows:

TI Pmr = k1 × D

m
+ CI P (9)

where k1 is the proportional coefficient, representing the
processing time per unit; k1 × D means the process-
ing time; m represents the number of computing nodes.
CI P represents all other time costs independent of data
amount and the number of work nodes represented.

(2) Feature generation
Feature generation aims to produce features by apply-
ing wavelet transform to images and then splitting this
into training and testing sets. This process is imple-
mented as three MapReduce jobs (all are Mappers with-
out need for Reducers). Therefore, the execution time
can be described in Eq. (10).

TFGmr = k2a × D

m
+ k2b × D

m
+ k2c × D

m
+ CFG (10)

where k2a, k2b, k2c are the proportional coefficients, rep-
resenting the processing time per unit; k2a ×D means the
processing time for wavelet transform; k2b × D means
the processing time for feature extraction of training set
and k2c×D means the processing time for feature extrac-
tion of testing set. m represents the number of computing
nodes. CFG represents all other time costs independent of
data amount and the number of work nodes represented.

(3) Feature selection
Feature selection has been implemented as three MapRe-
duce jobs with both Mappers and Reducers: calculation
of mean and variance, calculation of Fisher’s Ratio and
Top N features. We describe time cost for feature selec-
tion in Eq. (11). The execution time for each of these
Mappers and Reducers is given in Eqs. (12), (13), (14),
(15), and (16).
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TF Smr = TMV Map + TMV Red + TF RMap + TF R Red

+ TT opN Map + TT opN Red (11)

TMV Map is time cost for the mapper that calculates the
mean and variance. TMV Red is time cost for the Reducer
that calculates mean and variance for the two classes
(“1” and “0”). They can be represented as in Eq. (12).

TMV Map = k3map × D

m
+ CMV map

TMV Red = k3red × D

m′ + CMV red (12)

where m′ represents the number of machines to process
reduce jobs. This step only need two Reducers for two
classes (m′ = 2)
TF RMap described in Eq. (13) is time cost of Fisher’s
Ratio, which is similar to other mappers. TF R Red is time
cost of the Reducer that calculates Fisher value. It is
determined by the number of features F (a constant based
on image dimension) instead of the number of images
(i.e., Data size D in this case). It can be represented as in
Eq. (14).

TF RMap = k4map × D

m
+ CF Rmap (13)

TF R Red = k4red × F

m′ + CF Rred (14)

where m′ represents the number of machines to process
reduce jobs and m′ = 2.

TT opN Map represents time cost of TopN that combines
all Fisher’s Ratio of features into a single list, which
can be calculated based on Eq. (15). The Reducer sorts
the list and selects Top N features and only needs one
single machine to process the reduce job. Therefore the
time cost TT opN Red is described in Eq. (16). Only one
Reducer is needed in this case.

TT opN Map = k5map × F

m
+ Ctopnmap (15)

TT opN Red = k5red × F + Ctopnred (16)

(4) KNN classification
KNN classification deals with the calculation of Euclid-
ean distance between each testing sample and each train-
ing sample. It has three inputs: training dataset, testing
dataset and TopN indexes. The proportion of data size
between testing and training dataset is 1:9 because we use
10-folder validation. KNN Mapper obtains training sam-
ples and output the distance values. Time cost for KNN
Mapper TC L AMap is described in Eq. (17). The Reducer
is to determine the classification of images based on the

distance. It accepts the nearest neighbours from m Map-
pers. It can be processed on one single machine. The time
cost for the Reducer TC L ARed is represented in Eq. (18).

TC L AMap = k6map × Dtraining

m
× Dtesting + Cclamap (17)

TC L ARed = k6red × m × Dtesting + Cclared (18)

In terms of analysis of time cost above, the execution time
for the data mining task Tm(D) can be described in Eq. (19)

Tm(D) = TI Pmr + TFGmr + TF Smr + TC L Amr

+ Tnmr job(D) + Tnmr job(m) + Cm

= k1 × D

m
+ CI P + k2a × D

m

+ k2b × D

m
+ k2c × D

m
+ CFG

+ k3map × D

m
+ CMeanvarmap

+ k3red × D

m′ + CMeanvarred

+ k4map × D

m
+ CFisher Ratiomap

+ k4red × F

m′ + CFisher Ratiored

+ k5map × F

m
+ Ctopnmap

+ k5red × F + Ctopnred

+ k6map × Dtrain

m
× Dtest + Cclamap

+ k6red × m × Dtest + Cclared

+ kdatapack × D + Cm (19)

The above equation can be unified in Eq. (20)

Tm(D, m) = A1 × D2

m
+ A2 × D × m + A3

× D

m
+ A4 × D + A5

1

m
+ A6 (20)

where A1, A2, A3, A4 and A5 are the proportional coeffi-
cients by combining like terms. A6 is the constant indepen-
dent of data size and amount. This is a non-linear equation
with six parameters to be determined based on our practical
experiments in the Cloud.

4.3 Experimental evaluation in the cloud

We have conducted the real experiments based on the Cloud
computing platform. We deploy our prototype in the Amzon
IaaS cloud by renting virtual computer nodes (Large Instance
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Table 1 Configuration of a virtual machine from Amazon EC2

Item Configuration

CPU 4 EC2 Compute units: 2 virtual cores with 2
EC 2compute Units. Note: one EC2
Compute unit provides the equivalent CPU
capacity of a 1.0–1.2 GHz 2007 Opteron or
2007 Xeon processor.

Memory 7.5 GB memory

Storage 850 GB instance storage (2 × 420 GB plus 10
GB root partition)

I/O performance High

Operating system Federa Core 8 (2.6.21.7-2.ec2.v1.2.fc8xen
Linux Kernel)

Type) from Amazon EC 2. The configuration of each machine
is described in Table 1.

We have measured the total execution time of the data min-
ing task by varying data size and the number of computing
node.

• data size: we have then chosen the number of images as
1600, 3200, 6400, 12800, and 25600 respectively;

• the number of virtual nodes: we have used numbers of
virtual nodes from Amazon EC2 ranging from 1 to 16.

Based on Gauss-Newton algorithm and the average of five
independent experiment runs, we have computed six parame-
ters in Eq. (20) and three parameters in Eq. (6):

A1 = 1.6341, A2 = 0.0238, A3 = 7.7525, A4 = 78.1657,

A5 = 0.0098, A6 = 212.1893

A′
1 = 1.7449, A′

2 = 87.6264, A′
3 = 420.1313

Therefore, the Eqs. (19) and (6) can be finalised in Eq. (21)
and (22).

Tm(D, m) = 1.6341
D2

m
+ 0.0238D × m + 7.7525

D

m

+ 78.1657D + 0.0098
1

m
+ 212.1893 (21)

Ts(D) = 1.7449D2 + 87.6264(D) + 420.1313 (22)

4.4 Result analysis from real experiments in the cloud and
the performance model

We have calculated the speedup for both the experiment (the
average of 5 independent runs) and the model as shown in
Tables 2, 3, and Fig. 6. The first column in the tables repre-
sents different data sizes. The size of input datasets is multi-
plied by a factor of 2 in every increment, up to 32 times of
the initial input data size (808 images, with every image con-
taining 60,000 pixels and the dimension is 300 × 200). The

Table 2 Speedup from the experiment

Node1 Node2 Node4 Node8 Node16

1× data 1 1.87 2.07 2.35 2.13

2× data 1 1.85 2.26 2.38 2.49

4× data 1 2.05 2.49 2.68 3.04

8× data 1 1.94 2.75 2.93 3.45

16× data 1 1.87 3.12 4.24 4.19

32× data 1 1.97 3.62 5.32 6.36

Table 3 Speedup from the model

Node1 Node2 Node4 Node8 Node16

1× data 1 1.96 2.12 2.21 2.26

2× data 1 1.95 2.24 2.42 2.52

4× data 1 1.93 2.43 2.79 3.00

8× data 1 1.93 2.69 3.36 3.82

16× data 1 1.94 3.01 4.14 5.08

32× data 1 1.96 3.33 5.07 6.83
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Fig. 6 The speedup from both experiments and the performance eval-
uation model

first row in the tables represents different computing nodes.
Table 4 shows the relative errors of the total execution time
between the model and the experiment results. The average
relative error is 0.0058 with 99 % confidence level and the
confidence interval 0.0058 ± 0.0309.

From the result we measured, the system exhibits less
than desired speedup with smaller datasets but a reasonable
speedup is achieved with a large enough dataset that compli-
ments the number of computing nodes. For example, at 32×
of initial input size (25,856 images), the speedup achieved
with 8 machines is 5.32; but with 16 machines, the speedup
achieved is only 6.36. To understand the key rate-limiting
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Table 4 The relative errors of the execution time between the experi-
ment and the model

Node1 Node2 Node4 Node8 Node16

1× data 0.0659 0.0354 0.0572 0.1740 0.0480

2× data 0.0244 −0.0121 0.0659 0.0266 0.0421

4× data −0.0627 0.0044 −0.0200 −0.0794 −0.0260

8× data −0.0114 0.0040 0.0280 −0.1200 −0.0853

16× data 0.0120 −0.0147 0.0709 0.0639 −0.1460

32× data −0.0010 −0.0200 0.0718 0.0402 −0.0693

Table 5 Speedup of each MapReduce job

Node1 Node2 Node4 Node8 Node16

IP 1 1.97 3.86 7.16 10.95

WT 1 2.03 3.73 5.99 10.32

TT 1 2.39 3.54 5.58 6.97

TR 1 2.12 3.80 5.39 9.84

MV 1 1.76 2.86 2.71 2.05

FR 1 3.06 3.48 3.48 3.37

TN 1 1.89 3.96 2.12 2.12

KNN 1 1.75 3.64 6.39 9.50

factors, we have conducted a detail analysis from both the
experiment and the model.

In the experiment, we timestamped each process of 8
MapReduce jobs. The Table 5 shows the speedup for each
MapReduce job. We can make the following observations:

• Some parallel jobs have very good speedup performance
in the MapReduce model, such as, image preprocessing,
wavelet transformation feature generation and K-nearest
neighbours.

• Long running jobs have better speedup than jobs that
have short duration, for example, jobs for both training
and testing feature extraction are almost identical, but
testing set extraction time is always 10 % of the training
set extraction.

• Jobs with short duration (in the range of 20–40 s) have less
than desired speedup, such as Fisher’s Ratio calculation
and Top N feature selection. Since the inputs of these jobs
are always reduced to a constant number, the minimum
execution time is bounded by the MapReduce overheads.
These jobs do not benefit from the parallelisation.

• The key rate-limiting factor in the system is the calcu-
lation of the Mean and variance in the feature selection
process. It exhibits trend beyond 4 nodes. This is due
to the fact that the calculation involves only two classes
in our use case, and only two Reducers (one for each
class) are used to produce the results. When the numbers
of computing nodes increases, the number of Mappers

increases proportionally, but only two Reducers are in
this stage. Hence, the communication bottlenecks build
up in the cluster, resulting in longer total execution time.
The non-parallel portion in the Reducer is the main cul-
prit in limiting the overall system speedup.

The above experimental results can be also explained
based on the performance model as follows:

• In the model Eq. (21), the parameter A4 = 78.1657 repre-
sents the proportional coefficient in relation to data size
only (non-parallel parts), which is greater than parallel
parts such as A1, A3 and A5. This shows that the speedup
is affected by these non-parallel tasks.

• The relationship between the speedup and the number of
computing nodes and data size can be analysed based on
the speedup:

Speedup = A′
1 D2 + A′

2 D + A′
3

A1
D2

m + A2m D+ A3
D
m + A4 D+ A5

1
m + A6

When the data size is fixed, the speedup increases in the
first instance with the increasing number of computing
nodes in the certain period. However, when the number of
computing node reaches a certain value, then the speedup
will decrease after this maximum value. As m → ∝, the
speedup will tend to zero. When the numbers of comput-
ing nodes is fixed, the speedup increases with the increase
of the data size (D). As D → ∝, the speedup will achieve

a certain value as
A′

1
A1

m.
• According to the model, in order to speedup the perfor-

mance, we can optimise the architecture of the prototype
by parallelising those non-parallel parts. In this case, for
example, parallelising calculation of mean and variance.

As a proof of concept, we used 16 nodes to run the exper-
imental evaluation in the cloud. However, to generalise the
idea of this paper behind and demonstrate the scalability of
the system, we have also run simulation using our perfor-
mance evaluation model. The Fig. 7 shows the prediction of
the speedup with over 20 nodes. The prediction demonstrates
the scalability where the speedup increases with the increase
of the scale of data.

4.5 Cost effectiveness of cloud computing

In this case, we have adopted Cloud computing platform as
an infrastructure running our application. In terms of turn-
around time and cost effectiveness, it is demonstrated that the
deployment of our application to the cloud is very easy and
within a short time frame. We have calculated the execution
time on a physical machine and on multiple virtual nodes in
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Fig. 7 Prediction of speedup based on the performance evaluation
model
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Fig. 8 Execution time (s) of cloud nodes and a physical machine
respectively

Table 6 Costs in the cloud

Item Unit cost($) Unit needed Total cost($)

Amazon: large instance 0.34/h 157 h 53.38

Amazon: storage 0.10/GB-Month 126.80 GB 12.68

the Cloud respectively, showed in Fig. 8. It found that there
is less execution time when multiple virtual nodes run the
task in parallel. Additionally, we have calculated the cost for
running the whole experiments in the Cloud described in this
paper, as shown in Table 6.

5 Discussion

Based on the experimental evaluation in Sect. 4, it is found
that the performance and scalability of the data mining task

can be enhanced by using MapReduce model and Cloud com-
puting. Through a detailed analysis from both the experiment
and the model, we can understand the further optimisation of
the data mining task and the class of similar data-intensive
applications:

• For the tasks that can be parallelised based on the data par-
allelism method, the data mining application can achieve
good speedup, such as image preprocessing, feature gen-
eration (e.g., Wavelet Transform).

• For those data parallel tasks, the bigger the data size of
the input is, the greater the speedup is.

• The non-parallel portion is a main factor that limits the
speedup and affects the system performance. Therefore
the optimisation strategy will mainly rely on parallelising
the non-parallel parts of the data mining task.

Based on our experience in this case, as a proof of the
concept, we found the Cloud is an efficient way to conduct
research-based pilot studies, for example, to test the feasibil-
ity of the initial research idea without huge upfront cost and
concerns of maintenance of the infrastructures.

Additionally, it is noted that MapReduce is a programming
model. For any given application, one has to adapt the appli-
cation to MapReduce model first and then run the application
on different computing platforms ( e.g., physical clusters or
virtual clusters on the Cloud).

6 Conclusion and future work

In this paper, we have investigated how to apply MapReduce
and Cloud computing to a real data mining use case in order
to understand how well these advanced technologies can
accelerate the performance, scalability and reduce the cost
in supporting data-intensive applications. We have adapted
the data mining task (initially written in sequential codes)
to MapReduce programmes. The prototype was deployed on
the Cloud computing platform for experimental evaluation.
We have used the speedup as the standard metric. The perfor-
mance evaluation model has also been built up for assessing
the efficiency of the prototype and analysing the possible
optimisation strategies of the prototype architecture.

The results from both the experiment and the model show
that the performance can be improved by using MapReduce
model. We have also compared execution time and the cost
of the Cloud computing and the estimated cost of the pri-
vate owned cluster respectively. The result shows that the
Cloud computing could be an alternative cost-effective solu-
tion for supporting data-intensive applications, particularly
for research-based pilot studies.

Our future work will focus on the further refinement of
parallelisation on the data mining task and the class of the
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similar data-intensive applications and conducting the per-
formance benchmark test between Cloud computing and the
big cluster in order to provide evidence for preparation of
migrating the large-scale data-intensive applications to the
Cloud.
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